Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

""" 

Elementary symmetric functions 

""" 

from __future__ import absolute_import 

#***************************************************************************** 

# Copyright (C) 2007 Mike Hansen <mhansen@gmail.com> 

# 2012 Mike Zabrocki <mike.zabrocki@gmail.com> 

# 2012 Anne Schilling <anne@math.ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from . import multiplicative, classical 

from sage.combinat.partition import Partition 

 

 

################################### 

# # 

# Elementary Symmetric Functions # 

# # 

################################### 

class SymmetricFunctionAlgebra_elementary(multiplicative.SymmetricFunctionAlgebra_multiplicative): 

def __init__(self, Sym): 

""" 

A class for methods for the elementary basis of the symmetric functions. 

 

INPUT: 

 

- ``self`` -- an elementary basis of the symmetric functions 

- ``Sym`` -- an instance of the ring of symmetric functions 

 

TESTS:: 

 

sage: e = SymmetricFunctions(QQ).e() 

sage: e == loads(dumps(e)) 

True 

sage: TestSuite(e).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) 

sage: TestSuite(e).run(elements = [e[1,1]+e[2], e[1]+2*e[1,1]]) 

""" 

classical.SymmetricFunctionAlgebra_classical.__init__(self, Sym, "elementary", 'e') 

 

def _dual_basis_default(self): 

""" 

Returns the default value for ``self.dual_basis()`` 

 

This method returns the dual basis to the elementary basis 

with respect to the standard scalar product, that is the 

forgotten basis. 

 

EXAMPLES:: 

 

sage: e = SymmetricFunctions(QQ).e() 

sage: e.dual_basis() 

Symmetric Functions over Rational Field in the forgotten basis 

 

TESTS:: 

 

sage: e._dual_basis_default() is e.dual_basis() 

True 

""" 

return self.dual_basis(scalar = None, prefix="f", basis_name = "forgotten") 

 

def coproduct_on_generators(self, i): 

r""" 

Returns the coproduct on ``self[i]``. 

 

INPUT: 

 

- ``self`` -- an elementary basis of the symmetric functions 

- ``i`` -- a nonnegative integer 

 

OUTPUT: 

 

- returns the coproduct on the elementary generator `e(i)` 

 

EXAMPLES:: 

 

sage: Sym = SymmetricFunctions(QQ) 

sage: e = Sym.elementary() 

sage: e.coproduct_on_generators(2) 

e[] # e[2] + e[1] # e[1] + e[2] # e[] 

sage: e.coproduct_on_generators(0) 

e[] # e[] 

""" 

def P(i): return Partition([i]) if i else Partition([]) 

T = self.tensor_square() 

return T.sum_of_monomials( (P(j), P(i-j)) for j in range(i+1) ) 

 

class Element(classical.SymmetricFunctionAlgebra_classical.Element): 

def omega(self): 

r""" 

Return the image of ``self`` under the omega automorphism. 

 

The *omega automorphism* is defined to be the unique algebra 

endomorphism `\omega` of the ring of symmetric functions that 

satisfies `\omega(e_k) = h_k` for all positive integers `k` 

(where `e_k` stands for the `k`-th elementary symmetric 

function, and `h_k` stands for the `k`-th complete homogeneous 

symmetric function). It furthermore is a Hopf algebra 

endomorphism and an involution, and it is also known as the 

*omega involution*. It sends the power-sum symmetric function 

`p_k` to `(-1)^{k-1} p_k` for every positive integer `k`. 

 

The images of some bases under the omega automorphism are given by 

 

.. MATH:: 

 

\omega(e_{\lambda}) = h_{\lambda}, \qquad 

\omega(h_{\lambda}) = e_{\lambda}, \qquad 

\omega(p_{\lambda}) = (-1)^{|\lambda| - \ell(\lambda)} 

p_{\lambda}, \qquad 

\omega(s_{\lambda}) = s_{\lambda^{\prime}}, 

 

where `\lambda` is any partition, where `\ell(\lambda)` denotes 

the length (:meth:`~sage.combinat.partition.Partition.length`) 

of the partition `\lambda`, where `\lambda^{\prime}` denotes the 

conjugate partition 

(:meth:`~sage.combinat.partition.Partition.conjugate`) of 

`\lambda`, and where the usual notations for bases are used 

(`e` = elementary, `h` = complete homogeneous, `p` = powersum, 

`s` = Schur). 

