Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

r""" 

Set Partitions 

 

AUTHORS: 

 

- Mike Hansen 

 

- MuPAD-Combinat developers (for algorithms and design inspiration). 

 

- Travis Scrimshaw (2013-02-28): Removed ``CombinatorialClass`` and added 

entry point through :class:`SetPartition`. 

 

- Martin Rubey (2017-10-10): Cleanup, add crossings and nestings, add 

random generation. 

 

This module defines a class for immutable partitioning of a set. For 

mutable version see :func:`DisjointSet`. 

""" 

#***************************************************************************** 

# Copyright (C) 2007 Mike Hansen <mhansen@gmail.com>, 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function, absolute_import, division 

from six.moves import range 

from six import add_metaclass 

 

from sage.sets.set import Set, Set_generic 

 

import itertools 

 

from sage.structure.parent import Parent 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.structure.list_clone import ClonableArray 

from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets 

from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets 

from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass 

from sage.rings.infinity import infinity 

from sage.rings.integer import Integer 

from sage.combinat.misc import IterableFunctionCall 

from sage.combinat.combinatorial_map import combinatorial_map 

import sage.combinat.subset as subset 

from sage.combinat.partition import Partition, Partitions 

from sage.combinat.set_partition_ordered import OrderedSetPartitions 

from sage.combinat.combinat import bell_number, stirling_number2 

from sage.combinat.permutation import Permutation 

from sage.functions.other import factorial 

from sage.misc.prandom import random, randint 

from sage.probability.probability_distribution import GeneralDiscreteDistribution 

 

@add_metaclass(InheritComparisonClasscallMetaclass) 

class SetPartition(ClonableArray): 

""" 

A partition of a set. 

 

A set partition `p` of a set `S` is a partition of `S` into subsets 

called parts and represented as a set of sets. By extension, a set 

partition of a nonnegative integer `n` is the set partition of the 

integers from 1 to `n`. The number of set partitions of `n` is called 

the `n`-th Bell number. 

 

There is a natural integer partition associated with a set partition, 

namely the nonincreasing sequence of sizes of all its parts. 

 

There is a classical lattice associated with all set partitions of 

`n`. The infimum of two set partitions is the set partition obtained 

by intersecting all the parts of both set partitions. The supremum 

is obtained by transitive closure of the relation `i` related to `j` 

if and only if they are in the same part in at least one of the set 

partitions. 

 

We will use terminology from partitions, in particular the *length* of 

a set partition `A = \{A_1, \ldots, A_k\}` is the number of parts of `A` 

and is denoted by `|A| := k`. The *size* of `A` is the cardinality of `S`. 

We will also sometimes use the notation `[n] := \{1, 2, \ldots, n\}`. 

 

EXAMPLES: 

 

There are 5 set partitions of the set `\{1,2,3\}`:: 

 

sage: SetPartitions(3).cardinality() 

5 

 

Here is the list of them:: 

 

sage: SetPartitions(3).list() 

[{{1, 2, 3}}, 

{{1}, {2, 3}}, 

{{1, 3}, {2}}, 

{{1, 2}, {3}}, 

{{1}, {2}, {3}}] 

 

There are 6 set partitions of `\{1,2,3,4\}` whose underlying partition is 

`[2, 1, 1]`:: 

 

sage: SetPartitions(4, [2,1,1]).list() 

[{{1}, {2}, {3, 4}}, 

{{1}, {2, 4}, {3}}, 

{{1}, {2, 3}, {4}}, 

{{1, 4}, {2}, {3}}, 

{{1, 3}, {2}, {4}}, 

{{1, 2}, {3}, {4}}] 

 

Since :trac:`14140`, we can create a set partition directly by 

:class:`SetPartition`, which creates the base set by taking the 

union of the parts passed in:: 

 

sage: s = SetPartition([[1,3],[2,4]]); s 

{{1, 3}, {2, 4}} 

sage: s.parent() 

Set partitions 

""" 

@staticmethod 

def __classcall_private__(cls, parts, check=True): 

""" 

Create a set partition from ``parts`` with the appropriate parent. 

 

EXAMPLES:: 

 

sage: s = SetPartition([[1,3],[2,4]]); s 

{{1, 3}, {2, 4}} 

sage: s.parent() 

Set partitions 

""" 

P = SetPartitions() 

return P.element_class(P, parts, check=check) 

 

def __init__(self, parent, s, check=True): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: s = S([[1,3],[2,4]]) 

sage: TestSuite(s).run() 

sage: SetPartition([]) 

{} 

""" 

self._latex_options = {} 

ClonableArray.__init__(self, parent, sorted(map(Set, s), key=min), check=check) 

 

def check(self): 

""" 

Check that we are a valid set partition. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: s = S([[1, 3], [2, 4]]) 

sage: s.check() 

 

TESTS:: 

 

sage: s = S([[1, 2, 3]], check=False) 

sage: s.check() 

Traceback (most recent call last): 

... 

ValueError: {{1, 2, 3}} is not an element of Set partitions of {1, 2, 3, 4} 

 

sage: s = S([1, 2, 3]) 

Traceback (most recent call last): 

... 

TypeError: Element has no defined underlying set 

""" 

if self not in self.parent(): 

raise ValueError("%s is not an element of %s"%(self, self.parent())) 

 

def __hash__(self): 

""" 

Return the hash of ``self``. 

 

The parent is not included as part of the hash. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = SetPartition([[1], [2,3], [4]]) 

sage: B = P([[1], [2,3], [4]]) 

sage: hash(A) == hash(B) 

True 

""" 

return sum(hash(x) for x in self) 

 

def __eq__(self, y): 

""" 

Check equality of ``self`` and ``y``. 

 

The parent is not included as part of the equality check. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = SetPartition([[1], [2,3], [4]]) 

sage: B = P([[1], [2,3], [4]]) 

sage: A == B 

True 

sage: C = P([[2, 3], [1], [4]]) 

sage: A == C 

True 

sage: D = P([[1], [2, 4], [3]]) 

sage: A == D 

False 

""" 

if not isinstance(y, SetPartition): 

return False 

return list(self) == list(y) 

 

def __ne__(self, y): 

""" 

Check lack of equality of ``self`` and ``y``. 

 

The parent is not included as part of the equality check. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = SetPartition([[1], [2,3], [4]]) 

sage: B = P([[1], [2,3], [4]]) 

sage: A != B 

False 

sage: C = P([[2, 3], [1], [4]]) 

sage: A != C 

False 

sage: D = P([[1], [2, 4], [3]]) 

sage: A != D 

True 

""" 

return not (self == y) 

 

def __lt__(self, y): 

""" 

Check that ``self`` is less than ``y``. 

 

The ordering used is lexicographic, where: 

 

- a set partition is considered as the list of its parts 

sorted by increasing smallest element; 

 

- each part is regarded as a list of its elements, sorted 

in increasing order; 

 

- the parts themselves are compared lexicographically. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = P([[1], [2,3], [4]]) 

sage: B = SetPartition([[1,2,3], [4]]) 

sage: A < B 

True 

sage: C = P([[1,2,4], [3]]) 

sage: B < C 

True 

sage: B < B 

False 

sage: D = P([[1,4], [2], [3]]) 

sage: E = P([[1,4], [2,3]]) 

sage: D < E 

True 

sage: F = P([[1,2,4], [3]]) 

sage: E < C 

False 

sage: A < E 

True 

sage: A < C 

True 

""" 

if not isinstance(y, SetPartition): 

return False 

return [sorted(_) for _ in self] < [sorted(_) for _ in y] 

 

def __gt__(self, y): 

""" 

Check that ``self`` is greater than ``y``. 

 

The ordering used is lexicographic, where: 

 

- a set partition is considered as the list of its parts 

sorted by increasing smallest element; 

 

- each part is regarded as a list of its elements, sorted 

in increasing order; 

 

- the parts themselves are compared lexicographically. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = P([[1], [2,3], [4]]) 

sage: B = SetPartition([[1,2,3], [4]]) 

sage: B > A 

True 

sage: A > B 

False 

""" 

if not isinstance(y, SetPartition): 

return False 

return [sorted(_) for _ in self] > [sorted(_) for _ in y] 

 

def __le__(self, y): 

""" 

Check that ``self`` is less than or equals ``y``. 

 

The ordering used is lexicographic, where: 

 

- a set partition is considered as the list of its parts 

sorted by increasing smallest element; 

 

- each part is regarded as a list of its elements, sorted 

in increasing order; 

 

- the parts themselves are compared lexicographically. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = P([[1], [2,3], [4]]) 

sage: B = SetPartition([[1,2,3], [4]]) 

sage: A <= B 

True 

sage: A <= A 

True 

""" 

return self == y or self < y 

 

def __ge__(self, y): 

""" 

Check that ``self`` is greater than or equals ``y``. 

 

The ordering used is lexicographic, where: 

 

- a set partition is considered as the list of its parts 

sorted by increasing smallest element; 

 

- each part is regarded as a list of its elements, sorted 

in increasing order; 

 

- the parts themselves are compared lexicographically. 

