Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

# -*- coding: utf-8 -*- 

""" 

(Ring-)LWE oracle generators 

 

The Learning with Errors problem (LWE) is solving linear systems of equations 

where the right hand side has been disturbed 'slightly' where 'slightly' is made 

precise by a noise distribution - typically a discrete Gaussian 

distribution. See [Reg09]_ for details. 

 

The Ring Learning with Errors problem (LWE) is solving a set of univariate 

polynomial equations - typically in a cyclotomic field - where the right hand 

side was disturbed 'slightly'. See [LPR2010]_ for details. 

 

This module implements generators of LWE samples where parameters are chosen 

following proposals in the cryptographic literature. 

 

EXAMPLES: 

 

We get 30 samples from an LWE oracle parameterised by security parameter 

``n=20`` and where the modulus and the standard deviation of the noise are 

chosen as in [Reg09]_:: 

 

sage: from sage.crypto.lwe import samples 

sage: samples(30, 20, 'Regev') 

[((360, 264, 123, 368, 398, 392, 41, 84, 25, 389, 311, 68, 322, 41, 161, 372, 222, 153, 243, 381), 122), 

... 

((155, 22, 357, 312, 87, 298, 182, 163, 296, 181, 219, 135, 164, 308, 248, 320, 64, 166, 214, 104), 152)] 

 

We may also pass classes to the samples function, which is useful for users 

implementing their own oracles:: 

 

sage: from sage.crypto.lwe import samples, LindnerPeikert 

sage: samples(30, 20, LindnerPeikert) 

[((1275, 168, 1529, 2024, 1874, 1309, 16, 1869, 1114, 1696, 1645, 618, 1372, 1273, 683, 237, 1526, 879, 1305, 1355), 950), 

... 

((1787, 2033, 1677, 331, 1562, 49, 796, 1002, 627, 98, 91, 711, 1712, 418, 2024, 163, 1773, 184, 1548, 3), 1815)] 

 

Finally, :func:`samples` also accepts instances of classes:: 

 

sage: from sage.crypto.lwe import LindnerPeikert 

sage: lwe = LindnerPeikert(20) 

sage: samples(30, 20, lwe) 

[((465, 180, 440, 706, 1367, 106, 1380, 614, 1162, 1354, 1098, 2036, 1974, 1417, 1502, 1431, 863, 1894, 1368, 1771), 618), 

... 

((1050, 1017, 1314, 1310, 1941, 2041, 484, 104, 1199, 1744, 161, 1905, 679, 1663, 531, 1630, 168, 1559, 1040, 1719), 1006)] 

 

Note that Ring-LWE samples are returned as vectors:: 

 

sage: from sage.crypto.lwe import RingLWE 

sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler_phi(16), 5) 

sage: ringlwe = RingLWE(16, 257, D, secret_dist='uniform') 

sage: samples(30, euler_phi(16), ringlwe) 

[((41, 78, 232, 79, 223, 85, 26, 68), (195, 99, 106, 57, 93, 113, 23, 68)), 

... 

((185, 89, 244, 122, 249, 140, 173, 142), (98, 196, 70, 49, 55, 8, 158, 57))] 

 

One technical issue when working with these generators is that by default they 

return vectors and scalars over/in rings modulo some `q`. These are represented 

as elements in `(0,q-1)` by Sage. However, it usually is more natural to think 

of these entries as integers in `(-q//2,q//2)`. To allow for this, this module 

provides the option to balance the representation. In this case vectors and 

scalars over/in the integers are returned:: 

 

sage: from sage.crypto.lwe import samples 

sage: samples(30, 20, 'Regev', balanced=True) 

[((-105, 43, -25, -16, 57, 141, -108, 92, -173, 4, 179, -191, 164, 101, -16, -175, 172, 10, 147, 1), 114), 

... 