 

:meth:`omega_involution` is a synonym for the :meth:`omega` 

method. 

 

EXAMPLES:: 

 

sage: e = SymmetricFunctions(QQ).e() 

sage: a = e([2,1]); a 

e[2, 1] 

sage: a.omega() 

e[1, 1, 1] - e[2, 1] 

 

:: 

 

sage: h = SymmetricFunctions(QQ).h() 

sage: h(e([2,1]).omega()) 

h[2, 1] 

""" 

e = self.parent() 

h = e.realization_of().h() 

return e( h._from_element(self) ) 

 

omega_involution = omega 

 

def verschiebung(self, n): 

r""" 

Return the image of the symmetric function ``self`` under the 

`n`-th Verschiebung operator. 

 

The `n`-th Verschiebung operator `\mathbf{V}_n` is defined to be 

the unique algebra endomorphism `V` of the ring of symmetric 

functions that satisfies `V(h_r) = h_{r/n}` for every positive 

integer `r` divisible by `n`, and satisfies `V(h_r) = 0` for 

every positive integer `r` not divisible by `n`. This operator 

`\mathbf{V}_n` is a Hopf algebra endomorphism. For every 

nonnegative integer `r` with `n \mid r`, it satisfies 

 

.. MATH:: 

 

\mathbf{V}_n(h_r) = h_{r/n}, 

\quad \mathbf{V}_n(p_r) = n p_{r/n}, 

\quad \mathbf{V}_n(e_r) = (-1)^{r - r/n} e_{r/n} 

 

(where `h` is the complete homogeneous basis, `p` is the 

powersum basis, and `e` is the elementary basis). For every 

nonnegative integer `r` with `n \nmid r`, it satisfes 

 

.. MATH:: 

 

\mathbf{V}_n(h_r) = \mathbf{V}_n(p_r) = \mathbf{V}_n(e_r) = 0. 

 

The `n`-th Verschiebung operator is also called the `n`-th 

Verschiebung endomorphism. Its name derives from the Verschiebung 

(German for "shift") endomorphism of the Witt vectors. 

 

The `n`-th Verschiebung operator is adjoint to the `n`-th 

Frobenius operator (see :meth:`~sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.frobenius` 

for its definition) with respect to the Hall scalar product 

(:meth:`~sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.scalar`). 

 

The action of the `n`-th Verschiebung operator on the Schur basis 

can also be computed explicitly. The following (probably clumsier 

than necessary) description can be obtained by solving exercise 

7.61 in Stanley [STA]_. 

 

Let `\lambda` be a partition. Let `n` be a positive integer. If 

the `n`-core of `\lambda` is nonempty, then 

`\mathbf{V}_n(s_\lambda) = 0`. Otherwise, the following method 

computes `\mathbf{V}_n(s_\lambda)`: Write the partition `\lambda` 

in the form `(\lambda_1, \lambda_2, ..., \lambda_{ns})` for some 

nonnegative integer `s`. (If `n` does not divide the length of 

`\lambda`, then this is achieved by adding trailing zeroes to 

`\lambda`.) Set `\beta_i = \lambda_i + ns - i` for every 

`s \in \{ 1, 2, \ldots, ns \}`. Then, 

`(\beta_1, \beta_2, ..., \beta_{ns})` is a strictly decreasing 

sequence of nonnegative integers. Stably sort the list 

`(1, 2, \ldots, ns)` in order of (weakly) increasing remainder of 

`-1 - \beta_i` modulo `n`. Let `\xi` be the sign of the 

permutation that is used for this sorting. Let `\psi` be the sign 

of the permutation that is used to stably sort the list 

`(1, 2, \ldots, ns)` in order of (weakly) increasing remainder of 

`i - 1` modulo `n`. (Notice that `\psi = (-1)^{n(n-1)s(s-1)/4}`.) 

