Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

r""" 

Piecewise-defined Functions 

 

Sage implements a very simple class of piecewise-defined functions. 

Functions may be any type of symbolic expression. Infinite 

intervals are not supported. The endpoints of each interval must 

line up. 

 

TODO: 

 

- Implement max/min location and values, 

 

- Need: parent object - ring of piecewise functions 

 

- This class should derive from an element-type class, and should 

define ``_add_``, ``_mul_``, etc. That will automatically take care 

of left multiplication and proper coercion. The coercion mentioned 

below for scalar mult on right is bad, since it only allows ints and 

rationals. The right way is to use an element class and only define 

``_mul_``, and have a parent, so anything gets coerced properly. 

 

AUTHORS: 

 

- David Joyner (2006-04): initial version 

 

- David Joyner (2006-09): added __eq__, extend_by_zero_to, unextend, 

convolution, trapezoid, trapezoid_integral_approximation, 

riemann_sum, riemann_sum_integral_approximation, tangent_line fixed 

bugs in __mul__, __add__ 

 

- David Joyner (2007-03): adding Hann filter for FS, added general FS 

filter methods for computing and plotting, added options to plotting 

of FS (eg, specifying rgb values are now allowed). Fixed bug in 

documentation reported by Pablo De Napoli. 

 

- David Joyner (2007-09): bug fixes due to behaviour of 

SymbolicArithmetic 

 

- David Joyner (2008-04): fixed docstring bugs reported by J Morrow; added 

support for Laplace transform of functions with infinite support. 

 

- David Joyner (2008-07): fixed a left multiplication bug reported by 

C. Boncelet (by defining __rmul__ = __mul__). 

 

- Paul Butler (2009-01): added indefinite integration and default_variable 

 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: f = Piecewise([[(0,1),1*x^0]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: 2*f 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 1 parts, [[(0, 1), 2]] 

""" 

 

#***************************************************************************** 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 2006 David Joyner <wdjoyner@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six.moves import zip 

 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.misc.sage_eval import sage_eval 

from sage.rings.all import QQ, RR, Integer, Rational, infinity 

from sage.calculus.functional import derivative 

from sage.symbolic.expression import is_Expression 

from sage.symbolic.assumptions import assume, forget 

 

from sage.calculus.calculus import SR, maxima 

from sage.calculus.all import var 

 

def Piecewise(list_of_pairs, var=None): 

""" 

Deprecated spelling of :func:`sage.functions.piecewise`. 

 

Return a piecewise function from a list of (interval, function) 

pairs. 

 

``list_of_pairs`` is a list of pairs (I, fcn), where 

fcn is a Sage function (such as a polynomial over RR, or functions 

using the lambda notation), and I is an interval such as I = (1,3). 

Two consecutive intervals must share a common endpoint. 

 

If the optional ``var`` is specified, then any symbolic expressions 

in the list will be converted to symbolic functions using  

``fcn.function(var)``. (This says which variable is considered to 

be "piecewise".) 

 

We assume that these definitions are consistent (ie, no checking is 

done). 

 

EXAMPLES:: 

 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f(1) 

-1 

sage: f(3) 

2 

sage: f = Piecewise([[(0,1),x], [(1,2),x^2]], x); f 

Piecewise defined function with 2 parts, [[(0, 1), x |--> x], [(1, 2), x |--> x^2]] 

sage: f(0.9) 

0.900000000000000 

sage: f(1.1) 

1.21000000000000 

""" 

from sage.misc.superseded import deprecation 

deprecation(14801, 'use lower-case piecewise instead') 

return PiecewisePolynomial(list_of_pairs, var=var) 

 

class PiecewisePolynomial: 

""" 

Returns a piecewise function from a list of (interval, function) 

pairs. 

 

EXAMPLES:: 

 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f(1) 

-1 

sage: f(3) 

2 

""" 

def __init__(self, list_of_pairs, var=None): 

r""" 

``list_of_pairs`` is a list of pairs (I, fcn), where 

fcn is a Sage function (such as a polynomial over RR, or functions 

using the lambda notation), and I is an interval such as I = (1,3). 

Two consecutive intervals must share a common endpoint. 

 

If the optional ``var`` is specified, then any symbolic 

expressions in the list will be converted to symbolic 

functions using ``fcn.function(var)``. (This says which 

variable is considered to be "piecewise".) 

