Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

r""" 

Robinson-Schensted-Knuth correspondence 

 

AUTHORS: 

 

- Travis Scrimshaw (2012-12-07): Initial version 

 

EXAMPLES: 

 

We can perform RSK and the inverse on a variety of objects:: 

 

sage: p = Tableau([[1,2,2],[2]]); q = Tableau([[1,3,3],[2]]) 

sage: gp = RSK_inverse(p, q); gp 

[[1, 2, 3, 3], [2, 1, 2, 2]] 

sage: RSK(*gp) 

[[[1, 2, 2], [2]], [[1, 3, 3], [2]]] 

sage: m = RSK_inverse(p, q, 'matrix'); m 

[0 1] 

[1 0] 

[0 2] 

sage: RSK(m) 

[[[1, 2, 2], [2]], [[1, 3, 3], [2]]] 

 

TESTS: 

 

Check that it is a correspondence between all types of input and 

the input is preserved:: 

 

sage: t1 = Tableau([[1, 2, 5], [3], [4]]) 

sage: t2 = Tableau([[1, 2, 3], [4], [5]]) 

sage: gp = RSK_inverse(t1, t2); gp 

[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]] 

sage: w = RSK_inverse(t1, t2, 'word'); w 

word: 14532 

sage: m = RSK_inverse(t1, t2, 'matrix'); m 

[1 0 0 0 0] 

[0 0 0 1 0] 

[0 0 0 0 1] 

[0 0 1 0 0] 

[0 1 0 0 0] 

sage: p = RSK_inverse(t1, t2, 'permutation'); p 

[1, 4, 5, 3, 2] 

sage: t1 

[[1, 2, 5], [3], [4]] 

sage: t2 

[[1, 2, 3], [4], [5]] 

sage: RSK(*gp) == [t1, t2] 

True 

sage: RSK(w) == [t1, t2] 

True 

sage: RSK(m) == [t1, t2] 

True 

sage: RSK(p) == [t1, t2] 

True 

sage: gp 

[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]] 

sage: w 

word: 14532 

sage: m 

[1 0 0 0 0] 

[0 0 0 1 0] 

[0 0 0 0 1] 

[0 0 1 0 0] 

[0 1 0 0 0] 

sage: p 

[1, 4, 5, 3, 2] 

 

REFERENCES: 

 

.. [Knu1970] Donald E. Knuth. 

*Permutations, matrices, and generalized Young tableaux*. 

Pacific J. Math. Volume 34, Number 3 (1970), pp. 709-727. 

http://projecteuclid.org/euclid.pjm/1102971948 

 

.. [EG1987] Paul Edelman, Curtis Greene. 

*Balanced Tableaux*. 

Advances in Mathematics 63 (1987), pp. 42-99. 

http://www.sciencedirect.com/science/article/pii/0001870887900636 

 

.. [BKSTY06] \A. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong. 

*Stable Grothendieck polynomials and* `K`-*theoretic factor sequences*. 

Math. Ann. **340** Issue 2, (2008), pp. 359--382. 

:arxiv:`math/0601514v1`. 

""" 

#***************************************************************************** 

# Copyright (C) 2012 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from builtins import zip 

 

from sage.structure.element import is_Matrix 

from sage.matrix.all import matrix 

 

 

def RSK(obj1=None, obj2=None, insertion='RSK', check_standard=False, **options): 

r""" 

Perform the Robinson-Schensted-Knuth (RSK) correspondence. 

 

The Robinson-Schensted-Knuth (RSK) correspondence (also known 

as the RSK algorithm) is most naturally stated as a bijection 

between generalized permutations (also known as two-line arrays, 

biwords, ...) and pairs of semi-standard Young tableaux `(P, Q)` 

of identical shape. The tableau `P` is known as the insertion 

tableau, and `Q` is known as the recording tableau. 

 

The basic operation is known as row insertion `P \leftarrow k` 

(where `P` is a given semi-standard Young tableau, and `k` is an 

integer). Row insertion is a recursive algorithm which starts by 

setting `k_0 = k`, and in its `i`-th step inserts the number `k_i` 

into the `i`-th row of `P` (we start counting the rows at `0`) by 

replacing the first integer greater than `k_i` in the row by `k_i` 

and defines `k_{i+1}` as the integer that has been replaced. If no 

integer greater than `k_i` exists in the `i`-th row, then `k_i` is 

simply appended to the row and the algorithm terminates at this 

point. 

