Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

r""" 

Sequences of bounded integers 

  

This module provides :class:`BoundedIntegerSequence`, which implements 

sequences of bounded integers and is for many (but not all) operations faster 

than representing the same sequence as a Python :class:`tuple`. 

  

The underlying data structure is similar to :class:`~sage.misc.bitset.Bitset`, 

which means that certain operations are implemented by using fast shift 

operations from MPIR. The following boilerplate functions can be 

cimported in Cython modules: 

  

- ``cdef bint biseq_init(biseq_t R, mp_size_t l, mp_size_t itemsize) except -1`` 

  

Allocate memory for a bounded integer sequence of length ``l`` with 

items fitting in ``itemsize`` bits. 

  

- ``cdef inline void biseq_dealloc(biseq_t S)`` 

  

Deallocate the memory used by ``S``. 

  

- ``cdef bint biseq_init_copy(biseq_t R, biseq_t S)`` 

  

Initialize ``R`` as a copy of ``S``. 

  

- ``cdef tuple biseq_pickle(biseq_t S)`` 

  

Return a triple ``(bitset_data, itembitsize, length)`` defining ``S``. 

  

- ``cdef bint biseq_unpickle(biseq_t R, tuple bitset_data, mp_bitcnt_t itembitsize, mp_size_t length) except -1`` 

  

Initialise ``R`` from data returned by ``biseq_pickle``. 

  

- ``cdef bint biseq_init_list(biseq_t R, list data, size_t bound) except -1`` 

  

Convert a list to a bounded integer sequence, which must not be allocated. 

  

- ``cdef inline Py_hash_t biseq_hash(biseq_t S)`` 

  

Hash value for ``S``. 

  

- ``cdef inline bint biseq_richcmp(biseq_t S1, biseq_t S2, int op)`` 

  

Comparison of ``S1`` and ``S2``. This takes into account the bound, the 

length, and the list of items of the two sequences. 

  

- ``cdef bint biseq_init_concat(biseq_t R, biseq_t S1, biseq_t S2) except -1`` 

  

Concatenate ``S1`` and ``S2`` and write the result to ``R``. Does not test 

whether the sequences have the same bound! 

  

- ``cdef inline bint biseq_startswith(biseq_t S1, biseq_t S2)`` 

  

Is ``S1=S2+something``? Does not check whether the sequences have the same 

bound! 

  

- ``cdef mp_size_t biseq_contains(biseq_t S1, biseq_t S2, mp_size_t start) except -2`` 

  

Return the position in ``S1`` of ``S2`` as a subsequence of 

``S1[start:]``, or ``-1`` if ``S2`` is not a subsequence. Does not check 

whether the sequences have the same bound! 

  

- ``cdef mp_size_t biseq_starswith_tail(biseq_t S1, biseq_t S2, mp_size_t start) except -2:`` 

  

Return the smallest number ``i`` such that the bounded integer sequence 

``S1`` starts with the sequence ``S2[i:]``, where ``start <= i < 

S1.length``, or return ``-1`` if no such ``i`` exists. 

  

- ``cdef mp_size_t biseq_index(biseq_t S, size_t item, mp_size_t start) except -2`` 

  

Return the position in ``S`` of the item in ``S[start:]``, or ``-1`` if 

``S[start:]`` does not contain the item. 

  

- ``cdef size_t biseq_getitem(biseq_t S, mp_size_t index)`` 

  

Return ``S[index]``, without checking margins. 

  

- ``cdef size_t biseq_getitem_py(biseq_t S, mp_size_t index)`` 

  

Return ``S[index]`` as Python ``int`` or ``long``, without checking margins. 

  

- ``cdef biseq_inititem(biseq_t S, mp_size_t index, size_t item)`` 

  

Set ``S[index] = item``, without checking margins and assuming that ``S[index]`` 

has previously been zero. 

  

- ``cdef inline void biseq_clearitem(biseq_t S, mp_size_t index)`` 

  

Set ``S[index] = 0``, without checking margins. 

  

- ``cdef bint biseq_init_slice(biseq_t R, biseq_t S, mp_size_t start, mp_size_t stop, mp_size_t step) except -1`` 

  

Initialise ``R`` with ``S[start:stop:step]``. 

  

AUTHORS: 

  

- Simon King, Jeroen Demeyer (2014-10): initial version (:trac:`15820`) 

  

""" 

#***************************************************************************** 

# Copyright (C) 2014 Simon King <simon.king@uni-jena.de> 

# Copyright (C) 2014 Jeroen Demeyer <jdemeyer@cage.ugennt.be> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function, absolute_import 

  

from cysignals.signals cimport sig_check, sig_on, sig_off 

include 'sage/data_structures/bitset.pxi' 

  

from cpython.int cimport PyInt_FromSize_t 

from cpython.slice cimport PySlice_GetIndicesEx 

from sage.libs.gmp.mpn cimport mpn_rshift, mpn_lshift, mpn_copyi, mpn_ior_n, mpn_zero, mpn_copyd, mpn_cmp 

from sage.libs.flint.flint cimport FLINT_BIT_COUNT as BIT_COUNT 

from sage.structure.richcmp cimport richcmp_not_equal, rich_to_bool 

  

cimport cython 

  

################### 

# Boilerplate 

# cdef functions 

################### 

  

# 

# (De)allocation, copying 

# 

  

@cython.overflowcheck 

cdef bint biseq_init(biseq_t R, mp_size_t l, mp_bitcnt_t itemsize) except -1: 

""" 

Allocate memory for a bounded integer sequence of length ``l`` with 

items fitting in ``itemsize`` bits. 

