Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

r""" 

Mandelbrot and Julia sets 

 

Plots the Mandelbrot and Julia sets for the map `Q_c(z)=z^2+c` in the complex 

plane. 

 

The Mandelbrot set is the set of complex numbers `c` for which the function 

`Q_c(z)=z^2+c` does not diverge when iterated from `z = 0`. This set of complex 

numbers can be visualized by plotting each value for `c` in the complex plane. 

The Mandelbrot set is an example of a fractal when plotted in the complex plane. 

 

The Julia set for a given `c` is the set of complex numbers for which the 

function `Q_c(z)=z^2+c` is bounded under iteration. 

 

AUTHORS: 

 

- Ben Barros 

 

""" 

 

#***************************************************************************** 

# Copyright (C) 2017 BEN BARROS <bbarros@slu.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from __future__ import absolute_import, division 

from sage.dynamics.complex_dynamics.mandel_julia_helper import (fast_mandelbrot_plot, 

fast_external_ray, 

convert_to_pixels, 

get_line, 

fast_julia_plot, 

julia_helper) 

from sage.dynamics.arithmetic_dynamics.generic_ds import DynamicalSystem 

from sagenb.notebook.interact import (interact, 

slider, 

input_box, 

color_selector, 

checkbox) 

from sage.plot.colors import Color 

from sage.repl.image import Image 

from sage.functions.log import (log, logb) 

from sage.rings.rational_field import QQ 

from sage.rings.all import CC 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.schemes.projective.projective_space import ProjectiveSpace 

from sage.categories.homset import End 

from sage.misc.prandom import randint 

 

def mandelbrot_plot(**kwds): 

r""" 

Interactive plot of the Mandelbrot set for the map `Q_c(z) = z^2 + c`. 

 

ALGORITHM: 

 

Let each pixel in the image be a point `c \in \mathbb{C}` and define the 

map `Q_c(z) = z^2 + c`. If `|Q_{c}^{k}(c)| > 2` for some `k \geq 0`, it 

follows that `Q_{c}^{n}(c) \to \infty`. Let `N` be the maximum number of 

iterations. Compute the first `N` points on the orbit of `0` under `Q_c`. 

If for any `k < N`, `|Q_{c}^{k}(0)| > 2`, we stop the iteration and assign 

a color to the point `c` based on how quickly `0` escaped to infinity under 

iteration of `Q_c`. If `|Q_{c}^{i}(0)| \leq 2` for all `i \leq N`, we assume 

`c` is in the Mandelbrot set and assign the point `c` the color black. 

 

REFERENCE: 

 

[Dev2005]_ 

 

kwds: 

 

- ``x_center`` -- double (optional - default: ``-1.0``), Real part of center point. 

 

- ``y_center`` -- double (optional - default: ``0.0``), Imaginary part of center point. 

 

- ``image_width`` -- double (optional - default: ``4.0``), width of image in the complex plane. 

 

- ``max_iteration`` -- long (optional - default: ``500``), maximum number of iterations the map ``Q_c(z)``. 

 

- ``pixel_count`` -- long (optional - default: ``500``), side length of image in number of pixels. 

 

- ``base_color`` -- RGB color (optional - default: ``[40, 40, 40]``) color used to determine the coloring of set. 

 

- ``iteration_level`` -- long (optional - default: 1) number of iterations between each color level. 

 

- ``number_of_colors`` -- long (optional - default: 30) number of colors used to plot image. 

 

- ``interact`` -- boolean (optional - default: ``False``), controls whether plot will have interactive functionality. 

 

OUTPUT: 

 

24-bit RGB image of the Mandelbrot set in the complex plane. 

 

EXAMPLES: 

 

:: 

 

sage: mandelbrot_plot() # long time 

500x500px 24-bit RGB image 

 

:: 

 

sage: mandelbrot_plot(pixel_count=1000) # long time 

1000x1000px 24-bit RGB image 

 

:: 

 

sage: mandelbrot_plot(x_center=-1.11, y_center=0.2283, image_width=1/128, # long time 

....: max_iteration=2000, number_of_colors=500, base_color=[40, 100, 100]) 

500x500px 24-bit RGB image 

 

To display an interactive plot of the Mandelbrot set in the Notebook, set ``interact`` to ``True``:: 

 

sage: mandelbrot_plot(interact=True) 

<html>...</html> 

 

:: 

 

sage: mandelbrot_plot(interact=True, x_center=-0.75, y_center=0.25, 

....: image_width=1/2, number_of_colors=75) 

<html>...</html> 

""" 