 

EXAMPLES:: 

 

sage: P = SetPartitions(4) 

sage: A = P([[1], [2,3], [4]]) 

sage: B = SetPartition([[1,2,3], [4]]) 

sage: B >= A 

True 

sage: B >= B 

True 

""" 

return self == y or self > y 

 

def __mul__(self, other): 

r""" 

The product of the set partitions ``self`` and ``other``. 

 

The product of two set partitions `B` and `C` is defined as the 

set partition whose parts are the nonempty intersections between 

each part of `B` and each part of `C`. This product is also 

the infimum of `B` and `C` in the classical set partition 

lattice (that is, the coarsest set partition which is finer than 

each of `B` and `C`). Consequently, ``inf`` acts as an alias for 

this method. 

 

.. SEEALSO:: 

 

:meth:`sup` 

 

EXAMPLES:: 

 

sage: x = SetPartition([ [1,2], [3,5,4] ]) 

sage: y = SetPartition(( (3,1,2), (5,4) )) 

sage: x * y 

{{1, 2}, {3}, {4, 5}} 

 

sage: S = SetPartitions(4) 

sage: sp1 = S([[2,3,4], [1]]) 

sage: sp2 = S([[1,3], [2,4]]) 

sage: s = S([[2,4], [3], [1]]) 

sage: sp1.inf(sp2) == s 

True 

 

TESTS: 

 

Here is a different implementation of the ``__mul__`` method 

(one that was formerly used for the ``inf`` method, before it 

was realized that the methods do the same thing):: 

 

sage: def mul2(s, t): 

....: temp = [ss.intersection(ts) for ss in s for ts in t] 

....: temp = filter(lambda x: x != Set([]), temp) 

....: return s.__class__(s.parent(), temp) 

 

Let us check that this gives the same as ``__mul__`` on set 

partitions of `\{1, 2, 3, 4\}`:: 

 

sage: all( all( mul2(s, t) == s * t for s in SetPartitions(4) ) 

....: for t in SetPartitions(4) ) 

True 

""" 

new_composition = [] 

for B in self: 

for C in other: 

BintC = B.intersection(C) 

if BintC: 

new_composition.append(BintC) 

return SetPartition(new_composition) 

 

inf = __mul__ 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: S([[1,3],[2,4]]) 

{{1, 3}, {2, 4}} 

""" 

return '{' + ', '.join(('{' + repr(sorted(x))[1:-1] + '}' for x in self)) + '}' 

 

def set_latex_options(self, **kwargs): 

r""" 

Set the latex options for use in the ``_latex_`` function 

 

- ``tikz_scale`` -- (default: 1) scale for use with tikz package 

 

- ``plot`` -- (default: ``None``) ``None`` returns the set notation, 

``linear`` returns a linear plot, ``cyclic`` returns a cyclic 

plot 

 

- ``color`` -- (default: ``'black'``) the arc colors 

 

- ``fill`` -- (default: ``False``) if ``True`` then fills ``color``, 

else you can pass in a color to alter the fill color - 

*only works with cyclic plot* 

 

- ``show_labels`` -- (default: ``True``) if ``True`` shows labels - 

*only works with plots* 

 

- ``radius`` -- (default: ``"1cm"``) radius of circle for cyclic 

plot - *only works with cyclic plot* 

 

- ``angle`` -- (default: 0) angle for linear plot 

 

EXAMPLES:: 

 

sage: SP = SetPartition([[1,6], [3,5,4]]) 

sage: SP.set_latex_options(tikz_scale=2,plot='linear',fill=True,color='blue',angle=45) 

sage: SP.set_latex_options(plot='cyclic') 

sage: SP.latex_options() 

{'angle': 45, 

'color': 'blue', 

'fill': True, 

'plot': 'cyclic', 

'radius': '1cm', 

'show_labels': True, 

'tikz_scale': 2} 

 

""" 

valid_args = ['tikz_scale', 'plot', 'color', 'fill', 'show_labels', 

'radius', 'angle'] 

 

for key in kwargs: 

if key not in valid_args: 

raise ValueError("unknown keyword argument: %s"%key) 

if key == 'plot': 

if not (kwargs['plot'] == 'cyclic' 

or kwargs['plot'] == 'linear' 

or kwargs['plot'] is None): 

raise ValueError("plot must be None, 'cyclic', or 'linear'") 

 

for opt in kwargs: 

self._latex_options[opt] = kwargs[opt] 

 

def latex_options(self): 

r""" 

Return the latex options for use in the ``_latex_`` function as a 

dictionary. The default values are set using the global options. 

 

Options can be found in :meth:`set_latex_options` 

 

EXAMPLES:: 

 

sage: SP = SetPartition([[1,6], [3,5,4]]); SP.latex_options() 

{'angle': 0, 

'color': 'black', 

'fill': False, 

'plot': None, 

'radius': '1cm', 

'show_labels': True, 

'tikz_scale': 1} 

""" 

opts = self._latex_options.copy() 

if "tikz_scale" not in opts: 

opts["tikz_scale"] = 1 

if "plot" not in opts: 

opts["plot"] = None 

if "color" not in opts: 

opts['color'] = 'black' 

if "fill" not in opts: 

opts["fill"] = False 

if "show_labels" not in opts: 

opts['show_labels'] = True 

if "radius" not in opts: 

opts['radius'] = "1cm" 

if "angle" not in opts: 

opts['angle'] = 0 

return opts 

 

def _latex_(self): 

r""" 

Return a `\LaTeX` string representation of ``self``. 

 

EXAMPLES:: 

 

sage: x = SetPartition([[1,2], [3,5,4]]) 

sage: latex(x) 

\{\{1, 2\}, \{3, 4, 5\}\} 

 

sage: x.set_latex_options(plot='linear', angle=25, color='red') 

sage: latex(x) 

\begin{tikzpicture}[scale=1] 

\node[below=.05cm] at (0,0) {$1$}; 

\node[draw,circle, inner sep=0pt, minimum width=4pt, fill=black] (0) at (0,0) {}; 

\node[below=.05cm] at (1,0) {$2$}; 

\node[draw,circle, inner sep=0pt, minimum width=4pt, fill=black] (1) at (1,0) {}; 

\node[below=.05cm] at (2,0) {$3$}; 

\node[draw,circle, inner sep=0pt, minimum width=4pt, fill=black] (2) at (2,0) {}; 

\node[below=.05cm] at (3,0) {$4$}; 

\node[draw,circle, inner sep=0pt, minimum width=4pt, fill=black] (3) at (3,0) {}; 

\node[below=.05cm] at (4,0) {$5$}; 

\node[draw,circle, inner sep=0pt, minimum width=4pt, fill=black] (4) at (4,0) {}; 

\draw[color=red] (1) to [out=115,in=65] (0); 

\draw[color=red] (3) to [out=115,in=65] (2); 

\draw[color=red] (4) to [out=115,in=65] (3); 

\end{tikzpicture} 

 

sage: p = SetPartition([['a','c'],['b',1],[20]]) 

sage: p.set_latex_options(plot='cyclic', color='blue', fill=True, tikz_scale=2) 

sage: latex(p) 

\begin{tikzpicture}[scale=2] 

\draw (0,0) circle [radius=1cm]; 

\node[label=90:1] (0) at (90:1cm) {}; 

\node[label=18:20] (1) at (18:1cm) {}; 

\node[label=-54:a] (2) at (-54:1cm) {}; 

\node[label=-126:b] (3) at (-126:1cm) {}; 

\node[label=-198:c] (4) at (-198:1cm) {}; 

\draw[-,thick,color=blue,fill=blue,fill opacity=0.1] (2.center) -- (4.center) -- cycle; 

\draw[-,thick,color=blue,fill=blue,fill opacity=0.1] (0.center) -- (3.center) -- cycle; 

\draw[-,thick,color=blue,fill=blue,fill opacity=0.1] (1.center) -- cycle; 

\fill[color=black] (0) circle (1.5pt); 

\fill[color=black] (1) circle (1.5pt); 

\fill[color=black] (2) circle (1.5pt); 

\fill[color=black] (3) circle (1.5pt); 

\fill[color=black] (4) circle (1.5pt); 

\end{tikzpicture} 

""" 

latex_options = self.latex_options() 

if latex_options["plot"] is None: 

return repr(self).replace("{",r"\{").replace("}",r"\}") 

 

from sage.misc.latex import latex 

latex.add_package_to_preamble_if_available("tikz") 

res = "\\begin{{tikzpicture}}[scale={}]\n".format(latex_options['tikz_scale']) 

 

cardinality = self.base_set_cardinality() 

from sage.rings.integer_ring import ZZ 

if all(x in ZZ for x in self.base_set()): 

sort_key = ZZ 

else: 

sort_key = str 

base_set = sorted(self.base_set(), key=sort_key) 

color = latex_options['color'] 

 

# If we want cyclic plots 

if latex_options['plot'] == 'cyclic': 

degrees = 360 // cardinality 

radius = latex_options['radius'] 

 

res += "\\draw (0,0) circle [radius={}];\n".format(radius) 

 

# Add nodes 

for k,i in enumerate(base_set): 

location = (cardinality - k) * degrees - 270 

if latex_options['show_labels']: 

res += "\\node[label={}:{}]".format(location, i) 

else: 

res += "\\node" 

res += " ({}) at ({}:{}) {{}};\n".format(k, location, radius) 