 

We assume that these definitions are consistent (ie, no checking is 

done). 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1 - x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.list() 

[[(0, 1), x |--> 1], [(1, 2), x |--> -x + 1]] 

sage: f.length() 

2 

""" 

self._length = len(list_of_pairs) 

self._intervals = [x[0] for x in list_of_pairs] 

functions = [x[1] for x in list_of_pairs] 

if var is not None: 

for i in range(len(functions)): 

if is_Expression(functions[i]): 

functions[i] = functions[i].function(var) 

self._functions = functions 

# We regenerate self._list in case self._functions was modified 

# above. This also protects us in case somebody mutates a list 

# after they use it as an argument to piecewise(). 

self._list = [[self._intervals[i], self._functions[i]] for i in range(self._length)] 

 

def list(self): 

""" 

Returns the pieces of this function as a list of functions. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1 - x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.list() 

[[(0, 1), x |--> 1], [(1, 2), x |--> -x + 1]] 

""" 

return self._list 

 

def length(self): 

""" 

Returns the number of pieces of this function. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1 - x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.length() 

2 

""" 

return self._length 

 

def __repr__(self): 

""" 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1 - x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]); f 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 2 parts, [[(0, 1), x |--> 1], [(1, 2), x |--> -x + 1]] 

""" 

return 'Piecewise defined function with %s parts, %s'%( 

self.length(),self.list()) 

 

def _latex_(self): 

r""" 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1 - x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: latex(f) 

\begin{cases} 

x \ {\mapsto}\ 1 &\text{on $(0, 1)$}\cr 

x \ {\mapsto}\ -x + 1 &\text{on $(1, 2)$}\cr 

\end{cases} 

 

:: 

 

sage: f(x) = sin(x*pi/2) 

sage: g(x) = 1-(x-1)^2 

sage: h(x) = -x 

sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]]) 

sage: latex(P) 

\begin{cases} 

x \ {\mapsto}\ \sin\left(\frac{1}{2} \, \pi x\right) &\text{on $(0, 1)$}\cr 

x \ {\mapsto}\ -{\left(x - 1\right)}^{2} + 1 &\text{on $(1, 3)$}\cr 

x \ {\mapsto}\ -x &\text{on $(3, 5)$}\cr 

\end{cases} 

""" 

from sage.misc.latex import latex 

tex = ['\\begin{cases}\n'] 

for (left, right), f in self.list(): 

tex.append('%s &\\text{on $(%s, %s)$}\\cr\n' % (latex(f), left, right)) 

tex.append(r'\end{cases}') 

return ''.join(tex) 

 

def intervals(self): 

""" 

A piecewise non-polynomial example. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = exp(x) 

sage: f4(x) = sin(2*x) 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.intervals() 

[(0, 1), (1, 2), (2, 3), (3, 10)] 

""" 

return self._intervals 

 

def domain(self): 

""" 

Returns the domain of the function. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = exp(x) 

sage: f4(x) = sin(2*x) 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.domain() 

(0, 10) 

""" 

endpoints = sum(self.intervals(), ()) 

return (min(endpoints), max(endpoints)) 

 

def functions(self): 

""" 

Returns the list of functions (the "pieces"). 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = exp(x) 

sage: f4(x) = sin(2*x) 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.functions() 

[x |--> 1, x |--> -x + 1, x |--> e^x, x |--> sin(2*x)] 

""" 

return self._functions 

 

def extend_by_zero_to(self,xmin=-1000,xmax=1000): 

""" 

This function simply returns the piecewise defined function which 

is extended by 0 so it is defined on all of (xmin,xmax). This is 

needed to add two piecewise functions in a reasonable way. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1 - x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.extend_by_zero_to(-1, 3) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 4 parts, [[(-1, 0), 0], [(0, 1), x |--> 1], [(1, 2), x |--> -x + 1], [(2, 3), 0]] 

""" 

zero = QQ['x'](0) 

list_of_pairs = self.list() 

a, b = self.domain() 

if xmin < a: 

list_of_pairs = [[(xmin, a), zero]] + list_of_pairs 

if xmax > b: 

list_of_pairs = list_of_pairs + [[(b, xmax), zero]] 

return Piecewise(list_of_pairs) 

 

def unextend(self): 

""" 

This removes any parts in the front or back of the function which 

is zero (the inverse to extend_by_zero_to). 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: f = Piecewise([[(-3,-1),1+2+x],[(-1,1),1-x^2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: e = f.extend_by_zero_to(-10,10); e 

Piecewise defined function with 4 parts, [[(-10, -3), 0], [(-3, -1), x + 3], [(-1, 1), -x^2 + 1], [(1, 10), 0]] 

sage: d = e.unextend(); d 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 2 parts, [[(-3, -1), x + 3], [(-1, 1), -x^2 + 1]] 

sage: d==f 

True 

""" 

list_of_pairs = self.list() 

funcs = self.functions() 

if funcs[0] == 0: 

list_of_pairs = list_of_pairs[1:] 

if funcs[-1] == 0: 

list_of_pairs = list_of_pairs[:-1] 

return Piecewise(list_of_pairs) 

 

def _riemann_sum_helper(self, N, func, initial=0): 

""" 

A helper function for computing Riemann sums. 