 

Now the RSK algorithm, applied to a generalized permutation 

`p = ((j_0, k_0), (j_1, k_1), \ldots, (j_{\ell-1}, k_{\ell-1}))` 

(encoded as a lexicographically sorted list of pairs) starts by 

initializing two semi-standard tableaux `P_0` and `Q_0` as empty 

tableaux. For each nonnegative integer `t` starting at `0`, take 

the pair `(j_t, k_t)` from `p` and set 

`P_{t+1} = P_t \leftarrow k_t`, and define `Q_{t+1}` by adding a 

new box filled with `j_t` to the tableau `Q_t` at the same 

location the row insertion on `P_t` ended (that is to say, adding 

a new box with entry `j_t` such that `P_{t+1}` and `Q_{t+1}` have 

the same shape). The iterative process stops when `t` reaches the 

size of `p`, and the pair `(P_t, Q_t)` at this point is the image 

of `p` under the Robinson-Schensted-Knuth correspondence. 

 

This correspondence has been introduced in [Knu1970]_, where it has 

been referred to as "Construction A". 

 

For more information, see Chapter 7 in [Sta-EC2]_. 

 

We also note that integer matrices are in bijection with generalized 

permutations. Furthermore, we can convert any word `w` (and, in 

particular, any permutation) to a generalized permutation by 

considering the top line to be `(1, 2, \ldots, n)` where `n` is the 

length of `w`. 

 

The optional argument ``insertion`` allows to specify an alternative 

insertion procedure to be used instead of the standard 

Robinson-Schensted-Knuth insertion. If the input is a reduced word of 

a permutation (i.e., an element of a type-`A` Coxeter group), one can 

set ``insertion`` to ``'EG'``, which gives Edelman-Greene insertion, 

an algorithm defined in [EG1987]_ Definition 6.20 (where it is 

referred to as Coxeter-Knuth insertion). The Edelman-Greene insertion 

is similar to the standard row insertion except that if `k_i` and 

`k_i + 1` both exist in row `i`, we *only* set `k_{i+1} = k_i + 1` and 

continue. 

 

One can also perform a "Hecke RSK algorithm", defined using the 

Hecke insertion studied in [BKSTY06]_ (but using rows instead of 

columns). The algorithm proceeds similarly to the classical RSK 

algorithm. However, it is not clear in what generality it works; 

thus, following [BKSTY06]_, we shall assume that our biword `p` 

has top line `(1, 2, \ldots, n)` (or, at least, has its top line 

strictly increasing). The Hecke RSK algorithm returns a pair of 

an increasing tableau and a set-valued standard tableau. If 

`p = ((j_0, k_0), (j_1, k_1), \ldots, (j_{\ell-1}, k_{\ell-1}))`, 

then the algorithm recursively constructs pairs 

`(P_0, Q_0), (P_1, Q_1), \ldots, (P_\ell, Q_\ell)` of tableaux. 

The construction of `P_{t+1}` and `Q_{t+1}` from `P_t`, `Q_t`, 

`j_t` and `k_t` proceeds as follows: Set `i = j_t`, `x = k_t`, 

`P = P_t` and `Q = Q_t`. We are going to insert `x` into the 

increasing tableau `P` and update the set-valued "recording 

tableau" `Q` accordingly. As in the classical RSK algorithm, we 

first insert `x` into row `1` of `P`, then into row `2` of the 

resulting tableau, and so on, until the construction terminates. 

The details are different: Suppose we are inserting `x` into 

row `R` of `P`. If (Case 1) there exists an entry `y` in row `R` 

such that `x < y`, then let `y` be the minimal such entry. We 

replace this entry `y` with `x` if the result is still an 

increasing tableau; in either subcase, we then continue 

recursively, inserting `y` into the next row of `P`. 

If, on the other hand, (Case 2) no such `y` exists, then we 

append `x` to the end of `R` if the result is an increasing 

tableau (Subcase 2.1), and otherwise (Subcase 2.2) do nothing. 