 

# Setup partitions 

for partition in sorted(self, key=str): 

res += "\\draw[-,thick,color="+color 

if latex_options['fill'] is not False: 

if isinstance(latex_options['fill'], str): 

res += ",fill=" + latex_options['fill'] 

else: 

res += ",fill={},fill opacity=0.1".format(color) 

res += "] " 

res += " -- ".join("({}.center)".format(base_set.index(j)) 

for j in sorted(partition, key=sort_key)) 

res += " -- cycle;\n" 

 

# Draw the circles on top 

for k in range(len(base_set)): 

res += "\\fill[color=black] ({}) circle (1.5pt);\n".format(k) 

 

# If we want line plots 

elif latex_options['plot'] == 'linear': 

angle = latex_options['angle'] 

# setup line 

for k,i in enumerate(base_set): 

if latex_options['show_labels']: 

res += "\\node[below=.05cm] at ({},0) {{${}$}};\n".format(k, i) 

res += "\\node[draw,circle, inner sep=0pt, minimum width=4pt, fill=black] " 

res += "({k}) at ({k},0) {{}};\n".format(k=k) 

 

# setup arcs 

for partition in sorted(self, key=str): 

p = sorted(partition, key=sort_key) 

if len(p) <= 1: 

continue 

for k in range(1, len(p)): 

res += "\\draw[color={}] ({})".format(color, base_set.index(p[k])) 

res += " to [out={},in={}] ".format(90+angle, 90-angle) 

res += "({});\n".format(base_set.index(p[k-1])) 

else: 

raise ValueError("plot must be None, 'cyclic', or 'linear'") 

 

res += "\\end{tikzpicture}" 

return res 

 

cardinality = ClonableArray.__len__ 

 

def sup(self, t): 

""" 

Return the supremum of ``self`` and ``t`` in the classical set 

partition lattice. 

 

The supremum of two set partitions `B` and `C` is obtained as the 

transitive closure of the relation which relates `i` to `j` if 

and only if `i` and `j` are in the same part in at least 

one of the set partitions `B` and `C`. 

 

.. SEEALSO:: 

 

:meth:`__mul__` 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: sp1 = S([[2,3,4], [1]]) 

sage: sp2 = S([[1,3], [2,4]]) 

sage: s = S([[1,2,3,4]]) 

sage: sp1.sup(sp2) == s 

True 

""" 

res = Set(list(self)) 

for p in t: 

inters = Set([x for x in list(res) if x.intersection(p) != Set([])]) 

res = res.difference(inters).union(_set_union(inters)) 

return SetPartition(res) 

 

def pipe(self, other): 

r""" 

Return the pipe of the set partitions ``self`` and ``other``. 

 

The pipe of two set partitions is defined as follows: 

 

For any integer `k` and any subset `I` of `\ZZ`, let `I + k` 

denote the subset of `\ZZ` obtained by adding `k` to every 

element of `k`. 

 

If `B` and `C` are set partitions of `[n]` and `[m]`, 

respectively, then the pipe of `B` and `C` is defined as the 

set partition 

 

.. MATH:: 

 

\{ B_1, B_2, \ldots, B_b, 

C_1 + n, C_2 + n, \ldots, C_c + n \} 

 

of `[n+m]`, where `B = \{ B_1, B_2, \ldots, B_b \}` and 

`C = \{ C_1, C_2, \ldots, C_c \}`. This pipe is denoted by 

`B | C`. 

 

EXAMPLES:: 

 

sage: SetPartition([[1,3],[2,4]]).pipe(SetPartition([[1,3],[2]])) 

{{1, 3}, {2, 4}, {5, 7}, {6}} 

sage: SetPartition([]).pipe(SetPartition([[1,2],[3,5],[4]])) 

{{1, 2}, {3, 5}, {4}} 

sage: SetPartition([[1,2],[3,5],[4]]).pipe(SetPartition([])) 

{{1, 2}, {3, 5}, {4}} 

sage: SetPartition([[1,2],[3]]).pipe(SetPartition([[1]])) 

{{1, 2}, {3}, {4}} 

""" 

# Note: GIGO if self and other are not standard. 

parts = list(self) 

n = self.base_set_cardinality() 

for newpart in other: 

raised_newpart = Set([i + n for i in newpart]) 

parts.append(raised_newpart) 

return SetPartition(parts) 

 

@combinatorial_map(name='shape') 

def shape(self): 

r""" 

Return the integer partition whose parts are the sizes of the sets 

in ``self``. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(5) 

sage: x = S([[1,2], [3,5,4]]) 

sage: x.shape() 

[3, 2] 

sage: y = S([[2], [3,1], [5,4]]) 

sage: y.shape() 

[2, 2, 1] 

""" 

return Partition(sorted(map(len, self), reverse=True)) 

 

# we define aliases for shape() 

shape_partition = shape 

to_partition = shape 

 

@combinatorial_map(name='to permutation') 

def to_permutation(self): 

r""" 

Convert a set partition of `\{1,...,n\}` to a permutation by considering 

the blocks of the partition as cycles. 

 

The cycles are such that the number of excedences is maximised, that is, 

each cycle is of the form `(a_1,a_2, ...,a_k)` with `a_1<a_2<...<a_k`. 

 

EXAMPLES:: 

 

sage: s = SetPartition([[1,3],[2,4]]) 

sage: s.to_permutation() 

[3, 4, 1, 2] 

 

""" 

return Permutation(tuple( map(tuple, self.standard_form()) )) 

 

def standard_form(self): 

r""" 

Return ``self`` as a list of lists. 

 

When the ground set is totally ordered, the elements of each 

block are listed in increasing order. 

 

This is not related to standard set partitions (which simply 

means set partitions of `[n] = \{ 1, 2, \ldots , n \}` for some 

integer `n`) or standardization (:meth:`standardization`). 

 

EXAMPLES:: 

 

sage: [x.standard_form() for x in SetPartitions(4, [2,2])] 

[[[1, 2], [3, 4]], [[1, 3], [2, 4]], [[1, 4], [2, 3]]] 

 

TESTS:: 

 

sage: SetPartition([(1, 9, 8), (2, 3, 4, 5, 6, 7)]).standard_form() 

[[1, 8, 9], [2, 3, 4, 5, 6, 7]] 

""" 

return [sorted(_) for _ in self] 

 

def apply_permutation(self, p): 

r""" 

Apply ``p`` to the underlying set of ``self``. 

 

INPUT: 

 

- ``p`` -- a permutation 

 

EXAMPLES:: 

 

sage: x = SetPartition([[1,2], [3,5,4]]) 

sage: p = Permutation([2,1,4,5,3]) 

sage: x.apply_permutation(p) 

{{1, 2}, {3, 4, 5}} 

sage: q = Permutation([3,2,1,5,4]) 

sage: x.apply_permutation(q) 

{{1, 4, 5}, {2, 3}} 

 

sage: m = PerfectMatching([(1,4),(2,6),(3,5)]) 

sage: m.apply_permutation(Permutation([4,1,5,6,3,2])) 

[(1, 2), (3, 5), (4, 6)] 

""" 

return self.__class__(self.parent(), [Set(map(p, B)) for B in self]) 

 

def crossings_iterator(self): 

r""" 

Return the crossing arcs of a set partition on a totally ordered set. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns an iterator over the pairs of crossing 

lines (as a line correspond to a pair, the iterator 

produces pairs of pairs). 

 

EXAMPLES:: 

 

sage: p = SetPartition([[1,4],[2,5,7],[3,6]]) 

sage: next(p.crossings_iterator()) 

((1, 4), (2, 5)) 

 

TESTS:: 

 

sage: p = SetPartition([]); p.crossings() 

[] 

""" 

# each arc is sorted, but the set of arcs might not be 

arcs = sorted(self.arcs(), key=min) 

while arcs: 

i1,j1 = arcs.pop(0) 

for i2,j2 in arcs: 

# we know that i1 < i2 and i1 < j1 and i2 < j2 

if i2 < j1 < j2: 

yield ((i1,j1), (i2,j2)) 

 

def crossings(self): 

r""" 

Return the crossing arcs of a set partition on a totally ordered set. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns a list of the pairs of crossing lines 

(as a line correspond to a pair, it returns a list of 

pairs of pairs). 

 

EXAMPLES:: 

 

sage: p = SetPartition([[1,4],[2,5,7],[3,6]]) 

sage: p.crossings() 

[((1, 4), (2, 5)), ((1, 4), (3, 6)), ((2, 5), (3, 6)), ((3, 6), (5, 7))] 

 

TESTS:: 

 

sage: p = SetPartition([]); p.crossings() 

[] 

""" 

return list(self.crossings_iterator()) 

 

def number_of_crossings(self): 

r""" 

Return the number of crossings. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns the number the pairs of crossing lines. 

 

EXAMPLES:: 

 

sage: p = SetPartition([[1,4],[2,5,7],[3,6]]) 

sage: p.number_of_crossings() 

4 

 

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n 

[(1, 3), (2, 8), (4, 7), (5, 6)] 

sage: n.number_of_crossings() 

1 

""" 

return Integer( len(list(self.crossings_iterator())) ) 

 

def is_noncrossing(self): 

r""" 

Check if ``self`` is noncrossing. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns ``True`` if the picture obtained this 

way has no crossings. 