((-166, -147, 120, -56, 130, 163, 83, 17, -125, -159, -124, 19, 198, -181, -124, -155, 84, -15, -113, 113), 39)] 

 

AUTHORS: 

 

- Martin Albrecht 

- Robert Fitzpatrick 

- Daniel Cabracas 

- Florian Göpfert 

- Michael Schneider 

 

REFERENCES: 

 

- [Reg09]_ 

 

- [LP2011]_ 

 

- [LPR2010]_ 

 

- [CGW2013]_ 

""" 

from six.moves import range 

 

from sage.functions.log import exp, log 

from sage.functions.other import sqrt, floor, ceil 

from sage.misc.functional import cyclotomic_polynomial 

from sage.misc.randstate import set_random_seed 

from sage.misc.prandom import randint 

from sage.misc.misc import get_verbose 

from sage.modules.free_module import FreeModule 

from sage.modules.free_module_element import random_vector, vector 

from sage.numerical.optimize import find_root 

from sage.rings.all import ZZ, RealField, IntegerModRing, RR 

from sage.arith.all import next_prime, euler_phi 

from sage.structure.element import parent 

from sage.structure.sage_object import SageObject 

from sage.symbolic.constants import pi 

from sage.symbolic.ring import SR 

from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler 

 

class UniformSampler(SageObject): 

""" 

Uniform sampling in a range of integers. 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformSampler 

sage: sampler = UniformSampler(-2, 2); sampler 

UniformSampler(-2, 2) 

sage: sampler() 

-2 

 

.. automethod:: __init__ 

.. automethod:: __call__ 

""" 

def __init__(self, lower_bound, upper_bound): 

""" 

Construct a uniform sampler with bounds ``lower_bound`` and 

``upper_bound`` (both endpoints inclusive). 

 

INPUT: 

 

- ``lower_bound`` - integer 

- ``upper_bound`` - integer 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformSampler 

sage: UniformSampler(-2, 2) 

UniformSampler(-2, 2) 

""" 

if lower_bound > upper_bound: 

raise TypeError("lower bound must be <= upper bound.") 

self.lower_bound = ZZ(lower_bound) 

self.upper_bound = ZZ(upper_bound) 

 

def __call__(self): 

""" 

Return a new sample. 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformSampler 

sage: sampler = UniformSampler(-12, 12) 

sage: sampler() 

-10 

""" 

return randint(self.lower_bound, self.upper_bound) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformSampler 

sage: UniformSampler(-2, 2) 

UniformSampler(-2, 2) 

""" 

return "UniformSampler(%d, %d)"%(self.lower_bound, self.upper_bound) 

 

 

class UniformPolynomialSampler(SageObject): 

""" 

Uniform sampler for polynomials. 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformPolynomialSampler 

sage: UniformPolynomialSampler(ZZ['x'], 8, -2, 2)() 

-2*x^7 + x^6 - 2*x^5 - x^3 - 2*x^2 - 2 

 

.. automethod:: __init__ 

.. automethod:: __call__ 

""" 

def __init__(self, P, n, lower_bound, upper_bound): 

""" 

Construct a sampler for univariate polynomials of degree ``n-1`` where 

coefficients are drawn uniformly at random between ``lower_bound`` and 

``upper_bound`` (both endpoints inclusive). 

 

INPUT: 

 

- ``P`` - a univariate polynomial ring over the Integers 

- ``n`` - number of coefficients to be sampled 

- ``lower_bound`` - integer 

- ``upper_bound`` - integer 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformPolynomialSampler 

sage: UniformPolynomialSampler(ZZ['x'], 10, -10, 10) 

UniformPolynomialSampler(10, -10, 10) 

""" 

self.n = ZZ(n) 

self.P = P 

if lower_bound > upper_bound: 

raise TypeError("lower bound must be <= upper bound.") 

self.lower_bound = ZZ(lower_bound) 

self.upper_bound = ZZ(upper_bound) 

self.D = UniformSampler(self.lower_bound, self.upper_bound) 