Furthermore, in Subcase 2.1, we add the box that we have just 

filled with `x` in `P` to the shape of `Q`, and fill it with 

the one-element set `\{i\}`. In Subcase 2.2, we find the 

bottommost box of the column containing the rightmost box of 

row `R`, and add `i` to the entry of `Q` in this box (this 

entry is a set, since `Q` is a set-valued). In either 

subcase, we terminate the recursion, and set 

`P_{t+1} = P` and `Q_{t+1} = Q`. 

 

Notice that set-valued tableaux are encoded as tableaux whose 

entries are tuples of positive integers; each such tuple is strictly 

increasing and encodes a set (namely, the set of its entries). 

 

INPUT: 

 

- ``obj1, obj2`` -- Can be one of the following: 

 

- A word in an ordered alphabet 

- An integer matrix 

- Two lists of equal length representing a generalized permutation 

- Any object which has a method ``_rsk_iter()`` which returns an 

iterator over the object represented as generalized permutation or 

a pair of lists. 

 

- ``insertion`` -- (Default: ``'RSK'``) The following types of insertion 

are currently supported: 

 

- ``'RSK'`` -- Robinson-Schensted-Knuth 

- ``'EG'`` -- Edelman-Greene (only for reduced words of 

permutations/elements of a type-`A` Coxeter group) 

- ``'hecke'`` -- Hecke insertion (only guaranteed for 

generalized permutations whose top row is strictly increasing) 

 

- ``check_standard`` -- (Default: ``False``) Check if either of the 

resulting tableaux is a standard tableau, and if so, typecast it 

as such 

 

EXAMPLES: 

 

If we only give one line, we treat the top line as being 

`(1, 2, \ldots, n)`:: 

 

sage: RSK([3,3,2,4,1]) 

[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]] 

sage: RSK(Word([3,3,2,4,1])) 

[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]] 

sage: RSK(Word([2,3,3,2,1,3,2,3])) 

[[[1, 2, 2, 3, 3], [2, 3], [3]], [[1, 2, 3, 6, 8], [4, 7], [5]]] 

 

With a generalized permutation:: 

 

sage: RSK([1, 2, 2, 2], [2, 1, 1, 2]) 

[[[1, 1, 2], [2]], [[1, 2, 2], [2]]] 

sage: RSK(Word([1,1,3,4,4]), [1,4,2,1,3]) 

[[[1, 1, 3], [2], [4]], [[1, 1, 4], [3], [4]]] 

sage: RSK([1,3,3,4,4], Word([6,2,2,1,7])) 

[[[1, 2, 7], [2], [6]], [[1, 3, 4], [3], [4]]] 

 

If we give it a matrix:: 

 

sage: RSK(matrix([[0,1],[2,1]])) 

[[[1, 1, 2], [2]], [[1, 2, 2], [2]]] 

 

We can also give it something looking like a matrix:: 

 

sage: RSK([[0,1],[2,1]]) 

[[[1, 1, 2], [2]], [[1, 2, 2], [2]]] 

 

There are also variations of the insertion algorithm in RSK. 

Here we consider Edelman-Greene insertion:: 

 

sage: RSK([2,1,2,3,2], insertion='EG') 

[[[1, 2, 3], [2, 3]], [[1, 3, 4], [2, 5]]] 

 

We reproduce figure 6.4 in [EG1987]_:: 

 

sage: RSK([2,3,2,1,2,3], insertion='EG') 

[[[1, 2, 3], [2, 3], [3]], [[1, 2, 6], [3, 5], [4]]] 

 

Hecke insertion is also supported. We construct Example 2.1 

in :arxiv:`0801.1319v2`:: 

 

sage: w = [5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4] 

sage: RSK(w, insertion='hecke') 

[[[1, 2, 4, 5], [2, 4, 5], [3, 5], [4], [5]], 

[[(1,), (4,), (5,), (7,)], 

[(2,), (9,), (11, 13)], 

[(3,), (12,)], 

[(6,)], 

[(8, 10)]]] 

 