 

EXAMPLES:: 

 

sage: p = SetPartition([[1,4],[2,5,7],[3,6]]) 

sage: p.is_noncrossing() 

False 

 

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n 

[(1, 3), (2, 8), (4, 7), (5, 6)] 

sage: n.is_noncrossing() 

False 

sage: PerfectMatching([(1, 4), (2, 3), (5, 6)]).is_noncrossing() 

True 

""" 

it = self.crossings_iterator() 

try: 

next(it) 

except StopIteration: 

return True 

return False 

 

def nestings_iterator(self): 

r""" 

Iterate over the nestings of ``self``. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns an iterator over the pairs of nesting 

lines (as a line correspond to a pair, the iterator 

produces pairs of pairs). 

 

EXAMPLES:: 

 

sage: n = PerfectMatching([(1, 6), (2, 7), (3, 5), (4, 8)]) 

sage: it = n.nestings_iterator(); 

sage: next(it) 

((1, 6), (3, 5)) 

sage: next(it) 

((2, 7), (3, 5)) 

sage: next(it) 

Traceback (most recent call last): 

... 

StopIteration 

""" 

# each arc is sorted, but the set of arcs might not be 

arcs = sorted(self.arcs(), key=min) 

while arcs: 

i1,j1 = arcs.pop(0) 

for i2,j2 in arcs: 

# we know that i1 < i2 and i1 < j1 and i2 < j2 

if i2 < j2 < j1: 

yield ((i1,j1), (i2,j2)) 

 

def nestings(self): 

r""" 

Return the nestings of ``self``. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns the list of the pairs of nesting lines 

(as a line correspond to a pair, it returns a list of 

pairs of pairs). 

 

EXAMPLES:: 

 

sage: m = PerfectMatching([(1, 6), (2, 7), (3, 5), (4, 8)]) 

sage: m.nestings() 

[((1, 6), (3, 5)), ((2, 7), (3, 5))] 

 

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n 

[(1, 3), (2, 8), (4, 7), (5, 6)] 

sage: n.nestings() 

[((2, 8), (4, 7)), ((2, 8), (5, 6)), ((4, 7), (5, 6))] 

 

TESTS:: 

 

sage: m = PerfectMatching([]); m.nestings() 

[] 

""" 

return list(self.nestings_iterator()) 

 

def number_of_nestings(self): 

r""" 

Return the number of nestings of ``self``. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns the number the pairs of nesting lines. 

 

EXAMPLES:: 

 

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n 

[(1, 3), (2, 8), (4, 7), (5, 6)] 

sage: n.number_of_nestings() 

3 

""" 

c = Integer(0) 

one = Integer(1) 

for _ in self.nestings_iterator(): 

c += one 

return c 

 

def is_nonnesting(self): 

r""" 

Return if ``self`` is nonnesting or not. 

 

OUTPUT: 

 

We place the elements of the ground set in order on a 

line and draw the set partition by linking consecutive 

elements of each block in the upper half-plane. This 

function returns ``True`` if the picture obtained this 

way has no nestings. 

 

EXAMPLES:: 

 

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n 

[(1, 3), (2, 8), (4, 7), (5, 6)] 

sage: n.is_nonnesting() 

False 

sage: PerfectMatching([(1, 3), (2, 5), (4, 6)]).is_nonnesting() 

True 

""" 

it = self.nestings_iterator() 

try: 

next(it) 

except StopIteration: 

return True 

return False 

 

def is_atomic(self): 

""" 

Return if ``self`` is an atomic set partition. 

 

A (standard) set partition `A` can be split if there exist `j < i` 

such that `\max(A_j) < \min(A_i)` where `A` is ordered by minimal 

elements. This means we can write `A = B | C` for some nonempty set 

partitions `B` and `C`. We call a set partition *atomic* if it 

cannot be split and is nonempty. Here, the pipe symbol 

`|` is as defined in method :meth:`pipe`. 

 

EXAMPLES:: 

 

sage: SetPartition([[1,3], [2]]).is_atomic() 

True 

sage: SetPartition([[1,3], [2], [4]]).is_atomic() 

False 

sage: SetPartition([[1], [2,4], [3]]).is_atomic() 

False 

sage: SetPartition([[1,2,3,4]]).is_atomic() 

True 

sage: SetPartition([[1, 4], [2], [3]]).is_atomic() 

True 

sage: SetPartition([]).is_atomic() 

False 

""" 

if len(self) == 0: 

return False 

maximum_so_far = max(self[0]) 

for S in self[1:]: 

if maximum_so_far < min(S): 

return False 

maximum_so_far = max(maximum_so_far, max(S)) 

return True 

 

def base_set(self): 

""" 

Return the base set of ``self``, which is the union of all parts 

of ``self``. 

 

EXAMPLES:: 

 

sage: SetPartition([[1], [2,3], [4]]).base_set() 

{1, 2, 3, 4} 

sage: SetPartition([[1,2,3,4]]).base_set() 

{1, 2, 3, 4} 

sage: SetPartition([]).base_set() 

{} 

""" 

return Set([e for p in self for e in p]) 

 

def base_set_cardinality(self): 

""" 

Return the cardinality of the base set of ``self``, which is the sum 

of the sizes of the parts of ``self``. 

 

This is also known as the *size* (sometimes the *weight*) of 

a set partition. 

 

EXAMPLES:: 

 

sage: SetPartition([[1], [2,3], [4]]).base_set_cardinality() 

4 

sage: SetPartition([[1,2,3,4]]).base_set_cardinality() 

4 

""" 

return sum(len(x) for x in self) 

 

size = base_set_cardinality 

 

def standardization(self): 

""" 

Return the standardization of ``self``. 

 

Given a set partition `A = \{A_1, \ldots, A_n\}` of an ordered 

set `S`, the standardization of `A` is the set partition of 

`\{1, 2, \ldots, |S|\}` obtained by replacing the elements of 

the parts of `A` by the integers `1, 2, \ldots, |S|` in such 

a way that their relative order is preserved (i. e., the 

smallest element in the whole set partition is replaced by 

`1`, the next-smallest by `2`, and so on). 

 

EXAMPLES:: 

 

sage: SetPartition([[4], [1, 3]]).standardization() 

{{1, 2}, {3}} 

sage: SetPartition([[4], [6, 3]]).standardization() 

{{1, 3}, {2}} 

sage: SetPartition([]).standardization() 

{} 

sage: SetPartition([('c','b'),('d','f'),('e','a')]).standardization() 

{{1, 5}, {2, 3}, {4, 6}} 

""" 

r = {e: i for i,e in enumerate(sorted(self.base_set()), 1)} 

return SetPartitions(len(r))([[r[e] for e in b] for b in self]) 

 

def restriction(self, I): 

""" 

Return the restriction of ``self`` to a subset ``I`` 

(which is given as a set or list or any other iterable). 

 

EXAMPLES:: 

 

sage: A = SetPartition([[1], [2,3]]) 

sage: A.restriction([1,2]) 

{{1}, {2}} 

sage: A.restriction([2,3]) 

{{2, 3}} 

sage: A.restriction([]) 

{} 

sage: A.restriction([4]) 

{} 

""" 

ret = [] 

for part in self: 

newpart = [i for i in part if i in I] 

if len(newpart) != 0: 

ret.append(newpart) 

return SetPartition(ret) 

 

def ordered_set_partition_action(self, s): 

r""" 

Return the action of an ordered set partition ``s`` on ``self``. 

 

Let `A = \{A_1, A_2, \ldots, A_k\}` be a set partition of some 

set `S` and `s` be an ordered set partition (i.e., set composition) 

of a subset of `[k]`. Let `A^{\downarrow}` denote the standardization 

of `A`, and `A_{\{ i_1, i_2, \ldots, i_m \}}` denote the sub-partition 

`\{A_{i_1}, A_{i_2}, \ldots, A_{i_m}\}` for any subset 

`\{i_1, \ldots, i_m\}` of `\{1, \ldots, k\}`. We define the set 

partition `s(A)` by 

 

.. MATH:: 

 

s(A) = A_{s_1}^{\downarrow} | A_{s_2}^{\downarrow} | \cdots 

| A_{s_q}^{\downarrow}. 

 

where `s = (s_1, s_2, \ldots, s_q)`. Here, the pipe symbol 

`|` is as defined in method :meth:`pipe`. 

 

This is `s[A]` in section 2.3 in [LM2011]_. 