Then, `\mathbf{V}_n(s_\lambda) = \xi \psi \prod_{i=0}^{n-1} 

s_{\lambda^{(i)}}`, where 

`(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(n - 1)})` 

is the `n`-quotient of `\lambda`. 

 

INPUT: 

 

- ``n`` -- a positive integer 

 

OUTPUT: 

 

The result of applying the `n`-th Verschiebung operator (on the 

ring of symmetric functions) to ``self``. 

 

EXAMPLES:: 

 

sage: Sym = SymmetricFunctions(ZZ) 

sage: e = Sym.e() 

sage: e[3].verschiebung(2) 

0 

sage: e[4].verschiebung(4) 

-e[1] 

 

The Verschiebung endomorphisms are multiplicative:: 

 

sage: all( all( e(lam).verschiebung(2) * e(mu).verschiebung(2) 

....: == (e(lam) * e(mu)).verschiebung(2) 

....: for mu in Partitions(4) ) 

....: for lam in Partitions(4) ) 

True 

 

TESTS: 

 

Let us check that this method on the elementary basis gives the 

same result as the implementation in :mod:`sage.combinat.sf.sfa` 

on the complete homogeneous basis:: 

 

sage: Sym = SymmetricFunctions(QQ) 

sage: e = Sym.e(); h = Sym.h() 

sage: all( h(e(lam)).verschiebung(3) == h(e(lam).verschiebung(3)) 

....: for lam in Partitions(6) ) 

True 

sage: all( e(h(lam)).verschiebung(2) == e(h(lam).verschiebung(2)) 

....: for lam in Partitions(4) ) 

True 

""" 

parent = self.parent() 

e_coords_of_self = self.monomial_coefficients().items() 

dct = {Partition([i // n for i in lam]): 

(-1) ** (sum(lam) - (sum(lam) // n)) * coeff 

for (lam, coeff) in e_coords_of_self 

if all( i % n == 0 for i in lam )} 

result_in_e_basis = parent._from_dict(dct) 

return parent(result_in_e_basis) 

 

def expand(self, n, alphabet='x'): 

""" 

Expand the symmetric function ``self`` as a symmetric polynomial 

in ``n`` variables. 

 

INPUT: 

 

- ``n`` -- a nonnegative integer 

 

- ``alphabet`` -- (default: ``'x'``) a variable for the expansion 

 

OUTPUT: 

 

A monomial expansion of ``self`` in the `n` variables 

labelled by ``alphabet``. 

 

EXAMPLES:: 

 

sage: e = SymmetricFunctions(QQ).e() 

sage: e([2,1]).expand(3) 

x0^2*x1 + x0*x1^2 + x0^2*x2 + 3*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 

sage: e([1,1,1]).expand(2) 

x0^3 + 3*x0^2*x1 + 3*x0*x1^2 + x1^3 

sage: e([3]).expand(2) 

0 

sage: e([2]).expand(3) 

x0*x1 + x0*x2 + x1*x2 

sage: e([3]).expand(4,alphabet='x,y,z,t') 

x*y*z + x*y*t + x*z*t + y*z*t 

sage: e([3]).expand(4,alphabet='y') 

y0*y1*y2 + y0*y1*y3 + y0*y2*y3 + y1*y2*y3 

sage: e([]).expand(2) 

1 

sage: e([]).expand(0) 

1 

sage: (3*e([])).expand(0) 

3 

""" 

condition = lambda part: max(part) > n 

return self._expand(condition, n, alphabet) 

 

# Backward compatibility for unpickling 

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.combinat.sf.elementary', 'SymmetricFunctionAlgebraElement_elementary', SymmetricFunctionAlgebra_elementary.Element)