 

x_center = kwds.pop("x_center", -1.0) 

y_center = kwds.pop("y_center", 0.0) 

image_width = kwds.pop("image_width", 4.0) 

max_iteration = kwds.pop("max_iteration", 500) 

pixel_count = kwds.pop("pixel_count", 500) 

base_color = kwds.pop("base_color", [40, 40, 40]) 

iteration_level = kwds.pop("iteration_level", 1) 

number_of_colors = kwds.pop("number_of_colors", 30) 

interacts = kwds.pop("interact", False) 

 

if interacts: 

@interact(layout={'bottom':[['real_center'], ['im_center'], ['width']], 

'top':[['iterations'], ['level_sep'], ['color_num'], ['image_color']]}) 

def _(real_center=input_box(x_center, 'Real'), 

im_center=input_box(y_center, 'Imaginary'), 

width=input_box(image_width, 'Width of Image'), 

iterations=input_box(max_iteration, 'Max Number of Iterations'), 

level_sep=input_box(iteration_level, 'Iterations between Colors'), 

color_num=input_box(number_of_colors, 'Number of Colors'), 

image_color=color_selector(default=Color([j/255 for j in base_color]), 

label="Image Color", hide_box=True)): 

return fast_mandelbrot_plot(real_center, im_center, width, 

iterations, pixel_count, level_sep, color_num, image_color).show() 

 

else: 

return fast_mandelbrot_plot(x_center, y_center, image_width, max_iteration, 

pixel_count, iteration_level, number_of_colors, base_color) 

 

def external_ray(theta, **kwds): 

r""" 

Draws the external ray(s) of a given angle (or list of angles) 

by connecting a finite number of points that were approximated using 

Newton's method. The algorithm used is described in a paper by 

Tomoki Kawahira. 

 

REFERENCE: 

 

[Kaw2009]_ 

 

INPUT: 

 

- ``theta`` -- double or list of doubles, angles between 0 and 1 inclusive. 

 

kwds: 

 

- ``image`` -- 24-bit RGB image (optional - default: None) user specified image of Mandelbrot set. 

 

- ``D`` -- long (optional - default: ``25``) depth of the approximation. As ``D`` increases, the external ray gets closer to the boundary of the Mandelbrot set. If the ray doesn't reach the boundary of the Mandelbrot set, increase ``D``. 

 

- ``S`` -- long (optional - default: ``10``) sharpness of the approximation. Adjusts the number of points used to approximate the external ray (number of points is equal to ``S*D``). If ray looks jagged, increase ``S``. 

 

- ``R`` -- long (optional - default: ``100``) radial parameter. If ``R`` is large, the external ray reaches sufficiently close to infinity. If ``R`` is too small, Newton's method may not converge to the correct ray. 

 

- ``prec`` -- long (optional - default: ``300``) specifies the bits of precision used by the Complex Field when using Newton's method to compute points on the external ray. 

 

- ``ray_color`` -- RGB color (optional - default: ``[255, 255, 255]``) color of the external ray(s). 

 

OUTPUT: 

 

24-bit RGB image of external ray(s) on the Mandelbrot set. 

 

EXAMPLES:: 

 

sage: external_ray(1/3) 

500x500px 24-bit RGB image 

 

:: 

 

sage: external_ray(0.6, ray_color=[255, 0, 0]) 

500x500px 24-bit RGB image 

 

:: 

 

sage: external_ray([0, 0.2, 0.4, 0.7]) # long time 

500x500px 24-bit RGB image 

 

:: 

 

sage: external_ray([i/5 for i in range(1,5)]) # long time 

500x500px 24-bit RGB image 

 

WARNING: 

 

If you are passing in an image, make sure you specify 

which parameters to use when drawing the external ray. 

For example, the following is incorrect:: 

 

sage: M = mandelbrot_plot(x_center=0) # not tested 

sage: external_ray(5/7, image=M) # not tested 

500x500px 24-bit RGB image 

 

To get the correct external ray, we adjust our parameters:: 

 

sage: M = mandelbrot_plot(x_center=0) # not tested 

sage: external_ray(5/7, x_center=0, image=M) # not tested 

500x500px 24-bit RGB image 

 

.. TODO:: 

 

The ``copy()`` function for bitmap images needs to be implemented 

in Sage. 