There is also :func:`~sage.combinat.rsk.RSK_inverse` which performs 

the inverse of the bijection on a pair of semistandard tableaux. We 

note that the inverse function takes 2 separate tableaux as inputs, so 

to compose with :func:`~sage.combinat.rsk.RSK`, we need to use the 

python ``*`` on the output:: 

 

sage: RSK_inverse(*RSK([1, 2, 2, 2], [2, 1, 1, 2])) 

[[1, 2, 2, 2], [2, 1, 1, 2]] 

sage: P,Q = RSK([1, 2, 2, 2], [2, 1, 1, 2]) 

sage: RSK_inverse(P, Q) 

[[1, 2, 2, 2], [2, 1, 1, 2]] 

 

TESTS: 

 

Empty objects:: 

 

sage: RSK(Permutation([])) 

[[], []] 

sage: RSK(Word([])) 

[[], []] 

sage: RSK(matrix([[]])) 

[[], []] 

sage: RSK([], []) 

[[], []] 

sage: RSK([[]]) 

[[], []] 

sage: RSK(Word([]), insertion='EG') 

[[], []] 

sage: RSK(Word([]), insertion='hecke') 

[[], []] 

""" 

from sage.combinat.tableau import SemistandardTableau, StandardTableau 

 

if insertion == 'hecke': 

return hecke_insertion(obj1, obj2) 

 

if obj1 is None and obj2 is None: 

if 'matrix' in options: 

obj1 = matrix(options['matrix']) 

else: 

raise ValueError("invalid input") 

 

if is_Matrix(obj1): 

obj1 = obj1.rows() 

if len(obj1) == 0: 

return [StandardTableau([]), StandardTableau([])] 

 

if obj2 is None: 

try: 

itr = obj1._rsk_iter() 

except AttributeError: 

# If this is (something which looks like) a matrix 

# then build the generalized permutation 

try: 

t = [] 

b = [] 

for i, row in enumerate(obj1): 

for j, mult in enumerate(row): 

if mult > 0: 

t.extend([i+1]*mult) 

b.extend([j+1]*mult) 

itr = zip(t, b) 

except TypeError: 

itr = zip(range(1, len(obj1)+1), obj1) 

else: 

if len(obj1) != len(obj2): 

raise ValueError("the two arrays must be the same length") 

# Check it is a generalized permutation 

lt = 0 

lb = 0 

for t,b in zip(obj1, obj2): 

if t < lt or (lt == t and b < lb): 

raise ValueError("invalid generalized permutation") 

lt = t 

lb = b 

itr = zip(obj1, obj2) 

 

from bisect import bisect_right 

p = [] #the "insertion" tableau 

q = [] #the "recording" tableau 

 

use_EG = (insertion == 'EG') 

 

#For each x in self, insert x into the tableau p. 

lt = 0 

lb = 0 

for i, x in itr: 

for r, qr in zip(p,q): 

if r[-1] > x: 

#Figure out where to insert x into the row r. The 

#bisect command returns the position of the least 

#element of r greater than x. We will call it y. 

y_pos = bisect_right(r, x) 

if use_EG and r[y_pos] == x + 1 and y_pos > 0 and x == r[y_pos - 1]: 

#Special bump: Nothing to do except increment x by 1 

x += 1 

else: 

#Switch x and y 

x, r[y_pos] = r[y_pos], x 

else: 

break 

else: 

#We made through all of the rows of p without breaking 

#so we need to add a new row to p and q. 

r = []; p.append(r) 

qr = []; q.append(qr) 

 

r.append(x) 

qr.append(i) # Values are always inserted to the right 

 

if check_standard: 

try: 

P = StandardTableau(p) 

except ValueError: 

P = SemistandardTableau(p) 

try: 

Q = StandardTableau(q) 

except ValueError: 

Q = SemistandardTableau(q) 

return [P, Q] 

return [SemistandardTableau(p), SemistandardTableau(q)] 

 

robinson_schensted_knuth = RSK 

 

def RSK_inverse(p, q, output='array', insertion='RSK'): 

r""" 

Return the generalized permutation corresponding to the pair of 

tableaux `(p,q)` under the inverse of the Robinson-Schensted-Knuth 

algorithm. 

 

For more information on the bijection, see :func:`RSK`. 