""" 

cdef mp_bitcnt_t totalbitsize 

if l: 

totalbitsize = l * itemsize 

else: 

totalbitsize = 1 

bitset_init(R.data, totalbitsize) 

R.length = l 

R.itembitsize = itemsize 

R.mask_item = limb_lower_bits_up(itemsize) 

  

cdef inline void biseq_dealloc(biseq_t S): 

""" 

Deallocate the memory used by ``S``. 

""" 

bitset_free(S.data) 

  

cdef bint biseq_init_copy(biseq_t R, biseq_t S) except -1: 

""" 

Initialize ``R`` as a copy of ``S``. 

""" 

biseq_init(R, S.length, S.itembitsize) 

sig_on() 

bitset_copy(R.data, S.data) 

sig_off() 

  

# 

# Pickling 

# 

  

cdef tuple biseq_pickle(biseq_t S): 

return (bitset_pickle(S.data), S.itembitsize, S.length) 

  

cdef bint biseq_unpickle(biseq_t R, tuple bitset_data, mp_bitcnt_t itembitsize, mp_size_t length) except -1: 

biseq_init(R, length, itembitsize) 

sig_on() 

bitset_unpickle(R.data, bitset_data) 

sig_off() 

return 1 

  

# 

# Conversion 

# 

  

cdef bint biseq_init_list(biseq_t R, list data, size_t bound) except -1: 

""" 

Convert a list into a bounded integer sequence and write the result 

into ``R``, which must not be initialised. 

  

INPUT: 

  

- ``data`` -- a list of integers 

  

- ``bound`` -- a number which is the maximal value of an item 

""" 

cdef mp_size_t index = 0 

cdef size_t item_c 

  

biseq_init(R, len(data), BIT_COUNT(bound|<size_t>1)) 

  

for item in data: 

sig_check() 

item_c = item 

if item_c > bound: 

raise OverflowError("list item {!r} larger than {}".format(item, bound) ) 

biseq_inititem(R, index, item_c) 

index += 1 

  

cdef inline Py_hash_t biseq_hash(biseq_t S): 

return S.itembitsize*(<Py_hash_t>1073807360)+bitset_hash(S.data) 

  

cdef inline bint biseq_richcmp(biseq_t S1, biseq_t S2, int op): 

if S1.itembitsize != S2.itembitsize: 

return richcmp_not_equal(S1.itembitsize, S2.itembitsize, op) 

if S1.length != S2.length: 

return richcmp_not_equal(S1.length, S2.length, op) 

return rich_to_bool(op, bitset_cmp(S1.data, S2.data)) 

  

# 

# Arithmetics 

# 

  

cdef bint biseq_init_concat(biseq_t R, biseq_t S1, biseq_t S2) except -1: 

""" 

Concatenate two bounded integer sequences ``S1`` and ``S2``. 

  

ASSUMPTION: 

  

- The two sequences must have equivalent bounds, i.e., the items on the 

sequences must fit into the same number of bits. 

  

OUTPUT: 

  

The result is written into ``R``, which must not be initialised 

""" 

biseq_init(R, S1.length + S2.length, S1.itembitsize) 

sig_on() 

bitset_lshift(R.data, S2.data, S1.length * S1.itembitsize) 

bitset_or(R.data, R.data, S1.data) 

sig_off() 

  

  

cdef inline bint biseq_startswith(biseq_t S1, biseq_t S2) except -1: 

""" 

Tests if bounded integer sequence ``S1`` starts with bounded integer 

sequence ``S2``. 

  

ASSUMPTION: 

  

- The two sequences must have equivalent bounds, i.e., the items on the 

sequences must fit into the same number of bits. This condition is not 

tested. 

  

""" 

if S2.length > S1.length: 

return False 

if S2.length == 0: 

return True 

sig_on() 

ret = mpn_equal_bits(S1.data.bits, S2.data.bits, S2.data.size) 

sig_off() 

return ret 

  

  

cdef mp_size_t biseq_index(biseq_t S, size_t item, mp_size_t start) except -2: 

""" 

Returns the position in ``S`` of an item in ``S[start:]``, or -1 if 

``S[start:]`` does not contain the item. 

  

""" 

cdef mp_size_t index 

sig_on() 

for index from start <= index < S.length: 

if biseq_getitem(S, index) == item: 

sig_off() 

return index 

sig_off() 

return -1 

  

  

cdef inline size_t biseq_getitem(biseq_t S, mp_size_t index): 

""" 

Get item ``S[index]``, without checking margins. 

  

""" 

cdef mp_bitcnt_t limb_index, bit_index 

bit_index = (<mp_bitcnt_t>index) * S.itembitsize 

limb_index = bit_index // GMP_LIMB_BITS 

bit_index %= GMP_LIMB_BITS 

  

cdef mp_limb_t out 

out = (S.data.bits[limb_index]) >> bit_index 

if bit_index + S.itembitsize > GMP_LIMB_BITS: 

# Our item is stored using 2 limbs, add the part from the upper limb 

out |= (S.data.bits[limb_index+1]) << (GMP_LIMB_BITS - bit_index) 

return out & S.mask_item 

  

cdef biseq_getitem_py(biseq_t S, mp_size_t index): 

""" 

Get item ``S[index]`` as a Python ``int`` or ``long``, without 

checking margins. 

  

""" 

cdef size_t out = biseq_getitem(S, index) 

return PyInt_FromSize_t(out) 

  

cdef inline void biseq_inititem(biseq_t S, mp_size_t index, size_t item): 

""" 

Set ``S[index] = item``, without checking margins. 

  

Note that it is assumed that ``S[index] == 0`` before the assignment. 