 

def __call__(self): 

""" 

Return a new sample. 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformPolynomialSampler 

sage: sampler = UniformPolynomialSampler(ZZ['x'], 8, -12, 12) 

sage: sampler() 

-10*x^7 + 5*x^6 - 8*x^5 + x^4 - 4*x^3 - 11*x^2 - 10 

""" 

coeff = [self.D() for _ in range(self.n)] 

f = self.P(coeff) 

return f 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformPolynomialSampler 

sage: UniformPolynomialSampler(ZZ['x'], 8, -3, 3) 

UniformPolynomialSampler(8, -3, 3) 

""" 

return "UniformPolynomialSampler(%d, %d, %d)"%(self.n, self.lower_bound, self.upper_bound) 

 

 

class LWE(SageObject): 

""" 

Learning with Errors (LWE) oracle. 

 

.. automethod:: __init__ 

.. automethod:: __call__ 

""" 

def __init__(self, n, q, D, secret_dist='uniform', m=None): 

""" 

Construct an LWE oracle in dimension ``n`` over a ring of order 

``q`` with noise distribution ``D``. 

 

INPUT: 

 

- ``n`` - dimension (integer > 0) 

- ``q`` - modulus typically > n (integer > 0) 

- ``D`` - an error distribution such as an instance of 

:class:`DiscreteGaussianDistributionIntegerSampler` or :class:`UniformSampler` 

- ``secret_dist`` - distribution of the secret (default: 'uniform'); one of 

 

- "uniform" - secret follows the uniform distribution in `\Zmod{q}` 

- "noise" - secret follows the noise distribution 

- ``(lb,ub)`` - the secret is chosen uniformly from ``[lb,...,ub]`` including both endpoints 

 

- ``m`` - number of allowed samples or ``None`` if no such limit exists 

(default: ``None``) 

 

EXAMPLES: 

 

First, we construct a noise distribution with standard deviation 3.0:: 

 

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(3.0) 

 

Next, we construct our oracle:: 

 

sage: from sage.crypto.lwe import LWE 

sage: lwe = LWE(n=20, q=next_prime(400), D=D); lwe 

LWE(20, 401, Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 0, 'uniform', None) 

 

and sample 1000 samples:: 

 

sage: L = [lwe() for _ in range(1000)] 

 

To test the oracle, we use the internal secret to evaluate the samples 

in the secret:: 

 

sage: S = [ZZ(a.dot_product(lwe._LWE__s) - c) for (a,c) in L] 

 

However, while Sage represents finite field elements between 0 and q-1 

we rely on a balanced representation of those elements here. Hence, we 

fix the representation and recover the correct standard deviation of the 

noise:: 

 

sage: sqrt(variance([e if e <= 200 else e-401 for e in S]).n()) 

3.0... 

 

If ``m`` is not ``None`` the number of available samples is restricted:: 

 

sage: from sage.crypto.lwe import LWE 

sage: lwe = LWE(n=20, q=next_prime(400), D=D, m=30) 

sage: _ = [lwe() for _ in range(30)] 

sage: lwe() # 31 

Traceback (most recent call last): 

... 

IndexError: Number of available samples exhausted. 

""" 

self.n = ZZ(n) 

self.m = m 

self.__i = 0 

self.K = IntegerModRing(q) 

self.FM = FreeModule(self.K, n) 

self.D = D 

 

self.secret_dist = secret_dist 

if secret_dist == 'uniform': 

self.__s = random_vector(self.K, self.n) 

elif secret_dist == 'noise': 

self.__s = vector(self.K, self.n, [self.D() for _ in range(n)]) 

else: 

try: 

lb, ub = map(ZZ,secret_dist) 

self.__s = vector(self.K, self.n, [randint(lb,ub) for _ in range(n)]) 

except (IndexError, TypeError): 

raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist)) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: from sage.crypto.lwe import LWE 

sage: D = DiscreteGaussianDistributionIntegerSampler(3.0) 

sage: lwe = LWE(n=20, q=next_prime(400), D=D); lwe 

LWE(20, 401, Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 0, 'uniform', None) 