 

INPUT: 

 

- ``s`` -- an ordered set partition with base set a subset 

of `\{1, \ldots, k\}` 

 

EXAMPLES:: 

 

sage: A = SetPartition([[1], [2,4], [3]]) 

sage: s = OrderedSetPartition([[1,3], [2]]) 

sage: A.ordered_set_partition_action(s) 

{{1}, {2}, {3, 4}} 

sage: s = OrderedSetPartition([[2,3], [1]]) 

sage: A.ordered_set_partition_action(s) 

{{1, 3}, {2}, {4}} 

 

We create Figure 1 in [LM2011]_ (we note that there is a typo in the 

lower-left corner of the table in the published version of the 

paper, whereas the arXiv version gives the correct partition):: 

 

sage: A = SetPartition([[1,3], [2,9], [4,5,8], [7]]) 

sage: B = SetPartition([[1,3], [2,8], [4,5,6], [7]]) 

sage: C = SetPartition([[1,5], [2,8], [3,4,6], [7]]) 

sage: s = OrderedSetPartition([[1,3], [2]]) 

sage: t = OrderedSetPartition([[2], [3,4]]) 

sage: u = OrderedSetPartition([[1], [2,3,4]]) 

sage: A.ordered_set_partition_action(s) 

{{1, 2}, {3, 4, 5}, {6, 7}} 

sage: A.ordered_set_partition_action(t) 

{{1, 2}, {3, 4, 6}, {5}} 

sage: A.ordered_set_partition_action(u) 

{{1, 2}, {3, 8}, {4, 5, 7}, {6}} 

sage: B.ordered_set_partition_action(s) 

{{1, 2}, {3, 4, 5}, {6, 7}} 

sage: B.ordered_set_partition_action(t) 

{{1, 2}, {3, 4, 5}, {6}} 

sage: B.ordered_set_partition_action(u) 

{{1, 2}, {3, 8}, {4, 5, 6}, {7}} 

sage: C.ordered_set_partition_action(s) 

{{1, 4}, {2, 3, 5}, {6, 7}} 

sage: C.ordered_set_partition_action(t) 

{{1, 2}, {3, 4, 5}, {6}} 

sage: C.ordered_set_partition_action(u) 

{{1, 2}, {3, 8}, {4, 5, 6}, {7}} 

 

REFERENCES: 

 

.. [LM2011] \A. Lauve, M. Mastnak. *The primitives and antipode in 

the Hopf algebra of symmetric functions in noncommuting variables*. 

Advances in Applied Mathematics. **47** (2011). 536-544. 

:arxiv:`1006.0367v3` :doi:`10.1016/j.aam.2011.01.002`. 

""" 

cur = 1 

ret = [] 

for part in s: 

sub_parts = [list(self[i-1]) for i in part] # -1 for indexing 

# Standardizing sub_parts (the cur variable not being reset 

# to 1 gives us the offset we want): 

mins = [min(_) for _ in sub_parts] 

over_max = max(map(max, sub_parts)) + 1 

temp = [[] for i in range(len(part))] 

while min(mins) != over_max: 

m = min(mins) 

i = mins.index(m) 

temp[i].append(cur) 

cur += 1 

sub_parts[i].pop(sub_parts[i].index(m)) 

if len(sub_parts[i]) != 0: 

mins[i] = min(sub_parts[i]) 

else: 

mins[i] = over_max 

ret += temp 

return SetPartition(ret) 

 

def refinements(self): 

""" 

Return a list of refinements of ``self``. 

 

.. SEEALSO:: 

 

:meth:`coarsenings` 

 

EXAMPLES:: 

 

sage: SetPartition([[1,3],[2,4]]).refinements() 

[{{1, 3}, {2, 4}}, 

{{1, 3}, {2}, {4}}, 

{{1}, {2, 4}, {3}}, 

{{1}, {2}, {3}, {4}}] 

sage: SetPartition([[1],[2,4],[3]]).refinements() 

[{{1}, {2, 4}, {3}}, {{1}, {2}, {3}, {4}}] 

sage: SetPartition([]).refinements() 

[{}] 

""" 

L = [SetPartitions(part) for part in self] 

return [SetPartition(sum(map(list, x), [])) for x in itertools.product(*L)] 

 

def coarsenings(self): 

""" 

Return a list of coarsenings of ``self``. 

 

.. SEEALSO:: 

 

:meth:`refinements` 

 

EXAMPLES:: 

 

sage: SetPartition([[1,3],[2,4]]).coarsenings() 

[{{1, 2, 3, 4}}, {{1, 3}, {2, 4}}] 

sage: SetPartition([[1],[2,4],[3]]).coarsenings() 

[{{1, 2, 3, 4}}, 

{{1}, {2, 3, 4}}, 

{{1, 3}, {2, 4}}, 

{{1, 2, 4}, {3}}, 

{{1}, {2, 4}, {3}}] 

sage: SetPartition([]).coarsenings() 

[{}] 

""" 

SP = SetPartitions(len(self)) 

def union(s): 

# Return the partition obtained by combining, for every 

# part of s, those parts of self which are indexed by 

# the elements of this part of s into a single part. 

ret = [] 

for part in s: 

cur = Set([]) 

for i in part: 

cur = cur.union(self[i-1]) # -1 for indexing 

ret.append(cur) 

return ret 

return [SetPartition(union(s)) for s in SP] 

 

def strict_coarsenings(self): 

r""" 

Return all strict coarsenings of ``self``. 

 

Strict coarsening is the binary relation on set partitions 

defined as the transitive-and-reflexive closure of the 

relation `\prec` defined as follows: For two set partitions 

`A` and `B`, we have `A \prec B` if there exist parts 

`A_i, A_j` of `A` such that `\max(A_i) < \min(A_j)` and 

`B = A \setminus \{A_i, A_j\} \cup \{ A_i \cup A_j \}`. 

 

EXAMPLES:: 

 

sage: A = SetPartition([[1],[2,3],[4]]) 

sage: A.strict_coarsenings() 

[{{1}, {2, 3}, {4}}, {{1, 2, 3}, {4}}, {{1, 4}, {2, 3}}, 

{{1}, {2, 3, 4}}, {{1, 2, 3, 4}}] 

sage: SetPartition([[1],[2,4],[3]]).strict_coarsenings() 

[{{1}, {2, 4}, {3}}, {{1, 2, 4}, {3}}, {{1, 3}, {2, 4}}] 

sage: SetPartition([]).strict_coarsenings() 

[{}] 

""" 

# This is more or less generic code for computing a 

# transitive-and-reflexive closure by depth-first search. 

todo = [self] 

visited = set([self]) 

ret = [self] 

while todo: 

A = todo.pop() 

for i, part in enumerate(A): 

for j, other in enumerate(A[i+1:]): 

if max(part) < min(other): 

next = A[:i] 

next.append(part.union(other)) 

next += A[i+1:i+1+j] + A[i+j+2:] 

next = SetPartition(next) 

if next not in visited: 

todo.append(next) 

visited.add(next) 

ret.append(next) 

return ret 

 

def arcs(self): 

r""" 

Return ``self`` as a list of arcs. 

 

Assuming that the blocks are sorted, the arcs are the pairs 

of consecutive elements in the blocks. 

 

EXAMPLES:: 

 

sage: A = SetPartition([[1],[2,3],[4]]) 

sage: A.arcs() 

[(2, 3)] 

sage: B = SetPartition([[1,3,6,7],[2,5],[4]]) 

sage: B.arcs() 

[(1, 3), (3, 6), (6, 7), (2, 5)] 

""" 

arcs = [] 

for p in self: 

p = sorted(p) 

for i in range(len(p)-1): 

arcs.append((p[i], p[i+1])) 

return arcs 

 

def plot(self, angle=None, color='black', base_set_dict=None): 

r""" 

Return a plot of ``self``. 

 

INPUT: 

 

- ``angle`` -- (default: `\pi/4`) the angle at which the arcs take off 

(if angle is negative, the arcs are drawn below the horizontal line) 

 

- ``color`` -- (default: ``'black'``) color of the arcs 

 

- ``base_set_dict`` -- (optional) dictionary with keys elements 

of :meth:`base_set()` and values as integer or float 

 

EXAMPLES:: 

 

sage: p = SetPartition([[1,10,11],[2,3,7],[4,5,6],[8,9]]) 

sage: p.plot() 

Graphics object consisting of 29 graphics primitives 

 

.. PLOT:: 

 

p = SetPartition([[1,10,11],[2,3,7],[4,5,6],[8,9]]) 

sphinx_plot(p.plot()) 

 

:: 

 

sage: p = SetPartition([[1,3,4],[2,5]]) 

sage: print(p.plot().description()) 

Point set defined by 1 point(s): [(0.0, 0.0)] 

Point set defined by 1 point(s): [(1.0, 0.0)] 

Point set defined by 1 point(s): [(2.0, 0.0)] 

Point set defined by 1 point(s): [(3.0, 0.0)] 

Point set defined by 1 point(s): [(4.0, 0.0)] 

Text '1' at the point (0.0,-0.1) 

Text '2' at the point (1.0,-0.1) 

Text '3' at the point (2.0,-0.1) 

Text '4' at the point (3.0,-0.1) 

Text '5' at the point (4.0,-0.1) 

Arc with center (1.0,-1.0) radii (1.41421356237,1.41421356237) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

Arc with center (2.5,-0.5) radii (0.707106781187,0.707106781187) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

Arc with center (2.5,-1.5) radii (2.12132034356,2.12132034356) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

sage: p = SetPartition([['a','c'],['b','d'],['e']]) 

sage: print(p.plot().description()) 

Point set defined by 1 point(s): [(0.0, 0.0)] 

Point set defined by 1 point(s): [(1.0, 0.0)] 