""" 

cdef mp_bitcnt_t limb_index, bit_index 

bit_index = (<mp_bitcnt_t>index) * S.itembitsize 

limb_index = bit_index // GMP_LIMB_BITS 

bit_index %= GMP_LIMB_BITS 

  

S.data.bits[limb_index] |= (item << bit_index) 

# Have some bits been shifted out of bound? 

if bit_index + S.itembitsize > GMP_LIMB_BITS: 

# Our item is stored using 2 limbs, add the part from the upper limb 

S.data.bits[limb_index+1] |= (item >> (GMP_LIMB_BITS - bit_index)) 

  

cdef inline void biseq_clearitem(biseq_t S, mp_size_t index): 

""" 

Set ``S[index] = 0``, without checking margins. 

  

In contrast to ``biseq_inititem``, the previous content of ``S[index]`` 

will be erased. 

""" 

cdef mp_bitcnt_t limb_index, bit_index 

bit_index = (<mp_bitcnt_t>index) * S.itembitsize 

limb_index = bit_index // GMP_LIMB_BITS 

bit_index %= GMP_LIMB_BITS 

  

S.data.bits[limb_index] &= ~(S.mask_item << bit_index) 

# Have some bits been shifted out of bound? 

if bit_index + S.itembitsize > GMP_LIMB_BITS: 

# Our item is stored using 2 limbs, add the part from the upper limb 

S.data.bits[limb_index+1] &= ~(S.mask_item >> (GMP_LIMB_BITS - bit_index)) 

  

cdef bint biseq_init_slice(biseq_t R, biseq_t S, mp_size_t start, mp_size_t stop, mp_size_t step) except -1: 

""" 

Create the slice ``S[start:stop:step]`` as bounded integer sequence 

and write the result to ``R``, which must not be initialised. 

  

""" 

cdef mp_size_t length = 0 

if step > 0: 

if stop > start: 

length = ((stop-start-1)//step)+1 

else: 

if stop < start: 

length = ((stop-start+1)//step)+1 

biseq_init(R, length, S.itembitsize) 

  

if not length: 

return 0 

  

if step == 1: 

# Slicing essentially boils down to a shift operation. 

sig_on() 

bitset_rshift(R.data, S.data, start*S.itembitsize) 

sig_off() 

return 0 

  

# In the general case, we move item by item. 

cdef mp_size_t src_index = start 

cdef mp_size_t tgt_index 

sig_on() 

for tgt_index in range(length): 

biseq_inititem(R, tgt_index, biseq_getitem(S, src_index)) 

src_index += step 

sig_off() 

  

  

cdef mp_size_t biseq_contains(biseq_t S1, biseq_t S2, mp_size_t start) except -2: 

""" 

Tests if the bounded integer sequence ``S1[start:]`` contains a 

sub-sequence ``S2``. 

  

INPUT: 

  

- ``S1``, ``S2`` -- two bounded integer sequences 

- ``start`` -- integer, start index 

  

OUTPUT: 

  

The smallest index ``i >= start`` such that ``S1[i:]`` starts with 

``S2``, or ``-1`` if ``S1[start:]`` does not contain ``S2``. 

  

ASSUMPTION: 

  

- The two sequences must have equivalent bounds, i.e., the items on the 

sequences must fit into the same number of bits. This condition is not 

tested. 

  

""" 

if S2.length == 0: 

return start 

cdef mp_size_t index 

sig_on() 

for index from start <= index <= S1.length-S2.length: 

if mpn_equal_bits_shifted(S2.data.bits, S1.data.bits, 

S2.length*S2.itembitsize, index*S2.itembitsize): 

sig_off() 

return index 

sig_off() 

return -1 

  

cdef mp_size_t biseq_startswith_tail(biseq_t S1, biseq_t S2, mp_size_t start) except -2: 

""" 

Return the smallest index ``i`` such that the bounded integer sequence 

``S1`` starts with the sequence ``S2[i:]``, where ``start <= i < 

S2.length``. 

  

INPUT: 

  

- ``S1``, ``S2`` -- two bounded integer sequences 

- ``start`` -- integer, start index 

  

OUTPUT: 

  

The smallest index ``i >= start`` such that ``S1`` starts with ``S2[i:], 

or ``-1`` if no such ``i < S2.length`` exists. 

  

ASSUMPTION: 

  

- The two sequences must have equivalent bounds, i.e., the items on the 

sequences must fit into the same number of bits. This condition is not 

tested. 

  

""" 

# Increase start if S1 is too short to contain S2[start:] 

if S1.length < S2.length - start: 

start = S2.length - S1.length 

cdef mp_size_t index 

sig_on() 

for index from start <= index < S2.length: 

if mpn_equal_bits_shifted(S1.data.bits, S2.data.bits, 

(S2.length - index)*S2.itembitsize, index*S2.itembitsize): 

sig_off() 

return index 

sig_off() 

return -1 

  

  

########################################### 

# A cdef class that wraps the above, and 

# behaves like a tuple 

  

from sage.rings.integer cimport smallInteger 

cdef class BoundedIntegerSequence: 

""" 

A sequence of non-negative uniformely bounded integers. 

  

INPUT: 

  

- ``bound`` -- non-negative integer. When zero, a :class:`ValueError` 

will be raised. Otherwise, the given bound is replaced by the 

power of two that is at least the given bound. 

- ``data`` -- a list of integers. 

  

EXAMPLES: 

  

We showcase the similarities and differences between bounded integer 

sequences and lists respectively tuples. 