 

INPUT: 

 

 

- ``N`` - the number of subdivisions 

 

- ``func`` - a function to apply to the endpoints of 

each subdivision 

 

- ``initial`` - the starting value 

 

 

EXAMPLES:: 

 

sage: f1(x) = x^2 ## example 1 

sage: f2(x) = 5-x^2 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f._riemann_sum_helper(6, lambda x0, x1: (x1-x0)*f(x1)) 

19/6 

""" 

a,b = self.domain() 

rsum = initial 

h = (b-a)/N 

for i in range(N): 

x0 = a+i*h 

x1 = a+(i+1)*h 

rsum += func(x0, x1) 

return rsum 

 

def riemann_sum_integral_approximation(self,N,mode=None): 

""" 

Returns the piecewise line function defined by the Riemann sums in 

numerical integration based on a subdivision into N subintervals. 

 

Set mode="midpoint" for the height of the rectangles to be 

determined by the midpoint of the subinterval; set mode="right" for 

the height of the rectangles to be determined by the right-hand 

endpoint of the subinterval; the default is mode="left" (the height 

of the rectangles to be determined by the left-hand endpoint of 

the subinterval). 

 

EXAMPLES:: 

 

sage: f1(x) = x^2 ## example 1 

sage: f2(x) = 5-x^2 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.riemann_sum_integral_approximation(6) 

17/6 

sage: f.riemann_sum_integral_approximation(6,mode="right") 

19/6 

sage: f.riemann_sum_integral_approximation(6,mode="midpoint") 

3 

sage: f.integral(definite=True) 

3 

""" 

if mode is None: 

return self._riemann_sum_helper(N, lambda x0, x1: (x1-x0)*self(x0)) 

elif mode == "right": 

return self._riemann_sum_helper(N, lambda x0, x1: (x1-x0)*self(x1)) 

elif mode == "midpoint": 

return self._riemann_sum_helper(N, lambda x0, x1: (x1-x0)*self((x0+x1)/2)) 

else: 

raise ValueError("invalid mode") 

 

def riemann_sum(self,N,mode=None): 

""" 

Returns the piecewise line function defined by the Riemann sums in 

numerical integration based on a subdivision into N subintervals. 

Set mode="midpoint" for the height of the rectangles to be 

determined by the midpoint of the subinterval; set mode="right" for 

the height of the rectangles to be determined by the right-hand 

endpoint of the subinterval; the default is mode="left" (the height 

of the rectangles to be determined by the left-hand endpoint of 

the subinterval). 

 

EXAMPLES:: 

 

sage: f1(x) = x^2 

sage: f2(x) = 5-x^2 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.riemann_sum(6,mode="midpoint") 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 6 parts, [[(0, 1/3), 1/36], [(1/3, 2/3), 1/4], [(2/3, 1), 25/36], [(1, 4/3), 131/36], [(4/3, 5/3), 11/4], [(5/3, 2), 59/36]] 

 

:: 

 

sage: f = Piecewise([[(-1,1),(1-x^2).function(x)]]) 

sage: rsf = f.riemann_sum(7) 

sage: P = f.plot(rgbcolor=(0.7,0.1,0.5), plot_points=40) 

sage: Q = rsf.plot(rgbcolor=(0.7,0.6,0.6), plot_points=40) 

sage: L = add([line([[a,0],[a,f(x=a)]],rgbcolor=(0.7,0.6,0.6)) for (a,b),f in rsf.list()]) 

sage: P + Q + L 

Graphics object consisting of 15 graphics primitives 

 

:: 