 

sage: lwe = LWE(n=20, q=next_prime(400), D=D, secret_dist=(-3, 3)); lwe 

LWE(20, 401, Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 0, (-3, 3), None) 

""" 

if isinstance(self.secret_dist, str): 

return "LWE(%d, %d, %s, '%s', %s)"%(self.n,self.K.order(),self.D,self.secret_dist, self.m) 

else: 

return "LWE(%d, %d, %s, %s, %s)"%(self.n,self.K.order(),self.D,self.secret_dist, self.m) 

 

 

def __call__(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import DiscreteGaussianDistributionIntegerSampler, LWE 

sage: LWE(10, 401, DiscreteGaussianDistributionIntegerSampler(3))() 

((309, 347, 198, 194, 336, 360, 264, 123, 368, 398), 198) 

""" 

if self.m is not None: 

if self.__i >= self.m: 

raise IndexError("Number of available samples exhausted.") 

self.__i+=1 

a = self.FM.random_element() 

return a, a.dot_product(self.__s) + self.K(self.D()) 

 

 

class Regev(LWE): 

""" 

LWE oracle with parameters as in [Reg09]_. 

 

.. automethod:: __init__ 

""" 

def __init__(self, n, secret_dist='uniform', m=None): 

""" 

Construct LWE instance parameterised by security parameter ``n`` where 

the modulus ``q`` and the ``stddev`` of the noise are chosen as in 

[Reg09]_. 

 

INPUT: 

 

- ``n`` - security parameter (integer > 0) 

- ``secret_dist`` - distribution of the secret. See documentation of :class:`LWE` 

for details (default='uniform') 

- ``m`` - number of allowed samples or ``None`` if no such limit exists 

(default: ``None``) 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import Regev 

sage: Regev(n=20) 

LWE(20, 401, Discrete Gaussian sampler over the Integers with sigma = 1.915069 and c = 401, 'uniform', None) 

""" 

q = ZZ(next_prime(n**2)) 

s = RR(1/(RR(n).sqrt() * log(n, 2)**2) * q) 

D = DiscreteGaussianDistributionIntegerSampler(s/sqrt(2*pi.n()), q) 

LWE.__init__(self, n=n, q=q, D=D, secret_dist=secret_dist, m=m) 

 

class LindnerPeikert(LWE): 

""" 

LWE oracle with parameters as in [LP2011]_. 

 

.. automethod:: __init__ 

""" 

def __init__(self, n, delta=0.01, m=None): 

""" 

Construct LWE instance parameterised by security parameter ``n`` where 

the modulus ``q`` and the ``stddev`` of the noise is chosen as in 

[LP2011]_. 

 

INPUT: 

 

- ``n`` - security parameter (integer > 0) 

- ``delta`` - error probability per symbol (default: 0.01) 

- ``m`` - number of allowed samples or ``None`` in which case ``m=2*n + 

128`` as in [LP2011]_ (default: ``None``) 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import LindnerPeikert 

sage: LindnerPeikert(n=20) 

LWE(20, 2053, Discrete Gaussian sampler over the Integers with sigma = 3.600954 and c = 0, 'noise', 168) 

""" 

if m is None: 

m = 2*n + 128 

# Find c>=1 such that c*exp((1-c**2)/2))**(2*n) == 2**-40 

# (c*exp((1-c**2)/2))**(2*n) == 2**-40 

# log((c*exp((1-c**2)/2))**(2*n)) == -40*log(2) 

# (2*n)*log(c*exp((1-c**2)/2)) == -40*log(2) 

# 2*n*(log(c)+log(exp((1-c**2)/2))) == -40*log(2) 

# 2*n*(log(c)+(1-c**2)/2) == -40*log(2) 

# 2*n*log(c)+n*(1-c**2) == -40*log(2) 

# 2*n*log(c)+n*(1-c**2) + 40*log(2) == 0 

c = SR.var('c') 

c = find_root(2*n*log(c)+n*(1-c**2) + 40*log(2) == 0, 1, 10) 