  

To distinguish from tuples or lists, we use pointed brackets for the 

string representation of bounded integer sequences:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [2, 7, 20]); S 

<2, 7, 20> 

  

Each bounded integer sequence has a bound that is a power of two, such 

that all its item are less than this bound:: 

  

sage: S.bound() 

32 

sage: BoundedIntegerSequence(16, [2, 7, 20]) 

Traceback (most recent call last): 

... 

OverflowError: list item 20 larger than 15 

  

Bounded integer sequences are iterable, and we see that we can recover the 

originally given list:: 

  

sage: L = [randint(0,31) for i in range(5000)] 

sage: S = BoundedIntegerSequence(32, L) 

sage: list(L) == L 

True 

  

Getting items and slicing works in the same way as for lists:: 

  

sage: n = randint(0,4999) 

sage: S[n] == L[n] 

True 

sage: m = randint(0,1000) 

sage: n = randint(3000,4500) 

sage: s = randint(1, 7) 

sage: list(S[m:n:s]) == L[m:n:s] 

True 

sage: list(S[n:m:-s]) == L[n:m:-s] 

True 

  

The :meth:`index` method works different for bounded integer sequences and 

tuples or lists. If one asks for the index of an item, the behaviour is 

the same. But we can also ask for the index of a sub-sequence:: 

  

sage: L.index(L[200]) == S.index(L[200]) 

True 

sage: S.index(S[100:2000]) # random 

100 

  

Similarly, containment tests work for both items and sub-sequences:: 

  

sage: S[200] in S 

True 

sage: S[200:400] in S 

True 

sage: S[200]+S.bound() in S 

False 

  

Bounded integer sequences are immutable, and thus copies are 

identical. This is the same for tuples, but of course not for lists:: 

  

sage: T = tuple(S) 

sage: copy(T) is T 

True 

sage: copy(S) is S 

True 

sage: copy(L) is L 

False 

  

Concatenation works in the same way for lists, tuples and bounded 

integer sequences:: 

  

sage: M = [randint(0,31) for i in range(5000)] 

sage: T = BoundedIntegerSequence(32, M) 

sage: list(S+T)==L+M 

True 

sage: list(T+S)==M+L 

True 

sage: (T+S == S+T) == (M+L == L+M) 

True 

  

However, comparison works different for lists and bounded integer 

sequences. Bounded integer sequences are first compared by bound, then by 

length, and eventually by *reverse* lexicographical ordering:: 

  

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: T = BoundedIntegerSequence(51, [4,1,6,2,7,20]) 

sage: S < T # compare by bound, not length 

True 

sage: T < S 

False 

sage: S.bound() < T.bound() 

True 

sage: len(S) > len(T) 

True 

  

:: 

  

sage: T = BoundedIntegerSequence(21, [0,0,0,0,0,0,0,0]) 

sage: S < T # compare by length, not lexicographically 

True 

sage: T < S 

False 

sage: list(T) < list(S) 

True 

sage: len(T) > len(S) 

True 

  

:: 

  

sage: T = BoundedIntegerSequence(21, [4,1,5,2,8,20,9]) 

sage: T > S # compare by reverse lexicographic ordering... 

True 

sage: S > T 

False 

sage: len(S) == len(T) 

True 

sage: list(S) > list(T) # direct lexicographic ordering is different 

True 

  

TESTS: 

  

We test against various corner cases:: 

  

sage: BoundedIntegerSequence(16, [2, 7, -20]) 

Traceback (most recent call last): 

... 

OverflowError: can't convert negative value to size_t 

sage: BoundedIntegerSequence(1, [0, 0, 0]) 

<0, 0, 0> 

sage: BoundedIntegerSequence(1, [0, 1, 0]) 

Traceback (most recent call last): 

... 

OverflowError: list item 1 larger than 0 

sage: BoundedIntegerSequence(0, [0, 1, 0]) 

Traceback (most recent call last): 

... 

ValueError: positive bound expected 

sage: BoundedIntegerSequence(2, []) 

<> 

sage: BoundedIntegerSequence(2, []) == BoundedIntegerSequence(4, []) # The bounds differ 

False 

sage: BoundedIntegerSequence(16, [2, 7, 4])[1:1] 

<> 

  

""" 

def __cinit__(self, *args, **kwds): 

""" 

Allocate memory for underlying data 

  

INPUT: 

  

- ``bound``, non-negative integer 

- ``data``, ignored 

  

.. WARNING:: 

  

If ``bound=0`` then no allocation is done. Hence, this should 

only be done internally, when calling :meth:`__new__` without :meth:`__init__`. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) # indirect doctest 

<4, 1, 6, 2, 7, 20, 9> 

  

""" 

# In __init__, we'll raise an error if the bound is 0. 

self.data.data.bits = NULL 

  

def __dealloc__(self): 

""" 

Free the memory from underlying data 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: del S # indirect doctest 

  

""" 

biseq_dealloc(self.data) 

  

def __init__(self, bound, data): 

""" 

INPUT: 

  

- ``bound`` -- positive integer. The given bound is replaced by 

the next power of two that is greater than the given bound. 

  

- ``data`` -- a list of non-negative integers, all less than 

``bound``. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(57, L) # indirect doctest 

sage: list(S) == L 

True 

sage: S = BoundedIntegerSequence(11, [4,1,6,2,7,4,9]); S 

<4, 1, 6, 2, 7, 4, 9> 

sage: S.bound() 

16 

  

Non-positive bounds or bounds which are too large result in errors:: 

  

sage: BoundedIntegerSequence(-1, L) 

Traceback (most recent call last): 

... 

ValueError: positive bound expected 

sage: BoundedIntegerSequence(0, L) 

Traceback (most recent call last): 

... 