 

INPUT: 

 

- ``p``, ``q`` -- Two semi-standard tableaux of the same shape, or 

(in the case when Hecke insertion is used) an increasing tableau and 

a set-valued tableau of the same shape (see the note below for the 

format of the set-valued tableau) 

 

- ``output`` -- (Default: ``'array'``) if ``q`` is semi-standard: 

 

- ``'array'`` -- as a two-line array (i.e. generalized permutation or 

biword) 

- ``'matrix'`` -- as an integer matrix 

 

and if ``q`` is standard, we can have the output: 

 

- ``'word'`` -- as a word 

 

and additionally if ``p`` is standard, we can also have the output: 

 

- ``'permutation'`` -- as a permutation 

 

- ``insertion`` -- (Default: ``RSK``) The insertion algorithm used in the 

bijection. Currently the following are supported: 

 

- ``'RSK'`` -- Robinson-Schensted-Knuth insertion 

- ``'EG'`` -- Edelman-Greene insertion 

- ``'hecke'`` -- Hecke insertion 

 

.. NOTE:: 

 

In the case of Hecke insertion, the input variable ``q`` should 

be a set-valued tableau, encoded as a tableau whose entries are 

strictly increasing tuples of positive integers. Each such tuple 

encodes the set of its entries. 

 

EXAMPLES: 

 

If both ``p`` and ``q`` are standard:: 

 

sage: t1 = Tableau([[1, 2, 5], [3], [4]]) 

sage: t2 = Tableau([[1, 2, 3], [4], [5]]) 

sage: RSK_inverse(t1, t2) 

[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]] 

sage: RSK_inverse(t1, t2, 'word') 

word: 14532 

sage: RSK_inverse(t1, t2, 'matrix') 

[1 0 0 0 0] 

[0 0 0 1 0] 

[0 0 0 0 1] 

[0 0 1 0 0] 

[0 1 0 0 0] 

sage: RSK_inverse(t1, t2, 'permutation') 

[1, 4, 5, 3, 2] 

sage: RSK_inverse(t1, t1, 'permutation') 

[1, 4, 3, 2, 5] 

sage: RSK_inverse(t2, t2, 'permutation') 

[1, 2, 5, 4, 3] 

sage: RSK_inverse(t2, t1, 'permutation') 

[1, 5, 4, 2, 3] 

 

If the first tableau is semistandard:: 

 

sage: p = Tableau([[1,2,2],[3]]); q = Tableau([[1,2,4],[3]]) 

sage: ret = RSK_inverse(p, q); ret 

[[1, 2, 3, 4], [1, 3, 2, 2]] 

sage: RSK_inverse(p, q, 'word') 

word: 1322 

 

In general:: 

 

sage: p = Tableau([[1,2,2],[2]]); q = Tableau([[1,3,3],[2]]) 

sage: RSK_inverse(p, q) 

[[1, 2, 3, 3], [2, 1, 2, 2]] 

sage: RSK_inverse(p, q, 'matrix') 

[0 1] 

[1 0] 

[0 2] 

 

Using Edelman-Greene insertion:: 

 

sage: pq = RSK([2,1,2,3,2], insertion='EG'); pq 

[[[1, 2, 3], [2, 3]], [[1, 3, 4], [2, 5]]] 

sage: RSK_inverse(*pq, insertion='EG') 

[2, 1, 2, 3, 2] 

 

Using Hecke insertion:: 

 

sage: w = [5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4] 

sage: pq = RSK(w, insertion='hecke') 

sage: RSK_inverse(*pq, insertion='hecke', output='list') 

[5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4] 

 

.. NOTE:: 

 

The constructor of ``Tableau`` accepts not only semistandard 

tableaux, but also arbitrary lists that are fillings of a 

partition diagram. (And such lists are used, e.g., for the 

set-valued tableau ``q`` that is passed to 

``RSK_inverse(p, q, insertion='hecke')``.) 

The user is responsible for ensuring that the tableaux passed to 

``RSK_inverse`` are of the right types (semistandard, standard, 

increasing, set-valued as needed). 