# Upper bound on s**2/t 

s_t_bound = (sqrt(2) * pi / c / sqrt(2*n*log(2/delta))).n() 

# Interpretation of "choose q just large enough to allow for a Gaussian parameter s>=8" in [LP2011]_ 

q = next_prime(floor(2**round(log(256 / s_t_bound, 2)))) 

# Gaussian parameter as defined in [LP2011]_ 

s = sqrt(s_t_bound*floor(q/4)) 

# Transform s into stddev 

stddev = s/sqrt(2*pi.n()) 

D = DiscreteGaussianDistributionIntegerSampler(stddev) 

LWE.__init__(self, n=n, q=q, D=D, secret_dist='noise', m=m) 

 

 

class UniformNoiseLWE(LWE): 

""" 

LWE oracle with uniform secret with parameters as in [CGW2013]_. 

 

.. automethod:: __init__ 

""" 

def __init__(self, n, instance='key', m=None): 

""" 

Construct LWE instance parameterised by security parameter ``n`` where 

all other parameters are chosen as in [CGW2013]_. 

 

INPUT: 

 

- ``n`` - security parameter (integer >= 89) 

- ``instance`` - one of 

 

- "key" - the LWE-instance that hides the secret key is generated 

- "encrypt" - the LWE-instance that hides the message is generated 

(default: ``key``) 

 

- ``m`` - number of allowed samples or ``None`` in which case ``m`` is 

chosen as in [CGW2013]_. (default: ``None``) 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import UniformNoiseLWE 

sage: UniformNoiseLWE(89) 

LWE(89, 154262477, UniformSampler(0, 351), 'noise', 131) 

 

sage: UniformNoiseLWE(89, instance='encrypt') 

LWE(131, 154262477, UniformSampler(0, 497), 'noise', 181) 

""" 

 

if n<89: 

raise TypeError("Parameter too small") 

 

n2 = n 

C = 4/sqrt(2*pi) 

kk = floor((n2-2*log(n2, 2)**2)/5) 

n1 = floor((3*n2-5*kk)/2) 

ke = floor((n1-2*log(n1, 2)**2)/5) 

l = floor((3*n1-5*ke)/2)-n2 

sk = ceil((C*(n1+n2))**(3/2)) 

se = ceil((C*(n1+n2+l))**(3/2)) 

q = next_prime(max(ceil((4*sk)**((n1+n2)/n1)), ceil((4*se)**((n1+n2+l)/(n2+l))), ceil(4*(n1+n2)*se*sk+4*se+1))) 

 

if kk<=0: 

raise TypeError("Parameter too small") 

 

if instance == 'key': 

D = UniformSampler(0, sk-1) 

if m is None: 

m = n1 

LWE.__init__(self, n=n2, q=q, D=D, secret_dist='noise', m=m) 

elif instance == 'encrypt': 

D = UniformSampler(0, se-1) 

if m is None: 

m = n2+l 

LWE.__init__(self, n=n1, q=q, D=D, secret_dist='noise', m=m) 

else: 

raise TypeError("Parameter instance=%s not understood."%(instance)) 

 

class RingLWE(SageObject): 

""" 

Ring Learning with Errors oracle. 

 

.. automethod:: __init__ 

.. automethod:: __call__ 

""" 

def __init__(self, N, q, D, poly=None, secret_dist='uniform', m=None): 

""" 

Construct a Ring-LWE oracle in dimension ``n=phi(N)`` over a ring of order 

``q`` with noise distribution ``D``. 