ValueError: positive bound expected 

sage: BoundedIntegerSequence(2^64+1, L) 

Traceback (most recent call last): 

... 

OverflowError: long int too large to convert 

  

We are testing the corner case of the maximal possible bound:: 

  

sage: S = BoundedIntegerSequence(2*(sys.maxsize+1), [8, 8, 26, 18, 18, 8, 22, 4, 17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10]) 

sage: S 

<8, 8, 26, 18, 18, 8, 22, 4, 17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10> 

  

Items that are too large:: 

  

sage: BoundedIntegerSequence(100, [2^256]) 

Traceback (most recent call last): 

... 

OverflowError: long int too large to convert 

sage: BoundedIntegerSequence(100, [100]) 

Traceback (most recent call last): 

... 

OverflowError: list item 100 larger than 99 

  

Bounds that are too large:: 

  

sage: BoundedIntegerSequence(2^256, [200]) 

Traceback (most recent call last): 

... 

OverflowError: long int too large to convert 

  

""" 

if bound <= 0: 

raise ValueError("positive bound expected") 

biseq_init_list(self.data, data, bound-1) 

  

def __copy__(self): 

""" 

:class:`BoundedIntegerSequence` is immutable, copying returns ``self``. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: copy(S) is S 

True 

  

""" 

return self 

  

def __reduce__(self): 

""" 

Pickling of :class:`BoundedIntegerSequence` 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(32, L) 

sage: loads(dumps(S)) == S # indirect doctest 

True 

  

TESTS: 

  

The discussion at :trac:`15820` explains why the following is a good test:: 

  

sage: X = BoundedIntegerSequence(21, [4,1,6,2,7,2,3]) 

sage: S = BoundedIntegerSequence(21, [0,0,0,0,0,0,0]) 

sage: loads(dumps(X+S)) 

<4, 1, 6, 2, 7, 2, 3, 0, 0, 0, 0, 0, 0, 0> 

sage: loads(dumps(X+S)) == X+S 

True 

sage: T = BoundedIntegerSequence(21, [0,4,0,1,0,6,0,2,0,7,0,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) 

sage: T[1::2] 

<4, 1, 6, 2, 7, 2, 3, 0, 0, 0, 0, 0, 0, 0> 

sage: T[1::2] == X+S 

True 

sage: loads(dumps(X[1::2])) == X[1::2] 

True 

  

""" 

return NewBISEQ, biseq_pickle(self.data) 

  

def __len__(self): 

""" 

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(57, L) # indirect doctest 

sage: len(S) == len(L) 

True 

  

""" 

return self.data.length 

  

def __nonzero__(self): 

""" 

A bounded integer sequence is nonzero if and only if its length is nonzero. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(13, [0,0,0]) 

sage: bool(S) 

True 

sage: bool(S[1:1]) 

False 

  

""" 

return self.data.length!=0 

  

def __repr__(self): 

""" 

String representation. 

  

To distinguish it from Python tuples or lists, we use pointed brackets 

as delimiters. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) # indirect doctest 

<4, 1, 6, 2, 7, 20, 9> 

sage: BoundedIntegerSequence(21, [0,0]) + BoundedIntegerSequence(21, [0,0]) 

<0, 0, 0, 0> 

  

""" 

return "<" + ", ".join(str(x) for x in self) + ">" 

  

def bound(self): 

""" 

Return the bound of this bounded integer sequence. 

  

All items of this sequence are non-negative integers less than the 

returned bound. The bound is a power of two. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: T = BoundedIntegerSequence(51, [4,1,6,2,7,20,9]) 

sage: S.bound() 

32 

sage: T.bound() 

64 

  

""" 

return smallInteger(1) << self.data.itembitsize 

  

def __iter__(self): 

""" 

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(27, L) 

sage: list(S) == L # indirect doctest 

True 

  

TESTS:: 

  

sage: list(BoundedIntegerSequence(1, [])) 

[] 

  

The discussion at :trac:`15820` explains why this is a good test:: 

  

sage: S = BoundedIntegerSequence(21, [0,0,0,0,0,0,0]) 

sage: X = BoundedIntegerSequence(21, [4,1,6,2,7,2,3]) 

sage: list(X) 

[4, 1, 6, 2, 7, 2, 3] 

sage: list(X+S) 

[4, 1, 6, 2, 7, 2, 3, 0, 0, 0, 0, 0, 0, 0] 

sage: list(BoundedIntegerSequence(21, [0,0]) + BoundedIntegerSequence(21, [0,0])) 

[0, 0, 0, 0] 

  

""" 

cdef mp_size_t index 

for index in range(self.data.length): 

yield biseq_getitem_py(self.data, index) 

  

def __getitem__(self, index): 

""" 

Get single items or slices. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: S[2] 

6 

sage: S[1::2] 

<1, 2, 20> 

sage: S[-1::-2] 

<9, 7, 6, 4> 

  

TESTS:: 

  

sage: S = BoundedIntegerSequence(10^8, list(range(9))) 

sage: S[-1] 

8 

sage: S[8] 

8 

sage: S[9] 

Traceback (most recent call last): 

... 

IndexError: index out of range 

sage: S[-10] 

Traceback (most recent call last): 

... 

IndexError: index out of range 

sage: S[2^63] 

Traceback (most recent call last): 

... 