 

TESTS: 

 

From empty tableaux:: 

 

sage: RSK_inverse(Tableau([]), Tableau([])) 

[[], []] 

 

Check that :func:`RSK_inverse` is the inverse of :func:`RSK` on the 

different types of inputs/outputs:: 

 

sage: f = lambda p: RSK_inverse(*RSK(p), output='permutation') 

sage: all(p == f(p) for n in range(7) for p in Permutations(n)) 

True 

sage: all(RSK_inverse(*RSK(w), output='word') == w for n in range(4) for w in Words(5, n)) 

True 

sage: from sage.combinat.integer_matrices import IntegerMatrices 

sage: M = IntegerMatrices([1,2,2,1], [3,1,1,1]) 

sage: all(RSK_inverse(*RSK(m), output='matrix') == m for m in M) 

True 

 

sage: n = ZZ.random_element(200) 

sage: p = Permutations(n).random_element() 

sage: is_fine = True if p == f(p) else p ; is_fine 

True 

 

Same for Edelman-Greene (but we are checking only the reduced words that 

can be obtained using the ``reduced_word()`` method from permutations):: 

 

sage: g = lambda w: RSK_inverse(*RSK(w, insertion='EG'), insertion='EG', output='permutation') 

sage: all(p.reduced_word() == g(p.reduced_word()) for n in range(7) for p in Permutations(n)) 

True 

 

sage: n = ZZ.random_element(200) 

sage: p = Permutations(n).random_element() 

sage: is_fine = True if p == f(p) else p ; is_fine 

True 

 

Both tableaux must be of the same shape:: 

 

sage: RSK_inverse(Tableau([[1,2,3]]), Tableau([[1,2]])) 

Traceback (most recent call last): 

... 

ValueError: p(=[[1, 2, 3]]) and q(=[[1, 2]]) must have the same shape 

 

Check that :trac:`20430` is fixed:: 

 

sage: RSK([1,1,1,1,1,1,1,2,2,2,3], [1,1,1,1,1,1,3,2,2,2,1]) 

[[[1, 1, 1, 1, 1, 1, 1, 2, 2], [2], [3]], 

[[1, 1, 1, 1, 1, 1, 1, 2, 2], [2], [3]]] 

sage: t = SemistandardTableau([[1, 1, 1, 1, 1, 1, 1, 2, 2], [2], [3]]) 

sage: RSK_inverse(t, t, 'array') 

[[1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3], 

[1, 1, 1, 1, 1, 1, 3, 2, 2, 2, 1]] 

""" 

if insertion == 'hecke': 

return hecke_insertion_reverse(p, q, output) 

 

if p.shape() != q.shape(): 

raise ValueError("p(=%s) and q(=%s) must have the same shape"%(p, q)) 

from sage.combinat.tableau import SemistandardTableaux 

if p not in SemistandardTableaux(): 

raise ValueError("p(=%s) must be a semistandard tableau"%p) 

 

from bisect import bisect_left 

# Make a copy of p since this is destructive to it 

p_copy = [list(row) for row in p] 

 

if q.is_standard(): 

rev_word = [] # This will be our word in reverse 

d = dict((qij,i) for i, Li in enumerate(q) for qij in Li) 

# d is now a dictionary which assigns to each integer k the 

# number of the row of q containing k. 

 

use_EG = (insertion == 'EG') 

 

for key in sorted(d, reverse=True): # Delete last entry from i-th row of p_copy 

i = d[key] 

x = p_copy[i].pop() # Always the right-most entry 

for row in reversed(p_copy[:i]): 

y_pos = bisect_left(row,x) - 1 

if use_EG and row[y_pos] == x - 1 and y_pos < len(row)-1 and row[y_pos+1] == x: 

# Nothing to do except decrement x by 1. 

# (Case 1 on p. 74 of Edelman-Greene [EG1987]_.) 

x -= 1 

else: 

# switch x and y 

x, row[y_pos] = row[y_pos], x 

rev_word.append(x) 

 

if use_EG: 

return list(reversed(rev_word)) 

if output == 'word': 

from sage.combinat.words.word import Word 

return Word(reversed(rev_word)) 

if output == 'matrix': 

return to_matrix(list(range(1, len(rev_word)+1)), list(reversed(rev_word))) 

if output == 'array': 

return [list(range(1, len(rev_word)+1)), list(reversed(rev_word))] 

if output == 'permutation': 

if not p.is_standard(): 

raise TypeError("p must be standard to have a valid permutation as output") 

from sage.combinat.permutation import Permutation 

return Permutation(reversed(rev_word)) 

raise ValueError("invalid output option") 