 

INPUT: 

 

- ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2) 

- ``q`` - modulus typically > N (integer > 0) 

- ``D`` - an error distribution such as an instance of 

:class:`DiscreteGaussianDistributionPolynomialSampler` or :class:`UniformSampler` 

- ``poly`` - a polynomial of degree ``phi(N)``. If ``None`` the 

cyclotomic polynomial used (default: ``None``). 

- ``secret_dist`` - distribution of the secret. See documentation of 

:class:`LWE` for details (default='uniform') 

- ``m`` - number of allowed samples or ``None`` if no such limit exists 

(default: ``None``) 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import RingLWE 

sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0) 

sage: RingLWE(N=20, q=next_prime(800), D=D); 

RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None) 

""" 

self.N = ZZ(N) 

self.n = euler_phi(N) 

self.m = m 

self.__i = 0 

self.K = IntegerModRing(q) 

 

if self.n != D.n: 

raise ValueError("Noise distribution has dimensions %d != %d"%(D.n, self.n)) 

 

self.D = D 

self.q = q 

if poly is not None: 

self.poly = poly 

else: 

self.poly = cyclotomic_polynomial(self.N, 'x') 

 

self.R_q = self.K['x'].quotient(self.poly, 'x') 

 

self.secret_dist = secret_dist 

if secret_dist == 'uniform': 

self.__s = self.R_q.random_element() # uniform sampling of secret 

elif secret_dist == 'noise': 

self.__s = self.D() 

else: 

raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist)) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=8, sigma=3.0) 

sage: RingLWE(N=16, q=next_prime(400), D=D); 

RingLWE(16, 401, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 + 1, 'uniform', None) 

""" 

if isinstance(self.secret_dist, str): 

return "RingLWE(%d, %d, %s, %s, '%s', %s)"%(self.N, self.K.order(), self.D, self.poly, self.secret_dist, self.m) 

else: 

return "RingLWE(%d, %d, %s, %s, %s, %s)"%(self.N, self.K.order(), self.D, self.poly, self.secret_dist, self.m) 

 

 

def __call__(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE 

sage: N = 16 

sage: n = euler_phi(N) 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n, 5) 

sage: ringlwe = RingLWE(N, 257, D, secret_dist='uniform') 

sage: ringlwe() 

((228, 149, 226, 198, 38, 222, 222, 127), (178, 132, 72, 147, 77, 159, 187, 250)) 

""" 

if self.m is not None: 

if self.__i >= self.m: 

raise IndexError("Number of available samples exhausted.") 

self.__i+=1 

a = self.R_q.random_element() 

return vector(a), vector(a * (self.__s) + self.D()) 

 

class RingLindnerPeikert(RingLWE): 

""" 

Ring-LWE oracle with parameters as in [LP2011]_. 

 

.. automethod:: __init__ 

""" 

def __init__(self, N, delta=0.01, m=None): 

""" 

Construct a Ring-LWE oracle in dimension ``n=phi(N)`` where 

the modulus ``q`` and the ``stddev`` of the noise is chosen as in 

[LP2011]_. 

 

INPUT: 

 

- ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2) 

- ``delta`` - error probability per symbol (default: 0.01) 

- ``m`` - number of allowed samples or ``None`` in which case ``3*n`` is 

used (default: ``None``) 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import RingLindnerPeikert 

sage: RingLindnerPeikert(N=16) 

RingLWE(16, 1031, Discrete Gaussian sampler for polynomials of degree < 8 with σ=2.803372 in each component, x^8 + 1, 'noise', 24) 

""" 

n = euler_phi(N) 

if m is None: 

m = 3*n 

# Find c>=1 such that c*exp((1-c**2)/2))**(2*n) == 2**-40 

# i.e c>=1 such that 2*n*log(c)+n*(1-c**2) + 40*log(2) == 0 

c = SR.var('c') 

c = find_root(2*n*log(c)+n*(1-c**2) + 40*log(2) == 0, 1, 10) 

# Upper bound on s**2/t 

s_t_bound = (sqrt(2) * pi / c / sqrt(2*n*log(2/delta))).n() 