OverflowError: long int too large to convert to int 

  

:: 

  

sage: S[-1::-2] 

<8, 6, 4, 2, 0> 

sage: S[1::2] 

<1, 3, 5, 7> 

  

:: 

  

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(27, L) 

sage: S[1234] == L[1234] 

True 

sage: list(S[100:2000:3]) == L[100:2000:3] 

True 

sage: list(S[3000:10:-7]) == L[3000:10:-7] 

True 

sage: S[:] == S 

True 

sage: S[:] is S 

True 

  

:: 

  

sage: S = BoundedIntegerSequence(21, [0,0,0,0,0,0,0]) 

sage: X = BoundedIntegerSequence(21, [4,1,6,2,7,2,3]) 

sage: (X+S)[6] 

3 

sage: (X+S)[10] 

0 

sage: (X+S)[12:] 

<0, 0> 

  

:: 

  

sage: S[2:2] == X[4:2] 

True 

  

:: 

  

sage: S = BoundedIntegerSequence(6, [3, 5, 3, 1, 5, 2, 2, 5, 3, 3, 4]) 

sage: S[10] 

4 

  

:: 

  

sage: B = BoundedIntegerSequence(27, [8, 8, 26, 18, 18, 8, 22, 4, 17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10]) 

sage: B[8:] 

<17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10> 

  

:: 

  

sage: B1 = BoundedIntegerSequence(8, [0,7]) 

sage: B2 = BoundedIntegerSequence(8, [2,1,4]) 

sage: B1[0:1]+B2 

<0, 2, 1, 4> 

  

""" 

cdef BoundedIntegerSequence out 

cdef Py_ssize_t start, stop, step, slicelength 

if isinstance(index, slice): 

PySlice_GetIndicesEx(index, self.data.length, &start, &stop, &step, &slicelength) 

if start==0 and stop==self.data.length and step==1: 

return self 

out = BoundedIntegerSequence.__new__(BoundedIntegerSequence, 0, None) 

biseq_init_slice(out.data, self.data, start, stop, step) 

return out 

cdef Py_ssize_t ind 

try: 

ind = index 

except TypeError: 

raise TypeError("Sequence index must be integer or slice") 

if ind < 0: 

ind += self.data.length 

if ind < 0 or ind >= self.data.length: 

raise IndexError("index out of range") 

return biseq_getitem_py(self.data, ind) 

  

def __contains__(self, other): 

""" 

Tells whether this bounded integer sequence contains an item or a sub-sequence 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: 6 in S 

True 

sage: BoundedIntegerSequence(21, [2, 7, 20]) in S 

True 

  

The bound of the sequences matters:: 

  

sage: BoundedIntegerSequence(51, [2, 7, 20]) in S 

False 

  

:: 

  

sage: 6+S.bound() in S 

False 

sage: S.index(6+S.bound()) 

Traceback (most recent call last): 

... 

ValueError: 38 is not in sequence 

  

TESTS: 

  

The discussion at :trac:`15820` explains why the following are good tests:: 

  

sage: X = BoundedIntegerSequence(21, [4,1,6,2,7,2,3]) 

sage: S = BoundedIntegerSequence(21, [0,0,0,0,0,0,0]) 

sage: loads(dumps(X+S)) 

<4, 1, 6, 2, 7, 2, 3, 0, 0, 0, 0, 0, 0, 0> 

sage: loads(dumps(X+S)) == X+S 

True 

sage: T = BoundedIntegerSequence(21, [0,4,0,1,0,6,0,2,0,7,0,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) 

sage: T[3::2]==(X+S)[1:] 

True 

sage: T[3::2] in X+S 

True 

sage: T = BoundedIntegerSequence(21, [0,4,0,1,0,6,0,2,0,7,0,2,0,3,0,0,0,16,0,0,0,0,0,0,0,0,0,0]) 

sage: T[3::2] in (X+S) 

False 

  

:: 

  

sage: S1 = BoundedIntegerSequence(4, [1,3]) 

sage: S2 = BoundedIntegerSequence(4, [0]) 

sage: S2 in S1 

False 

  

:: 

  

sage: B = BoundedIntegerSequence(27, [8, 8, 26, 18, 18, 8, 22, 4, 17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10]) 

sage: B.index(B[8:]) 

8 

  

:: 

  

sage: -1 in B 

False 

  

""" 

if not isinstance(other, BoundedIntegerSequence): 

try: 

return biseq_index(self.data, other, 0) >= 0 

except OverflowError: 

return False 

cdef BoundedIntegerSequence right = other 

if self.data.itembitsize!=right.data.itembitsize: 

return False 

return biseq_contains(self.data, right.data, 0) >= 0 

  

cpdef list list(self): 

""" 

Converts this bounded integer sequence to a list 

  

NOTE: 

  

A conversion to a list is also possible by iterating over the 

sequence. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(32, L) 

sage: S.list() == list(S) == L 

True 

  

The discussion at :trac:`15820` explains why the following is a good test:: 

  

sage: (BoundedIntegerSequence(21, [0,0]) + BoundedIntegerSequence(21, [0,0])).list() 

[0, 0, 0, 0] 

  

""" 

cdef mp_size_t i 

return [biseq_getitem_py(self.data, i) for i in range(self.data.length)] 

  

cpdef bint startswith(self, BoundedIntegerSequence other): 

""" 

Tells whether ``self`` starts with a given bounded integer sequence 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(27, L) 

sage: L0 = L[:1000] 

sage: T = BoundedIntegerSequence(27, L0) 

sage: S.startswith(T) 

True 

sage: L0[-1] += 1 

sage: T = BoundedIntegerSequence(27, L0) 

sage: S.startswith(T) 

False 

sage: L0[-1] -= 1 

sage: L0[0] += 1 

sage: T = BoundedIntegerSequence(27, L0) 

sage: S.startswith(T) 

False 

sage: L0[0] -= 1 

  

The bounds of the sequences must be compatible, or :meth:`startswith` 

returns ``False``:: 

  

sage: T = BoundedIntegerSequence(51, L0) 

sage: S.startswith(T) 

False 

  

""" 

if self.data.itembitsize != other.data.itembitsize: 

return False 

return biseq_startswith(self.data, other.data) 

  

def index(self, other): 

""" 

The index of a given item or sub-sequence of ``self`` 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,6,20,9,0]) 

sage: S.index(6) 

2 

sage: S.index(5) 

Traceback (most recent call last): 

... 