 

sage: f = Piecewise([[(-1,1),(1/2+x-x^3)]], x) ## example 3 

sage: rsf = f.riemann_sum(8) 

sage: P = f.plot(rgbcolor=(0.7,0.1,0.5), plot_points=40) 

sage: Q = rsf.plot(rgbcolor=(0.7,0.6,0.6), plot_points=40) 

sage: L = add([line([[a,0],[a,f(x=a)]],rgbcolor=(0.7,0.6,0.6)) for (a,b),f in rsf.list()]) 

sage: P + Q + L 

Graphics object consisting of 17 graphics primitives 

""" 

if mode is None: 

rsum = self._riemann_sum_helper(N, lambda x0,x1: [[(x0,x1),SR(self(x0))]], 

initial=[]) 

elif mode == "right": 

rsum = self._riemann_sum_helper(N, lambda x0,x1: [[(x0,x1),SR(self(x1))]], 

initial=[]) 

elif mode == "midpoint": 

rsum = self._riemann_sum_helper(N, lambda x0,x1: [[(x0,x1),SR(self((x0+x1)/2))]], 

initial=[]) 

else: 

raise ValueError("invalid mode") 

return Piecewise(rsum) 

 

def trapezoid(self,N): 

""" 

Returns the piecewise line function defined by the trapezoid rule 

for numerical integration based on a subdivision into N 

subintervals. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: f1 = x^2  

sage: f2 = 5-x^2 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.trapezoid(4) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 4 parts, [[(0, 1/2), 1/2*x], [(1/2, 1), 9/2*x - 2], [(1, 3/2), 1/2*x + 2], [(3/2, 2), -7/2*x + 8]] 

 

:: 

 

sage: R.<x> = QQ[] 

sage: f = Piecewise([[(-1,1),1-x^2]]) 

sage: tf = f.trapezoid(4) 

sage: P = f.plot(rgbcolor=(0.7,0.1,0.5), plot_points=40) 

sage: Q = tf.plot(rgbcolor=(0.7,0.6,0.6), plot_points=40) 

sage: L = add([line([[a,0],[a,f(a)]],rgbcolor=(0.7,0.6,0.6)) for (a,b),f in tf.list()]) 

sage: P+Q+L 

Graphics object consisting of 9 graphics primitives 

 

:: 

 

sage: R.<x> = QQ[] 

sage: f = Piecewise([[(-1,1),1/2+x-x^3]]) ## example 3 

sage: tf = f.trapezoid(6) 

sage: P = f.plot(rgbcolor=(0.7,0.1,0.5), plot_points=40) 

sage: Q = tf.plot(rgbcolor=(0.7,0.6,0.6), plot_points=40) 

sage: L = add([line([[a,0],[a,f(a)]],rgbcolor=(0.7,0.6,0.6)) for (a,b),f in tf.list()]) 

sage: P+Q+L 

Graphics object consisting of 13 graphics primitives 

 

TESTS: 

 

Use variables other than x (:trac:`13836`):: 

 

sage: R.<y> = QQ[] 

sage: f1 = y^2 

sage: f2 = 5-y^2 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

sage: f.trapezoid(4) 

Piecewise defined function with 4 parts, [[(0, 1/2), 1/2*y], [(1/2, 1), 9/2*y - 2], [(1, 3/2), 1/2*y + 2], [(3/2, 2), -7/2*y + 8]] 

 

""" 

x = QQ[self.default_variable()].gen() 

def f(x0, x1): 

f0, f1 = self(x0), self(x1) 

return [[(x0,x1),f0+(f1-f0)*(x1-x0)**(-1)*(x-x0)]] 

rsum = self._riemann_sum_helper(N, f, initial=[]) 

return Piecewise(rsum) 

 

def trapezoid_integral_approximation(self,N): 

""" 

Returns the approximation given by the trapezoid rule for numerical 

integration based on a subdivision into N subintervals. 

 

EXAMPLES:: 

 

sage: f1(x) = x^2 ## example 1 

sage: f2(x) = 1-(1-x)^2 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot(rgbcolor=(0.7,0.1,0.5), plot_points=40) 

sage: tf = f.trapezoid(6) 

sage: Q = tf.plot(rgbcolor=(0.7,0.6,0.6), plot_points=40) 

sage: ta = f.trapezoid_integral_approximation(6) 

sage: t = text('trapezoid approximation = %s'%ta, (1.5, 0.25)) 

sage: a = f.integral(definite=True) 

sage: tt = text('area under curve = %s'%a, (1.5, -0.5)) 

sage: P + Q + t + tt 

Graphics object consisting of 10 graphics primitives 

 

:: 

 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) ## example 2 

sage: tf = f.trapezoid(4) 

sage: ta = f.trapezoid_integral_approximation(4) 

sage: Q = tf.plot(rgbcolor=(0.7,0.6,0.6), plot_points=40) 

sage: t = text('trapezoid approximation = %s'%ta, (1.5, 0.25)) 

sage: a = f.integral(definite=True) 

sage: tt = text('area under curve = %s'%a, (1.5, -0.5)) 

sage: P+Q+t+tt 

Graphics object consisting of 8 graphics primitives 

""" 

def f(x0, x1): 

f0, f1 = self(x0), self(x1) 

return ((f1+f0)/2)*(x1-x0) 

return self._riemann_sum_helper(N, f) 

 

def critical_points(self): 

""" 

Return the critical points of this piecewise function. 