""" 

x_0 = kwds.get("x_center", -1) 

y_0 = kwds.get("y_center", 0) 

plot_width = kwds.get("image_width", 4) 

pixel_width = kwds.get("pixel_count", 500) 

depth = kwds.get("D", 25) 

sharpness = kwds.get("S", 10) 

radial_parameter = kwds.get("R", 100) 

precision = kwds.get("prec", 300) 

precision = max(precision, -logb(pixel_width * 0.001, 2).round() + 10) 

ray_color = kwds.get("ray_color", [255]*3) 

image = kwds.get("image", None) 

if image is None: 

image = mandelbrot_plot(**kwds) 

 

# Make a copy of the bitmap image. 

# M = copy(image) 

old_pixel = image.pixels() 

M = Image('RGB', (pixel_width, pixel_width)) 

pixel = M.pixels() 

for i in range(pixel_width): 

for j in range(pixel_width): 

pixel[i,j] = old_pixel[i,j] 

 

# Make sure that theta is a list so loop below works 

if type(theta) != list: 

theta = [theta] 

 

# Check if theta is in the interval [0,1] 

for angle in theta: 

if angle < 0 or angle > 1: 

raise \ 

ValueError("values for theta must be in the closed interval [0,1].") 

 

# Loop through each value for theta in list and plot the external ray. 

for angle in theta: 

E = fast_external_ray(angle, D=depth, S=sharpness, R=radial_parameter, 

prec=precision, image_width=plot_width, pixel_count=pixel_width) 

 

# Convert points to pixel coordinates. 

pixel_list = convert_to_pixels(E, x_0, y_0, plot_width, pixel_width) 

 

# Find the pixels between points in pixel_list. 

extra_points = [] 

for i in range(len(pixel_list) - 1): 

if min(pixel_list[i+1]) >= 0 and max(pixel_list[i+1]) < pixel_width: 

for j in get_line(pixel_list[i], pixel_list[i+1]): 

extra_points.append(j) 

 

# Add these points to pixel_list to fill in gaps in the ray. 

pixel_list += extra_points 

 

# Remove duplicates from list. 

pixel_list = list(set(pixel_list)) 

 

# Check if point is in window and if it is, plot it on the image to 

# create an external ray. 

for k in pixel_list: 

if max(k) < pixel_width and min(k) >= 0: 

pixel[int(k[0]), int(k[1])] = tuple(ray_color) 

return M 

 

def julia_plot(c=-1, **kwds): 

r""" 

Plots the Julia set of a given complex `c` value. Users can specify whether 

they would like to display the Mandelbrot side by side with the Julia set. 

 

The Julia set of a given `c` value is the set of complex numbers for which 

the function `Q_c(z)=z^2+c` is bounded under iteration. The Julia set can 

be visualized by plotting each point in the set in the complex plane. 

Julia sets are examples of fractals when plotted in the complex plane. 

 

ALGORITHM: 

 

Define the map `Q_c(z) = z^2 + c` for some `c \in \mathbb{C}`. For every 

`p \in \mathbb{C}`, if `|Q_{c}^{k}(p)| > 2` for some `k \geq 0`, 

then `Q_{c}^{n}(p) \to \infty`. Let `N` be the maximum number of iterations. 

Compute the first `N` points on the orbit of `p` under `Q_c`. If for 

any `k < N`, `|Q_{c}^{k}(p)| > 2`, we stop the iteration and assign a color 

to the point `p` based on how quickly `p` escaped to infinity under 

iteration of `Q_c`. If `|Q_{c}^{i}(p)| \leq 2` for all `i \leq N`, we assume 

`p` is in the Julia set and assign the point `p` the color black. 

 

INPUT: 

 

- ``c`` -- complex (optional - default: ``-1``), complex point `c` that 

determines the Julia set. 

 

kwds: 

 

- ``period`` -- list (optional - default: ``None``), returns the Julia set 

for a random `c` value with the given (formal) cycle structure. 

 

- ``mandelbrot`` -- boolean (optional - default: ``True``), when set to 

``True``, an image of the Mandelbrot set is appended to the right of the 

Julia set. 

 

- ``point_color`` -- RGB color (optional - default: ``[255, 0, 0]``), 

color of the point `c` in the Mandelbrot set. 

 

- ``x_center`` -- double (optional - default: ``-1.0``), Real part 

of center point. 

 

- ``y_center`` -- double (optional - default: ``0.0``), Imaginary part 

of center point. 

 

- ``image_width`` -- double (optional - default: ``4.0``), width of image 

in the complex plane. 

 

- ``max_iteration`` -- long (optional - default: ``500``), maximum number 

of iterations the map `Q_c(z)`. 

 

- ``pixel_count`` -- long (optional - default: ``500``), side length of 

image in number of pixels. 

 

- ``base_color`` -- RGB color (optional - default: ``[40, 40, 40]``), color 

used to determine the coloring of set. 