ValueError: 5 is not in sequence 

sage: S.index(BoundedIntegerSequence(21, [6, 2, 6])) 

2 

sage: S.index(BoundedIntegerSequence(21, [6, 2, 7])) 

Traceback (most recent call last): 

... 

ValueError: not a sub-sequence 

  

The bound of (sub-)sequences matters:: 

  

sage: S.index(BoundedIntegerSequence(51, [6, 2, 6])) 

Traceback (most recent call last): 

... 

ValueError: not a sub-sequence 

sage: S.index(0) 

7 

sage: S.index(S.bound()) 

Traceback (most recent call last): 

... 

ValueError: 32 is not in sequence 

  

TESTS:: 

  

sage: S = BoundedIntegerSequence(10^9, [2, 2, 2, 1, 2, 4, 3, 3, 3, 2, 2, 0]) 

sage: S[11] 

0 

sage: S.index(0) 

11 

  

:: 

  

sage: S.index(-3) 

Traceback (most recent call last): 

... 

ValueError: -3 is not in sequence 

sage: S.index(2^100) 

Traceback (most recent call last): 

... 

ValueError: 1267650600228229401496703205376 is not in sequence 

sage: S.index("hello") 

Traceback (most recent call last): 

... 

TypeError: an integer is required 

  

""" 

cdef mp_size_t out 

if not isinstance(other, BoundedIntegerSequence): 

try: 

out = biseq_index(self.data, other, 0) 

except OverflowError: 

out = -1 

if out >= 0: 

return out 

raise ValueError("{!r} is not in sequence".format(other)) 

  

cdef BoundedIntegerSequence right = other 

if self.data.itembitsize != right.data.itembitsize: 

out = -1 

else: 

out = biseq_contains(self.data, right.data, 0) 

if out >= 0: 

return out 

raise ValueError("not a sub-sequence") 

  

def __add__(self, other): 

""" 

Concatenation of bounded integer sequences. 

  

NOTE: 

  

There is no coercion happening, as bounded integer sequences are not 

considered to be elements of an object. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: T = BoundedIntegerSequence(21, [4,1,6,2,8,15]) 

sage: S+T 

<4, 1, 6, 2, 7, 20, 9, 4, 1, 6, 2, 8, 15> 

sage: T+S 

<4, 1, 6, 2, 8, 15, 4, 1, 6, 2, 7, 20, 9> 

sage: S in S+T 

True 

sage: T in S+T 

True 

sage: BoundedIntegerSequence(21, [4,1,6,2,7,20,9,4]) in S+T 

True 

sage: T+list(S) 

Traceback (most recent call last): 

... 

TypeError: Cannot convert list to sage.data_structures.bounded_integer_sequences.BoundedIntegerSequence 

sage: T+None 

Traceback (most recent call last): 

... 

TypeError: Cannot concatenate bounded integer sequence and None 

  

TESTS: 

  

The discussion at :trac:`15820` explains why the following are good tests:: 

  

sage: BoundedIntegerSequence(21, [0,0]) + BoundedIntegerSequence(21, [0,0]) 

<0, 0, 0, 0> 

sage: B1 = BoundedIntegerSequence(2^30, [10^9+1, 10^9+2]) 

sage: B2 = BoundedIntegerSequence(2^30, [10^9+3, 10^9+4]) 

sage: B1 + B2 

<1000000001, 1000000002, 1000000003, 1000000004> 

  

""" 

cdef BoundedIntegerSequence myself, right, out 

if other is None or self is None: 

raise TypeError('Cannot concatenate bounded integer sequence and None') 

myself = self # may result in a type error 

right = other # --"-- 

if right.data.itembitsize != myself.data.itembitsize: 

raise ValueError("can only concatenate bounded integer sequences of compatible bounds") 

out = BoundedIntegerSequence.__new__(BoundedIntegerSequence, 0, None) 

biseq_init_concat(out.data, myself.data, right.data) 

return out 

  

cpdef BoundedIntegerSequence maximal_overlap(self, BoundedIntegerSequence other): 

""" 

Returns ``self``'s maximal trailing sub-sequence that ``other`` starts with. 

  

Returns ``None`` if there is no overlap 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: X = BoundedIntegerSequence(21, [4,1,6,2,7,2,3]) 

sage: S = BoundedIntegerSequence(21, [0,0,0,0,0,0,0]) 

sage: T = BoundedIntegerSequence(21, [2,7,2,3,0,0,0,0,0,0,0,1]) 

sage: (X+S).maximal_overlap(T) 

<2, 7, 2, 3, 0, 0, 0, 0, 0, 0, 0> 

sage: print((X+S).maximal_overlap(BoundedIntegerSequence(21, [2,7,2,3,0,0,0,0,0,1]))) 

None 

sage: (X+S).maximal_overlap(BoundedIntegerSequence(21, [0,0])) 

<0, 0> 

sage: B1 = BoundedIntegerSequence(4,[1,2,3,2,3,2,3]) 

sage: B2 = BoundedIntegerSequence(4,[2,3,2,3,2,3,1]) 

sage: B1.maximal_overlap(B2) 

<2, 3, 2, 3, 2, 3> 

  

""" 

cdef mp_size_t i = biseq_startswith_tail(other.data, self.data, 0) 

if i==-1: 

return None 

return self[i:] 

  

def __richcmp__(self, other, op): 

""" 

Comparison of bounded integer sequences 

  

We compare, in this order: 

  

- The bound of ``self`` and ``other`` 

  

- The length of ``self`` and ``other`` 

  

- Reverse lexicographical ordering, i.e., the sequences' items 

are compared starting with the last item. 