# Interpretation of "choose q just large enough to allow for a Gaussian parameter s>=8" in [LP2011]_ 

q = next_prime(floor(2**round(log(256 / s_t_bound, 2)))) 

# Gaussian parameter as defined in [LP2011]_ 

s = sqrt(s_t_bound*floor(q/4)) 

# Transform s into stddev 

stddev = s/sqrt(2*pi.n()) 

D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n, stddev) 

RingLWE.__init__(self, N=N, q=q, D=D, poly=None, secret_dist='noise', m=m) 

 

class RingLWEConverter(SageObject): 

""" 

Wrapper callable to convert Ring-LWE oracles into LWE oracles by 

disregarding the additional structure. 

 

.. automethod:: __init__ 

.. automethod:: __call__ 

""" 

def __init__(self, ringlwe): 

""" 

INPUT: 

 

- ``ringlwe`` - an instance of a :class:`RingLWE` 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE, RingLWEConverter 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler_phi(16), 5) 

sage: lwe = RingLWEConverter(RingLWE(16, 257, D, secret_dist='uniform')) 

sage: set_random_seed(1337) 

sage: lwe() 

((130, 32, 216, 3, 125, 58, 197, 171), 189) 

""" 

self.ringlwe = ringlwe 

self._i = 0 

self._ac = None 

self.n = self.ringlwe.n 

 

def __call__(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE, RingLWEConverter 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler_phi(16), 5) 

sage: lwe = RingLWEConverter(RingLWE(16, 257, D, secret_dist='uniform')) 

sage: set_random_seed(1337) 

sage: lwe() 

((130, 32, 216, 3, 125, 58, 197, 171), 189) 

""" 

R_q = self.ringlwe.R_q 

 

if (self._i % self.n) == 0: 

self._ac = self.ringlwe() 

a, c = self._ac 

x = R_q.gen() 

r = vector((x**(self._i % self.n) * R_q(a.list())).list()), c[self._i % self.n] 

self._i += 1 

return r 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE, RingLWEConverter 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler_phi(20), 5) 

sage: rlwe = RingLWE(20, 257, D) 

sage: lwe = RingLWEConverter(rlwe) 

sage: lwe 

RingLWEConverter(RingLWE(20, 257, Discrete Gaussian sampler for polynomials of degree < 8 with σ=5.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None)) 

 

""" 

return "RingLWEConverter(%s)"%str(self.ringlwe) 

 

def samples(m, n, lwe, seed=None, balanced=False, **kwds): 

""" 

Return ``m`` LWE samples. 

 

INPUT: 

 

- ``m`` - the number of samples (integer > 0) 

- ``n`` - the security parameter (integer > 0) 

- ``lwe`` - either 

 

- a subclass of :class:`LWE` such as :class:`Regev` or :class:`LindnerPeikert` 

- an instance of :class:`LWE` or any subclass 

- the name of any such class (e.g., "Regev", "LindnerPeikert") 

 

- ``seed`` - seed to be used for generation or ``None`` if no specific seed 

shall be set (default: ``None``) 

- ``balanced`` - use function :func:`balance_sample` to return balanced 

representations of finite field elements (default: ``False``) 

- ``**kwds`` - passed through to LWE constructor 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import samples, Regev 

sage: samples(2, 20, Regev, seed=1337) 

[((199, 388, 337, 53, 200, 284, 336, 215, 75, 14, 274, 234, 97, 255, 246, 153, 268, 218, 396, 351), 15), 

((365, 227, 333, 165, 76, 328, 288, 206, 286, 42, 175, 155, 190, 275, 114, 280, 45, 218, 304, 386), 143)] 

 

sage: from sage.crypto.lwe import samples, Regev 

sage: samples(2, 20, Regev, balanced=True, seed=1337) 

[((199, -13, -64, 53, 200, -117, -65, -186, 75, 14, -127, -167, 97, -146, -155, 153, -133, -183, -5, -50), 15), 