Point set defined by 1 point(s): [(2.0, 0.0)] 

Point set defined by 1 point(s): [(3.0, 0.0)] 

Point set defined by 1 point(s): [(4.0, 0.0)] 

Text 'a' at the point (0.0,-0.1) 

Text 'b' at the point (1.0,-0.1) 

Text 'c' at the point (2.0,-0.1) 

Text 'd' at the point (3.0,-0.1) 

Text 'e' at the point (4.0,-0.1) 

Arc with center (1.0,-1.0) radii (1.41421356237,1.41421356237) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

Arc with center (2.0,-1.0) radii (1.41421356237,1.41421356237) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

sage: p = SetPartition([['a','c'],['b','d'],['e']]) 

sage: print(p.plot(base_set_dict={'a':0,'b':1,'c':2,'d':-2.3,'e':5.4}).description()) 

Point set defined by 1 point(s): [(-2.3, 0.0)] 

Point set defined by 1 point(s): [(0.0, 0.0)] 

Point set defined by 1 point(s): [(1.0, 0.0)] 

Point set defined by 1 point(s): [(2.0, 0.0)] 

Point set defined by 1 point(s): [(5.4, 0.0)] 

Text 'a' at the point (0.0,-0.1) 

Text 'b' at the point (1.0,-0.1) 

Text 'c' at the point (2.0,-0.1) 

Text 'd' at the point (-2.3,-0.1) 

Text 'e' at the point (5.4,-0.1) 

Arc with center (-0.65,-1.65) radii (2.33345237792,2.33345237792) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

Arc with center (1.0,-1.0) radii (1.41421356237,1.41421356237) 

angle 0.0 inside the sector (0.785398163397,2.35619449019) 

""" 

from sage.plot.graphics import Graphics 

from sage.plot.point import point 

from sage.plot.text import text 

from sage.plot.arc import arc 

from sage.symbolic.constants import pi 

from sage.functions.trig import tan, sin 

from sage.functions.generalized import sgn 

 

diag = Graphics() 

sorted_vertices_list = list(self.base_set()) 

sorted_vertices_list.sort() 

 

if angle is None: 

angle = pi / 4 

 

if base_set_dict is not None: 

vertices_dict = base_set_dict 

else: 

vertices_dict = {val: pos for pos,val in enumerate(sorted_vertices_list)} 

 

for elt in vertices_dict: 

pos = vertices_dict[elt] 

diag += point((pos,0), size=30, color=color) 

diag += text(elt, (pos, -sgn(angle)*0.1), color=color) 

# TODO: change 0.1 to something proportional to the height of the picture 

 

for (k,j) in self.arcs(): 

pos_k,pos_j = float(vertices_dict[k]),float(vertices_dict[j]) 

center = ((pos_k+pos_j) / 2, -abs(pos_j-pos_k) / (2*tan(angle))) 

r1 = abs((pos_j-pos_k) / (2*sin(angle))) 

sector = (sgn(angle) * (pi/2 - angle), sgn(angle) * (pi/2 + angle)) 

diag += arc(center=center, r1=r1, sector=sector, color=color) 

 

diag.axes(False) 

return diag 

 

class SetPartitions(UniqueRepresentation, Parent): 

r""" 

An (unordered) partition of a set `S` is a set of pairwise 

disjoint nonempty subsets with union `S`, and is represented 

by a sorted list of such subsets. 

 

``SetPartitions(s)`` returns the class of all set partitions of the set 

``s``, which can be given as a set or a string; if a string, each 

character is considered an element. 

 

``SetPartitions(n)``, where ``n`` is an integer, returns the class of 

all set partitions of the set `\{1, 2, \ldots, n\}`. 

 

You may specify a second argument `k`. If `k` is an integer, 

:class:`SetPartitions` returns the class of set partitions into `k` parts; 

if it is an integer partition, :class:`SetPartitions` returns the class of 

set partitions whose block sizes correspond to that integer partition. 

 

The Bell number `B_n`, named in honor of Eric Temple Bell, 

is the number of different partitions of a set with `n` elements. 

 

EXAMPLES:: 

 

sage: S = [1,2,3,4] 

sage: SetPartitions(S,2) 

Set partitions of {1, 2, 3, 4} with 2 parts 

sage: SetPartitions([1,2,3,4], [3,1]).list() 

[{{1}, {2, 3, 4}}, {{1, 3, 4}, {2}}, {{1, 2, 4}, {3}}, {{1, 2, 3}, {4}}] 

sage: SetPartitions(7, [3,3,1]).cardinality() 

70 

 

In strings, repeated letters are not considered distinct as of 

:trac:`14140`:: 

 

sage: SetPartitions('abcde').cardinality() 

52 

sage: SetPartitions('aabcd').cardinality() 

15 

 

REFERENCES: 

 

- :wikipedia:`Partition_of_a_set` 

""" 

@staticmethod 

def __classcall_private__(cls, s=None, part=None): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: T = SetPartitions([1,2,3,4]) 

sage: S is T 

True 

""" 

if s is None: 

return SetPartitions_all() 

if isinstance(s, (int, Integer)): 

s = frozenset(range(1, s+1)) 

else: 

try: 

if s.cardinality() == infinity: 

raise ValueError("The set must be finite") 

except AttributeError: 

pass 

s = frozenset(s) 

 

if part is not None: 

if isinstance(part, (int, Integer)): 

if len(s) < part: 

raise ValueError("part must be <= len(set)") 

else: 

return SetPartitions_setn(s, part) 

else: 

if part not in Partitions(len(s)): 

raise ValueError("part must be a partition of %s"%len(s)) 

else: 

return SetPartitions_setparts(s, Partition(part)) 

else: 

return SetPartitions_set(s) 

 

def __contains__(self, x): 

""" 

TESTS:: 

 

sage: S = SetPartitions(4, [2,2]) 

sage: SA = SetPartitions() 

sage: all(sp in SA for sp in S) 

True 

sage: Set([Set([1,2]),Set([3,7])]) in SA 

True 

sage: Set([Set([1,2]),Set([2,3])]) in SA 

False 

sage: Set([]) in SA 

True 

""" 

# x must be a set 

if not isinstance(x, (SetPartition, set, frozenset, Set_generic)): 

return False 

 

# Check that all parts are disjoint 

base_set = Set([e for p in x for e in p]) 

if len(base_set) != sum(map(len, x)): 

return False 

 

# Check to make sure each element of x is a set 

for s in x: 

if not isinstance(s, (set, frozenset, Set_generic)): 

return False 

 

return True 

 

def _element_constructor_(self, s, check=True): 

""" 

Construct an element of ``self`` from ``s``. 

 

INPUT: 

 

- ``s`` -- a set of sets 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: elt = S([[1,3],[2,4]]); elt 

{{1, 3}, {2, 4}} 

sage: P = SetPartitions() 

sage: P(elt).parent() is P 

True 

sage: S = SetPartitions([]) 

sage: S([]) 

{} 

""" 

if isinstance(s, SetPartition): 

if isinstance(s.parent(), SetPartitions): 

return self.element_class(self, s, check=check) 

raise ValueError("cannot convert %s into an element of %s"%(s, self)) 

return self.element_class(self, s, check=check) 

 

Element = SetPartition 

 

def _iterator_part(self, part): 

""" 

Return an iterator for the set partitions with block sizes 

corresponding to the partition ``part``. 

 

INPUT: 

 

- ``part`` -- a :class:`Partition` object 

 

EXAMPLES:: 

 

sage: S = SetPartitions(3) 

sage: it = S._iterator_part(Partition([1,1,1])) 

sage: list(sorted(map(list, next(it)))) 

[[1], [2], [3]] 

sage: S21 = SetPartitions(3,Partition([2,1])) 

sage: len(list(S._iterator_part(Partition([2,1])))) == S21.cardinality() 

True 

""" 

nonzero = [] 

expo = [0] + part.to_exp() 

 

for i in range(len(expo)): 

if expo[i] != 0: 

nonzero.append([i, expo[i]]) 

 

taillesblocs = [(x[0])*(x[1]) for x in nonzero] 

 

blocs = OrderedSetPartitions(self._set, taillesblocs) 

 

for b in blocs: 

lb = [IterableFunctionCall(_listbloc, nonzero[i][0], nonzero[i][1], b[i]) for i in range(len(nonzero))] 

for x in itertools.product(*lb): 

yield _union(x) 

 

def is_less_than(self, s, t): 

r""" 

Check if `s < t` in the refinement ordering on set partitions. 

 

This means that `s` is a refinement of `t` and satisfies 

`s \neq t`. 

 

A set partition `s` is said to be a refinement of a set 

partition `t` of the same set if and only if each part of 

`s` is a subset of a part of `t`. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: s = S([[1,3],[2,4]]) 

sage: t = S([[1],[2],[3],[4]]) 

sage: S.is_less_than(t, s) 

True 

sage: S.is_less_than(s, t) 

False 

sage: S.is_less_than(s, s) 

False 

""" 

if hasattr(s.parent(), "_set"): 

S = s.parent()._set 

else: 

S = s.base_set() 

if hasattr(t.parent(), "_set"): 

T = t.parent()._set 

else: 

T = t.base_set() 

if S != T: 

raise ValueError("cannot compare partitions of different sets") 

 

if s == t: 

return False 

 

for p in s: 

x = p[0] 

for t_ in t: 

if x in t_: 

break 

for p_ in p: 

if p_ not in t_: 

return False 

return True 

 

lt = is_less_than 

 

def is_strict_refinement(self, s, t): 

r""" 

Return ``True`` if ``s`` is a strict refinement of ``t`` and 

satisfies `s \neq t`. 