  

EXAMPLES: 

  

Comparison by bound:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: T = BoundedIntegerSequence(51, [4,1,6,2,7,20,9]) 

sage: S < T 

True 

sage: T < S 

False 

sage: list(T) == list(S) 

True 

  

Comparison by length:: 

  

sage: T = BoundedIntegerSequence(21, [0,0,0,0,0,0,0,0]) 

sage: S < T 

True 

sage: T < S 

False 

sage: list(T) < list(S) 

True 

sage: len(T) > len(S) 

True 

  

Comparison by *reverse* lexicographical ordering:: 

  

sage: T = BoundedIntegerSequence(21, [4,1,5,2,8,20,9]) 

sage: T > S 

True 

sage: S > T 

False 

sage: list(S)> list(T) 

True 

  

""" 

cdef BoundedIntegerSequence right 

cdef BoundedIntegerSequence left 

if other is None or self is None: 

return NotImplemented 

try: 

right = other 

left = self 

except TypeError: 

return NotImplemented 

return biseq_richcmp(left.data, right.data, op) 

  

def __hash__(self): 

""" 

The hash takes into account the content and the bound of the sequence. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: S = BoundedIntegerSequence(21, [4,1,6,2,7,20,9]) 

sage: T = BoundedIntegerSequence(51, [4,1,6,2,7,20,9]) 

sage: S == T 

False 

sage: list(S) == list(T) 

True 

sage: S.bound() == T.bound() 

False 

sage: hash(S) == hash(T) 

False 

sage: T = BoundedIntegerSequence(31, [4,1,6,2,7,20,9]) 

sage: T.bound() == S.bound() 

True 

sage: hash(S) == hash(T) 

True 

  

""" 

cdef Py_hash_t h = biseq_hash(self.data) 

if h == -1: 

return 0 

return h 

  

cpdef BoundedIntegerSequence NewBISEQ(tuple bitset_data, mp_bitcnt_t itembitsize, mp_size_t length): 

""" 

Helper function for unpickling of :class:`BoundedIntegerSequence`. 

  

EXAMPLES:: 

  

sage: from sage.data_structures.bounded_integer_sequences import BoundedIntegerSequence 

sage: L = [randint(0,26) for i in range(5000)] 

sage: S = BoundedIntegerSequence(32, L) 

sage: loads(dumps(S)) == S # indirect doctest 

True 

  

TESTS: 

  

We test a corner case:: 

  

sage: S = BoundedIntegerSequence(8,[]) 

sage: S 

<> 

sage: loads(dumps(S)) == S 

True 

  

And another one:: 

  

sage: S = BoundedIntegerSequence(2*sys.maxsize, [8, 8, 26, 18, 18, 8, 22, 4, 17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10]) 

sage: loads(dumps(S)) 

<8, 8, 26, 18, 18, 8, 22, 4, 17, 22, 22, 7, 12, 4, 1, 7, 21, 7, 10, 10> 

  

""" 

cdef BoundedIntegerSequence out = BoundedIntegerSequence.__new__(BoundedIntegerSequence) 

biseq_unpickle(out.data, bitset_data, itembitsize, length) 

return out 

  

def _biseq_stresstest(): 

""" 

This function creates many bounded integer sequences and manipulates them 

in various ways, in order to try to detect random memory corruptions. 

  

This runs forever and must be interrupted (this means that 

interrupting is also checked). 

  

TESTS:: 

  

sage: from sage.data_structures.bounded_integer_sequences import _biseq_stresstest 

sage: alarm(1); _biseq_stresstest() # long time 

Traceback (most recent call last): 

... 

AlarmInterrupt 

""" 

cdef int branch 

cdef Py_ssize_t x, y, z 

from sage.misc.prandom import randint 

cdef list L = [BoundedIntegerSequence(6, [randint(0,5) for z in range(randint(4,10))]) for y in range(100)] 

cdef BoundedIntegerSequence S, T 

while True: 

branch = randint(0,4) 

if branch == 0: 

L[randint(0,99)] = L[randint(0,99)]+L[randint(0,99)] 

elif branch == 1: 

x = randint(0,99) 

if len(L[x]): 

y = randint(0,len(L[x])-1) 

z = randint(y,len(L[x])-1) 

L[randint(0,99)] = L[x][y:z] 

else: 

L[x] = BoundedIntegerSequence(6, [randint(0,5) for z in range(randint(4,10))]) 

elif branch == 2: 

t = list(L[randint(0,99)]) 

t = repr(L[randint(0,99)]) 

t = L[randint(0,99)].list() 

elif branch == 3: 

x = randint(0,99) 

if len(L[x]): 

y = randint(0,len(L[x])-1) 

t = L[x][y] 

try: 

t = L[x].index(t) 

except ValueError: 

raise ValueError("{} should be in {} (bound {}) at position {}".format(t,L[x],L[x].bound(),y)) 

else: 

L[x] = BoundedIntegerSequence(6, [randint(0,5) for z in range(randint(4,10))]) 

elif branch == 4: 

S = L[randint(0,99)] 

T = L[randint(0,99)] 

biseq_startswith(S.data,T.data) 

biseq_contains(S.data, T.data, 0) 

biseq_startswith_tail(S.data, T.data, 0)