 

# Checks 

if insertion != 'RSK': 

raise NotImplementedError("only RSK is implemented for non-standard q") 

if q not in SemistandardTableaux(): 

raise ValueError("q(=%s) must be a semistandard tableau"%q) 

 

upper_row = [] 

lower_row = [] 

#upper_row and lower_row will be the upper and lower rows of the 

#generalized permutation we get as a result, but both reversed. 

d = {} 

for row, Li in enumerate(q): 

for col, val in enumerate(Li): 

if val in d: 

d[val][col] = row 

else: 

d[val] = {col: row} 

#d is now a double family such that for every integers k and j, 

#the value d[k][j] is the row i such that the (i, j)-th cell of 

#q is filled with k. 

for value, row_dict in sorted(d.items(), reverse=True, key=lambda x: x[0]): 

for key in sorted(row_dict, reverse=True): 

i = row_dict[key] 

x = p_copy[i].pop() # Always the right-most entry 

for row in reversed(p_copy[:i]): 

y = bisect_left(row,x) - 1 

x, row[y] = row[y], x 

upper_row.append(value) 

lower_row.append(x) 

 

if output == 'matrix': 

return to_matrix(list(reversed(upper_row)), list(reversed(lower_row))) 

if output == 'array': 

return [list(reversed(upper_row)), list(reversed(lower_row))] 

if output in ['permutation', 'word']: 

raise TypeError("q must be standard to have a %s as valid output"%output) 

raise ValueError("invalid output option") 

 

robinson_schensted_knuth_inverse = RSK_inverse 

 

def to_matrix(t, b): 

r""" 

Return the integer matrix corresponding to a two-line array. 

 

INPUT: 

 

- ``t`` -- The top line of the array 

 

- ``b`` -- The bottom line of the array 

 

OUTPUT: 

 

An `m \times n`-matrix (where `m` and `n` are the maximum entries in 

`t` and `b` respectively) whose `(i, j)`-th entry, for any `i` and `j`, 

is the number of all positions `k` satisfying `t_k = i` and `b_k = j`. 

 

EXAMPLES:: 

 

sage: from sage.combinat.rsk import to_matrix 

sage: to_matrix([1, 1, 3, 3, 4], [2, 3, 1, 1, 3]) 

[0 1 1] 

[0 0 0] 

[2 0 0] 

[0 0 1] 

""" 

n = len(b) 

if len(t) != n: 

raise ValueError("The two arrays must be the same length") 

 

# Build the dictionary of entries since the matrix 

# is typically (very) sparse 

entries = {} 

for i in range(n): 

if (t[i]-1, b[i]-1) in entries: 

entries[(t[i]-1, b[i]-1)] += 1 

else: 

entries[(t[i]-1, b[i]-1)] = 1 

return matrix(entries, sparse=True) 

 

##################################################################### 

## Hecke insertion 

 

def hecke_insertion(obj1, obj2=None): 

""" 

Return the Hecke insertion of the pair ``[obj1, obj2]``. 

 

.. SEEALSO:: 

 

:func:`RSK` 

 

EXAMPLES:: 

 

sage: w = [5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4] 

sage: RSK(w, insertion='hecke') 

[[[1, 2, 4, 5], [2, 4, 5], [3, 5], [4], [5]], 

[[(1,), (4,), (5,), (7,)], 

[(2,), (9,), (11, 13)], 

[(3,), (12,)], 

[(6,)], 

[(8, 10)]]] 

""" 

if obj2 is None: 

obj2 = obj1 

obj1 = list(range(1, len(obj2) + 1)) 

 

from sage.combinat.tableau import SemistandardTableau, Tableau 

from bisect import bisect_right 

p = [] #the "insertion" tableau 

q = [] #the "recording" tableau 

 

for i, x in zip(obj1, obj2): 

for j,r in enumerate(p): 

if r[-1] > x: 