((-36, -174, -68, 165, 76, -73, -113, -195, -115, 42, 175, 155, 190, -126, 114, -121, 45, -183, -97, -15), 143)] 

 

sage: from sage.crypto.lwe import samples 

sage: samples(2, 20, 'LindnerPeikert') 

[((506, 1205, 398, 0, 337, 106, 836, 75, 1242, 642, 840, 262, 1823, 1798, 1831, 1658, 1084, 915, 1994, 163), 1447), 

((463, 250, 1226, 1906, 330, 933, 1014, 1061, 1322, 2035, 1849, 285, 1993, 1975, 864, 1341, 41, 1955, 1818, 1357), 312)] 

 

""" 

if seed is not None: 

set_random_seed(seed) 

 

if isinstance(lwe, str): 

lwe = eval(lwe) 

 

if isinstance(lwe, type): 

lwe = lwe(n, m=m, **kwds) 

else: 

lwe = lwe 

if lwe.n != n: 

raise ValueError("Passed LWE instance has n=%d, but n=%d was passed to this function."%(lwe.n, n)) 

 

if balanced is False: 

f = lambda a_c: a_c 

else: 

f = balance_sample 

return [f(lwe()) for _ in range(m)] 

 

def balance_sample(s, q=None): 

r""" 

Given ``(a,c) = s`` return a tuple ``(a',c')`` where ``a'`` is an integer 

vector with entries between -q//2 and q//2 and ``c`` is also within these 

bounds. 

 

If ``q`` is given ``(a,c) = s`` may live in the integers. If ``q`` is not 

given, then ``(a,c)`` are assumed to live in `\Zmod{q}`. 

 

INPUT: 

 

- ``s`` - sample of the form (a,c) where a is a vector and c is a scalar 

- ``q`` - modulus (default: ``None``) 

 

EXAMPLES:: 

 

sage: from sage.crypto.lwe import balance_sample, samples, Regev 

sage: list(map(balance_sample, samples(10, 5, Regev))) 

[((-9, -4, -4, 4, -4), 4), ((-8, 11, 12, -11, -11), -7), 

... 

((-11, 12, 0, -6, -3), 7), ((-7, 14, 8, 11, -8), -12)] 

 

 

sage: from sage.crypto.lwe import balance_sample, DiscreteGaussianDistributionPolynomialSampler, RingLWE, samples 

sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], 8, 5) 

sage: rlwe = RingLWE(20, 257, D) 

sage: list(map(balance_sample, samples(10, 8, rlwe))) 

[((-7, -37, -64, 107, -91, -24, 120, 54), (74, 83, 18, 55, -53, 43, 4, 10)), 

... 

((-63, 34, 82, -112, 49, 89, -72, -41), (117, 43, 13, -37, 102, 55, -97, 56))] 

 

.. note:: 

 

This function is useful to convert between Sage's standard 

representation of elements in `\Zmod{q}` as integers between 0 and q-1 

and the usual representation of such elements in lattice cryptography as 

integers between -q//2 and q//2. 

""" 

a, c = s 

 

try: 

c[0] 

scalar = False 

except TypeError: 

c = vector(c.parent(),[c]) 

scalar = True 

 

if q is None: 

q = parent(c[0]).order() 

a = a.change_ring(ZZ) 

c = c.change_ring(ZZ) 

else: 

K = IntegerModRing(q) 

a = a.change_ring(K).change_ring(ZZ) 

c = c.change_ring(K).change_ring(ZZ) 

 

q2 = q//2 

 

if scalar: 

return vector(ZZ, len(a), [e if e <= q2 else e-q for e in a]), c[0] if c[0] <= q2 else c[0]-q 

else: 

return vector(ZZ, len(a), [e if e <= q2 else e-q for e in a]), vector(ZZ, len(c), [e if e <= q2 else e-q for e in c])