 

A set partition `s` is said to be a strict refinement of a set 

partition `t` of the same set if and only if one can obtain 

`t` from `s` by repeatedly combining pairs of parts whose 

convex hulls don't intersect (i. e., whenever we are combining 

two parts, the maximum of each of them should be smaller than 

the minimum of the other). 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4) 

sage: s = S([[1],[2],[3],[4]]) 

sage: t = S([[1,3],[2,4]]) 

sage: u = S([[1,2,3,4]]) 

sage: S.is_strict_refinement(s, t) 

True 

sage: S.is_strict_refinement(t, u) 

False 

sage: A = SetPartition([[1,3],[2,4]]) 

sage: B = SetPartition([[1,2,3,4]]) 

sage: S.is_strict_refinement(s, A) 

True 

sage: S.is_strict_refinement(t, B) 

False 

""" 

if hasattr(s.parent(), "_set"): 

S = s.parent()._set 

else: 

S = frozenset(s.base_set()) 

if hasattr(t.parent(), "_set"): 

T = t.parent()._set 

else: 

T = frozenset(t.base_set()) 

if S != T: 

raise ValueError("cannot compare partitions of different sets") 

 

if s == t: 

return False 

 

for p in t: 

L = [x for x in list(s) if x.issubset(p)] 

if sum(len(x) for x in L) != len(p) \ 

or any(max(L[i]) > min(L[i+1]) for i in range(len(L)-1)): 

return False 

return True 

 

class SetPartitions_all(SetPartitions): 

r""" 

All set partitions. 

""" 

def __init__(self): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: S = SetPartitions() 

sage: TestSuite(S).run() 

""" 

SetPartitions.__init__(self, category=InfiniteEnumeratedSets()) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: SetPartitions() 

Set partitions 

""" 

return "Set partitions" 

 

def __iter__(self): 

""" 

Iterate over ``self``. 

 

EXAMPLES:: 

 

sage: it = SetPartitions().__iter__() 

sage: [next(it) for x in range(10)] 

[{}, {{1}}, {{1, 2}}, {{1}, {2}}, {{1, 2, 3}}, {{1}, {2, 3}}, 

{{1, 3}, {2}}, {{1, 2}, {3}}, {{1}, {2}, {3}}, {{1, 2, 3, 4}}] 

""" 

n = 0 

while True: 

for x in SetPartitions_set(frozenset(range(1, n+1))): 

yield self.element_class(self, list(x)) 

n += 1 

 

class SetPartitions_set(SetPartitions): 

""" 

Set partitions of a fixed set `S`. 

""" 

@staticmethod 

def __classcall_private__(cls, s): 

""" 

Normalize ``s`` to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: S1 = SetPartitions(set([2,1,4])) 

sage: S2 = SetPartitions([4,1,2]) 

sage: S3 = SetPartitions((1,2,4)) 

sage: S1 is S2, S1 is S3 

(True, True) 

""" 

return super(SetPartitions_set, cls).__classcall__(cls, frozenset(s)) 

 

def __init__(self, s): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(3) 

sage: TestSuite(S).run() 

sage: SetPartitions(0).list() 

[{}] 

sage: SetPartitions([]).list() 

[{}] 

""" 

self._set = s 

SetPartitions.__init__(self, category=FiniteEnumeratedSets()) 

 

def _repr_(self): 

""" 

TESTS:: 

 

sage: SetPartitions([1,2,3]) 

Set partitions of {1, 2, 3} 

""" 

return "Set partitions of %s"%(Set(self._set)) 

 

def __contains__(self, x): 

""" 

TESTS:: 

 

sage: S = SetPartitions(4, [2,2]) 

sage: all(sp in S for sp in S) 

True 

sage: SetPartition([[1,3],[2,4]]) in SetPartitions(3) 

False 

sage: SetPartition([[1,3],[2,4]]) in SetPartitions(4, [3,1]) 

False 

sage: SetPartition([[2],[1,3,4]]) in SetPartitions(4, [3,1]) 

True 

""" 

# Must pass the general check 

if not SetPartitions.__contains__(self, x): 

return False 

 

# Make sure that the number of elements match up 

if sum(map(len, x)) != len(self._set): 

return False 

 

# Make sure that the union of all the sets is the original set 

if Set([e for p in x for e in p]) != Set(self._set): 

return False 

 

return True 

 

def random_element(self): 

r""" 

Return a random set partition. 

 

This is a very naive implementation of Knuths outline in F3B, 

7.2.1.5. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(10) 

sage: S.random_element() 

{{1, 4, 9}, {2, 5, 7}, {3}, {6}, {8, 10}} 

""" 

base_set = list(self.base_set()) 

N = len(base_set) 

from sage.symbolic.constants import e 

c = float(e)*bell_number(N) 

# it would be much better to generate M in the way Knuth 

# recommends, the following is a waste 

G = GeneralDiscreteDistribution([float(m)**N/(c*factorial(m)) for m in range(4*N)]) 

M = G.get_random_element()-1 

l = [randint(0, M) for i in range(N)] 

p = dict() 

for i, b in enumerate(l): 

if b in p: 

p[b].append(base_set[i]) 

else: 

p[b] = [base_set[i]] 

 

return SetPartition(p.values()) 

 

def cardinality(self): 

""" 

Return the number of set partitions of the set `S`. 

 

The cardinality is given by the `n`-th Bell number where `n` is the 

number of elements in the set `S`. 

 

EXAMPLES:: 

 

sage: SetPartitions([1,2,3,4]).cardinality() 

15 

sage: SetPartitions(3).cardinality() 

5 

sage: SetPartitions(3,2).cardinality() 

3 

sage: SetPartitions([]).cardinality() 

1 

""" 

return bell_number(len(self._set)) 

 

def __iter__(self): 

""" 

Iterate over ``self``. 

 

EXAMPLES:: 

 

sage: SetPartitions(3).list() 

[{{1, 2, 3}}, {{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}}, {{1}, {2}, {3}}] 

""" 

for p in Partitions(len(self._set)): 

for sp in self._iterator_part(p): 

yield self.element_class(self, sp) 

 

def base_set(self): 

""" 

Return the base set of ``self``. 

 

EXAMPLES:: 

 

sage: SetPartitions(3).base_set() 

{1, 2, 3} 

""" 

return Set(self._set) 

 

def base_set_cardinality(self): 

""" 

Return the cardinality of the base set of ``self``. 

 

EXAMPLES:: 

 

sage: SetPartitions(3).base_set_cardinality() 

3 

""" 

return len(self._set) 

 

class SetPartitions_setparts(SetPartitions_set): 

r""" 

Class of all set partitions with fixed partition sizes corresponding to 

an integer partition `\lambda`. 

""" 

@staticmethod 

def __classcall_private__(cls, s, parts): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(4, [2,2]) 

sage: T = SetPartitions([1,2,3,4], Partition([2,2])) 

sage: S is T 

True 

""" 

if isinstance(s, (int, Integer)): 

s = list(range(1, s + 1)) 

return super(SetPartitions_setparts, cls).__classcall__(cls, frozenset(s), Partition(parts)) 

 

def __init__(self, s, parts): 

""" 

TESTS:: 

 

sage: S = SetPartitions(4, [2,2]) 

sage: TestSuite(S).run() 

""" 

SetPartitions_set.__init__(self, s) 

self.parts = parts 

 

def _repr_(self): 

""" 

TESTS:: 

 

sage: SetPartitions(4, [2,2]) 

Set partitions of {1, 2, 3, 4} with sizes in [2, 2] 

""" 

return "Set partitions of %s with sizes in %s"%(Set(self._set), self.parts) 

 

def cardinality(self): 

r""" 

Return the cardinality of ``self``. 

 

This algorithm counts for each block of the partition the 

number of ways to fill it using values from the set. Then, 

for each distinct value `v` of block size, we divide the result by 

the number of ways to arrange the blocks of size `v` in the 

set partition. 

 

For example, if we want to count the number of set partitions 

of size 13 having [3,3,3,2,2] as underlying partition we 

compute the number of ways to fill each block of the 

partition, which is `\binom{13}{3} \binom{10}{3} \binom{7}{3} 

\binom{4}{2}\binom{2}{2}` and as we have three blocks of size 

`3` and two blocks of size `2`, we divide the result by 

`3!2!` which gives us `600600`. 