 

- ``iteration_level`` -- long (optional - default: 1), number of iterations 

between each color level. 

 

- ``number_of_colors`` -- long (optional - default: 30), number of colors 

used to plot image. 

 

- ``interact`` -- boolean (optional - default: ``False``), controls whether 

plot will have interactive functionality. 

 

OUTPUT: 

 

24-bit RGB image of the Julia set in the complex plane. 

 

EXAMPLES:: 

 

sage: julia_plot() 

1001x500px 24-bit RGB image 

 

To display only the Julia set, set ``mandelbrot`` to ``False``:: 

 

sage: julia_plot(mandelbrot=False) 

500x500px 24-bit RGB image 

 

To display an interactive plot of the Julia set in the Notebook, 

set ``interact`` to ``True``:: 

 

sage: julia_plot(interact=True) 

<html>...</html> 

 

To return the Julia set of a random `c` value with (formal) cycle structure 

`(2,3)`, set ``period = [2,3]``:: 

 

sage: julia_plot(period=[2,3]) 

1001x500px 24-bit RGB image 

 

To return all of the Julia sets of `c` values with (formal) cycle structure 

`(2,3)`:: 

 

sage: period = [2,3] # not tested 

....: R.<c> = QQ[] 

....: P.<x,y> = ProjectiveSpace(R,1) 

....: f = DynamicalSystem([x^2+c*y^2, y^2]) 

....: L = f.dynatomic_polynomial(period).subs({x:0,y:1}).roots(ring=CC) 

....: c_values = [k[0] for k in L] 

....: for c in c_values: 

....: julia_plot(c) 

""" 

 

x_center = kwds.pop("x_center", 0.0) 

y_center = kwds.pop("y_center", 0.0) 

image_width = kwds.pop("image_width", 4.0) 

max_iteration = kwds.pop("max_iteration", 500) 

pixel_count = kwds.pop("pixel_count", 500) 

base_color = kwds.pop("base_color", [50, 50, 50]) 

iteration_level = kwds.pop("iteration_level", 1) 

number_of_colors = kwds.pop("number_of_colors", 50) 

point_color = kwds.pop("point_color", [255, 0, 0]) 

interacts = kwds.pop("interact", False) 

mandelbrot = kwds.pop("mandelbrot", True) 

period = kwds.pop("period", None) 

 

if not period is None: 

R = PolynomialRing(QQ, 'c') 

c = R.gen() 

P = ProjectiveSpace(R, 1, 'x,y') 

x,y = P.gens() 

f = DynamicalSystem([x**2+c*y**2, y**2]) 

L = f.dynatomic_polynomial(period).subs({x:0,y:1}).roots(ring=CC) 

c = L[randint(0,len(L)-1)][0] 

 

c_real = CC(c).real() 

c_imag = CC(c).imag() 

 

if interacts: 

@interact(layout={'bottom':[['real_center'], ['im_center'], ['width']], 

'top':[['iterations'], ['level_sep'], ['color_num'], ['mandel'], 

['cx'], ['cy']], 'right':[['image_color'], ['pt_color']]}) 

def _(cx = input_box(c_real, '$Re(c)$'), 

cy = input_box(c_imag, '$Im(c)$'), 

real_center=input_box(x_center, 'Real Center'), 

im_center=input_box(y_center, 'Imaginary Center'), 

width=input_box(image_width, 'Width of Image'), 

iterations=input_box(max_iteration, 'Max Number of Iterations'), 

level_sep=input_box(iteration_level, 'Iterations between Colors'), 

color_num=input_box(number_of_colors, 'Number of Colors'), 

image_color=color_selector(default=Color([j/255 for j in base_color]), 

label="Image Color", hide_box=True), 

pt_color=color_selector(default=Color([j/255 for j in point_color]), 

label="Point Color", hide_box=True), 

mandel=checkbox(mandelbrot, label='Mandelbrot set')): 

 

if mandel: 

return julia_helper(cx, cy, real_center, im_center, 

width, iterations, pixel_count, level_sep, color_num, 

image_color, pt_color).show() 

 

else: 

return fast_julia_plot(cx, cy, real_center, im_center, 

width, iterations, pixel_count, level_sep, color_num, 

image_color).show() 

 

else: 

if mandelbrot: 

return julia_helper(c_real, c_imag, x_center, y_center, 

image_width, max_iteration, pixel_count, iteration_level, 

number_of_colors, base_color, point_color) 

 

else: 

return fast_julia_plot(c_real, c_imag, x_center, y_center, 

image_width, max_iteration, pixel_count, iteration_level, 

number_of_colors, base_color)