#Figure out where to insert x into the row r. The 

#bisect command returns the position of the least 

#element of r greater than x. We will call it y. 

y_pos = bisect_right(r, x) 

y = r[y_pos] 

# Check to see if we can swap x for y 

if (y_pos == 0 or r[y_pos-1] < x) and (j == 0 or p[j-1][y_pos] < x): 

r[y_pos] = x 

x = y 

else: 

# We must have len(p[j-1]) > len(r), since x is coming 

# from the previous row. 

if r[-1] < x and (j == 0 or p[j-1][len(r)] < x): 

# We can add a box to the row 

r.append(x) 

q[j].append((i,)) # Values are always inserted to the right 

else: 

# We must append i to the bottom of this column 

l = len(r) - 1 

while j < len(q) and len(q[j]) > l: 

j += 1 

q[j-1][-1] = q[j-1][-1] + (i,) 

break 

else: 

#We made through all of the rows of p without breaking 

#so we need to add a new row to p and q. 

p.append([x]) 

q.append([(i,)]) 

 

return [SemistandardTableau(p), Tableau(q)] 

 

def hecke_insertion_reverse(p, q, output='array'): 

r""" 

Return the reverse Hecke insertion of ``(p, q)``. 

 

.. SEEALSO:: 

 

:func:`RSK_inverse` 

 

EXAMPLES:: 

 

sage: w = [5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4] 

sage: P,Q = RSK(w, insertion='hecke') 

sage: wp = RSK_inverse(P, Q, insertion='hecke', output='list'); wp 

[5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4] 

sage: wp == w 

True 

""" 

if p.shape() != q.shape(): 

raise ValueError("p(=%s) and q(=%s) must have the same shape"%(p, q)) 

from sage.combinat.tableau import SemistandardTableaux 

if p not in SemistandardTableaux(): 

raise ValueError("p(=%s) must be a semistandard tableau"%p) 

 

from bisect import bisect_left 

# Make a copy of p and q since this is destructive to it 

p_copy = [list(row) for row in p] 

q_copy = [[list(v) for v in row] for row in q] 

# We shall work on these copies of p and q. Notice that p might get 

# some empty rows in the process; we do not bother pruning them, as 

# they do not matter. 

 

#upper_row and lower_row will be the upper and lower rows of the 

#generalized permutation we get as a result, but both reversed. 

upper_row = [] 

lower_row = [] 

d = {} 

for ri, row in enumerate(q): 

for ci, entry in enumerate(row): 

for val in entry: 

if val in d: 

d[val][ci] = ri 

else: 

d[val] = {ci: ri} 

#d is now a double family such that for every integers k and j, 

#the value d[k][j] is the row i such that the (i, j)-th cell of 

#q is filled with k. 

for value, row_dict in sorted(d.items(), key=lambda x: -x[0]): 

for i in sorted(row_dict.values(), reverse=True): 

# These are always the right-most entry 

should_be_value = q_copy[i][-1].pop() 

assert value == should_be_value 

if not q_copy[i][-1]: 

# That is, if value was alone in cell q_copy[i][-1]. 

q_copy[i].pop() 

x = p_copy[i].pop() 

else: 

x = p_copy[i][-1] 

while i > 0: 

i -= 1 

row = p_copy[i] 

y_pos = bisect_left(row,x) - 1 

y = row[y_pos] 

# Check to see if we can swap x for y 

if ((y_pos == len(row) - 1 or x < row[y_pos+1]) 

and (i == len(p_copy) - 1 or len(p_copy[i+1]) <= y_pos 

or x < p_copy[i+1][y_pos])): 

row[y_pos] = x 

x = y 

upper_row.append(value) 

lower_row.append(x) 

 

if output == 'array': 

return [list(reversed(upper_row)), list(reversed(lower_row))] 

is_standard = (upper_row == list(range(len(upper_row), 0, -1))) 

if output == 'word': 

if not is_standard: 

raise TypeError("q must be standard to have a %s as valid output"%output) 

from sage.combinat.words.word import Word 

return Word(reversed(lower_row)) 

if output == 'list': 

if not is_standard: 

raise TypeError("q must be standard to have a %s as valid output"%output) 

return list(reversed(lower_row)) 

raise ValueError("invalid output option")