 

EXAMPLES:: 

 

sage: SetPartitions(3, [2,1]).cardinality() 

3 

sage: SetPartitions(13, Partition([3,3,3,2,2])).cardinality() 

600600 

 

TESTS:: 

 

sage: all((len(SetPartitions(size, part)) == SetPartitions(size, part).cardinality() for size in range(8) for part in Partitions(size))) 

True 

sage: sum((SetPartitions(13, p).cardinality() for p in Partitions(13))) == SetPartitions(13).cardinality() 

True 

""" 

from sage.misc.misc_c import prod 

 

remaining_subset_size = Integer(len(self._set)) 

cardinal = Integer(1) 

for subset_size in self.parts: 

cardinal *= remaining_subset_size.binomial(subset_size) 

remaining_subset_size -= subset_size 

 

repetitions = (Integer(rep).factorial() 

for rep in self.parts.to_exp_dict().values() 

if rep != 1) 

cardinal /= prod(repetitions) 

return Integer(cardinal) 

 

def __iter__(self): 

""" 

An iterator for all the set partitions of the given set with 

the given sizes. 

 

EXAMPLES:: 

 

sage: SetPartitions(3, [2,1]).list() 

[{{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}}] 

""" 

for sp in self._iterator_part(self.parts): 

yield self.element_class(self, sp) 

 

def __contains__(self, x): 

""" 

Check containment. 

 

TESTS:: 

 

sage: S = SetPartitions(4, [3,1]) 

sage: Set([Set([1,2,3]), Set([4])]) in S 

True 

sage: Set([Set([1,3]), Set([2,4])]) in S 

False 

sage: Set([Set([1,2,3,4])]) in S 

False 

""" 

if not SetPartitions_set.__contains__(self, x): 

return False 

return sorted(map(len, x)) == list(reversed(self.parts)) 

 

class SetPartitions_setn(SetPartitions_set): 

@staticmethod 

def __classcall_private__(cls, s, n): 

""" 

Normalize ``s`` to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: S1 = SetPartitions(set([2,1,4]), 2) 

sage: S2 = SetPartitions([4,1,2], 2) 

sage: S3 = SetPartitions((1,2,4), 2) 

sage: S1 is S2, S1 is S3 

(True, True) 

""" 

return super(SetPartitions_setn, cls).__classcall__(cls, frozenset(s), n) 

 

def __init__(self, s, n): 

""" 

TESTS:: 

 

sage: S = SetPartitions(5, 3) 

sage: TestSuite(S).run() 

""" 

self.n = n 

SetPartitions_set.__init__(self, s) 

 

def _repr_(self): 

""" 

TESTS:: 

 

sage: SetPartitions(5, 3) 

Set partitions of {1, 2, 3, 4, 5} with 3 parts 

""" 

return "Set partitions of %s with %s parts"%(Set(self._set), self.n) 

 

def cardinality(self): 

""" 

The Stirling number of the second kind is the number of partitions 

of a set of size `n` into `k` blocks. 

 

EXAMPLES:: 

 

sage: SetPartitions(5, 3).cardinality() 

25 

sage: stirling_number2(5,3) 

25 

""" 

return stirling_number2(len(self._set), self.n) 

 

def __iter__(self): 

""" 

Iterate over ``self``. 

 

EXAMPLES:: 

 

sage: SetPartitions(3).list() 

[{{1, 2, 3}}, {{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}}, {{1}, {2}, {3}}] 

""" 

for p in Partitions(len(self._set), length=self.n): 

for sp in self._iterator_part(p): 

yield self.element_class(self, sp) 

 

def __contains__(self, x): 

""" 

Check containment. 

 

TESTS:: 

 

sage: S = SetPartitions(4, 2) 

sage: Set([Set([1,2,3]), Set([4])]) in S 

True 

sage: Set([Set([1,3]), Set([2,4])]) in S 

True 

sage: Set([Set([1,2,3,4])]) in S 

False 

""" 

if not SetPartitions_set.__contains__(self, x): 

return False 

return len(x) == self.n 

 

def random_element(self): 

r""" 

Return a random set partition of ``self``. 

 

See https://mathoverflow.net/questions/141999. 

 

EXAMPLES:: 

 

sage: S = SetPartitions(10, 4) 

sage: S.random_element() 

{{1, 2, 4, 6, 9, 10}, {3}, {5, 7}, {8}} 

""" 

def re(N, k): 

if N == 0: 

return [[]] 

elif N == 1: 

return [[0]] 

elif float(stirling_number2(N-1, k-1))/float(stirling_number2(N, k)) > random(): 

return [[N-1]] + re(N-1, k-1) 

else: 

p = re(N-1, k) 

p[randint(0, len(p)-1)].append(N-1) 

return p 

 

base_set = list(self.base_set()) 

N = len(base_set) 

k = self.n 

p = re(N, k) 

return SetPartition([[base_set[e] for e in b] for b in p]) 

 

def _listbloc(n, nbrepets, listint=None): 

r""" 

Decompose a set of `n \times n` ``brepets`` integers (the list 

``listint``) in ``nbrepets`` parts. 

 

It is used in the algorithm to generate all set partitions. 

 

.. WARNING:: 

 

Internal function that is not to be called by the user. 

 

EXAMPLES:: 

 

sage: list(sage.combinat.set_partition._listbloc(2,1)) 

[{{1, 2}}] 

sage: l = [Set([Set([3, 4]), Set([1, 2])]), Set([Set([2, 4]), Set([1, 3])]), Set([Set([2, 3]), Set([1, 4])])] 

sage: list(sage.combinat.set_partition._listbloc(2,2,[1,2,3,4])) == l 

True 

""" 

if isinstance(listint, (int, Integer)) or listint is None: 

listint = Set(range(1,n+1)) 

 

if nbrepets == 1: 

yield Set([listint]) 

return 

 

l = sorted(listint) 

smallest = Set(l[:1]) 

new_listint = Set(l[1:]) 

 

f = lambda u, v: u.union(_set_union([smallest,v])) 

 

for ssens in subset.Subsets(new_listint, n-1): 

for z in _listbloc(n, nbrepets-1, new_listint-ssens): 

yield f(z,ssens) 

 

def _union(s): 

""" 

TESTS:: 

 

sage: s = Set([ Set([1,2]), Set([3,4]) ]) 

sage: sage.combinat.set_partition._union(s) 

{1, 2, 3, 4} 

""" 

result = Set([]) 

for ss in s: 

result = result.union(ss) 

return result 

 

def _set_union(s): 

""" 

TESTS:: 

 

sage: s = Set([ Set([1,2]), Set([3,4]) ]) 

sage: sage.combinat.set_partition._set_union(s) 

{{1, 2, 3, 4}} 

""" 

result = Set([]) 

for ss in s: 

result = result.union(ss) 

return Set([result]) 

 

def cyclic_permutations_of_set_partition(set_part): 

""" 

Returns all combinations of cyclic permutations of each cell of the 

set partition. 

 

AUTHORS: 

 

- Robert L. Miller 

 

EXAMPLES:: 

 

sage: from sage.combinat.set_partition import cyclic_permutations_of_set_partition 

sage: cyclic_permutations_of_set_partition([[1,2,3,4],[5,6,7]]) 

[[[1, 2, 3, 4], [5, 6, 7]], 

[[1, 2, 4, 3], [5, 6, 7]], 

[[1, 3, 2, 4], [5, 6, 7]], 

[[1, 3, 4, 2], [5, 6, 7]], 

[[1, 4, 2, 3], [5, 6, 7]], 

[[1, 4, 3, 2], [5, 6, 7]], 

[[1, 2, 3, 4], [5, 7, 6]], 

[[1, 2, 4, 3], [5, 7, 6]], 

[[1, 3, 2, 4], [5, 7, 6]], 

[[1, 3, 4, 2], [5, 7, 6]], 

[[1, 4, 2, 3], [5, 7, 6]], 

[[1, 4, 3, 2], [5, 7, 6]]] 

""" 

return list(cyclic_permutations_of_set_partition_iterator(set_part)) 

 

def cyclic_permutations_of_set_partition_iterator(set_part): 

""" 

Iterates over all combinations of cyclic permutations of each cell 

of the set partition. 

 

AUTHORS: 

 

- Robert L. Miller 

 

EXAMPLES:: 

 

sage: from sage.combinat.set_partition import cyclic_permutations_of_set_partition_iterator 

sage: list(cyclic_permutations_of_set_partition_iterator([[1,2,3,4],[5,6,7]])) 

[[[1, 2, 3, 4], [5, 6, 7]], 

[[1, 2, 4, 3], [5, 6, 7]], 

[[1, 3, 2, 4], [5, 6, 7]], 

[[1, 3, 4, 2], [5, 6, 7]], 

[[1, 4, 2, 3], [5, 6, 7]], 

[[1, 4, 3, 2], [5, 6, 7]], 

[[1, 2, 3, 4], [5, 7, 6]], 

[[1, 2, 4, 3], [5, 7, 6]], 

[[1, 3, 2, 4], [5, 7, 6]], 

[[1, 3, 4, 2], [5, 7, 6]], 

[[1, 4, 2, 3], [5, 7, 6]], 

[[1, 4, 3, 2], [5, 7, 6]]] 

""" 

from sage.combinat.permutation import CyclicPermutations 

if len(set_part) == 1: 

for i in CyclicPermutations(set_part[0]): 

yield [i] 

else: 

for right in cyclic_permutations_of_set_partition_iterator(set_part[1:]): 

for perm in CyclicPermutations(set_part[0]): 

yield [perm] + right