 

.. warning:: 

 

Uses maxima, which prints the warning to use results with 

caution. Only works for piecewise functions whose parts are 

polynomials with real critical not occurring on the 

interval endpoints. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: f1 = x^0 

sage: f2 = 10*x - x^2 

sage: f3 = 3*x^4 - 156*x^3 + 3036*x^2 - 26208*x 

sage: f = Piecewise([[(0,3),f1],[(3,10),f2],[(10,20),f3]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: expected = [5, 12, 13, 14] 

sage: all(abs(e-a) < 0.001 for e,a in zip(expected, f.critical_points())) 

True 

 

TESTS: 

 

Use variables other than x (:trac:`13836`):: 

 

sage: R.<y> = QQ[] 

sage: f1 = y^0 

sage: f2 = 10*y - y^2 

sage: f3 = 3*y^4 - 156*y^3 + 3036*y^2 - 26208*y 

sage: f = Piecewise([[(0,3),f1],[(3,10),f2],[(10,20),f3]]) 

sage: expected = [5, 12, 13, 14] 

sage: all(abs(e-a) < 0.001 for e,a in zip(expected, f.critical_points())) 

True 

""" 

from sage.calculus.calculus import maxima 

x = QQ[self.default_variable()].gen() 

crit_pts = [] 

for (a,b), f in self.list(): 

for root in maxima.allroots(SR(f).diff(x)==0): 

root = float(root.rhs()) 

if a < root < b: 

crit_pts.append(root) 

return crit_pts 

 

def base_ring(self): 

""" 

Returns the base ring of the function pieces. This 

is useful when this class is extended. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = x^2-5 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: base_ring(f) 

Symbolic Ring 

 

:: 

 

sage: R.<x> = QQ[] 

sage: f1 = x^0 

sage: f2 = 10*x - x^2 

sage: f3 = 3*x^4 - 156*x^3 + 3036*x^2 - 26208*x 

sage: f = Piecewise([[(0,3),f1],[(3,10),f2],[(10,20),f3]]) 

sage: f.base_ring() 

Rational Field 

""" 

return (self.functions()[0]).base_ring() 

 

def end_points(self): 

""" 

Returns a list of all interval endpoints for this function. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = x^2-5 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.end_points() 

[0, 1, 2, 3] 

""" 

intervals = self.intervals() 

return [ intervals[0][0] ] + [b for a,b in intervals] 

 

def __call__(self,x0): 

""" 

Evaluates self at x0. Returns the average value of the jump if x0 

is an interior endpoint of one of the intervals of self and the 

usual value otherwise. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = exp(x) 

sage: f4(x) = sin(2*x) 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f(0.5) 

1 

sage: f(5/2) 

e^(5/2) 

sage: f(5/2).n() 

12.1824939607035 

sage: f(1) 

1/2 

""" 

#x0 = QQ(x0) ## does not allow for evaluation at pi 

n = self.length() 

endpts = self.end_points() 

for i in range(1,n): 

if x0 == endpts[i]: 

return (self.functions()[i-1](x0) + self.functions()[i](x0))/2 

if x0 == endpts[0]: 

return self.functions()[0](x0) 

if x0 == endpts[n]: 

return self.functions()[n-1](x0) 

for i in range(n): 

if endpts[i] < x0 < endpts[i+1]: 

return self.functions()[i](x0) 

raise ValueError("Value not defined outside of domain.") 

 

def which_function(self,x0): 

""" 

Returns the function piece used to evaluate self at x0. 

 

EXAMPLES:: 

 

sage: f1(z) = z 

sage: f2(x) = 1-x 

sage: f3(y) = exp(y) 

sage: f4(t) = sin(2*t) 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.which_function(3/2) 

x |--> -x + 1 

""" 

for (a,b), f in self.list(): 

if a <= x0 <= b: 

return f 

raise ValueError("Function not defined outside of domain.") 

 

def default_variable(self): 

r""" 

Return the default variable. The default variable is defined as the 

first variable in the first piece that has a variable. If no pieces have 

a variable (each piece is a constant value), `x` is returned. 

 

The result is cached. 

 

AUTHOR: Paul Butler 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 5*x 

sage: p = Piecewise([[(0,1),f1],[(1,4),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: p.default_variable() 

x 

 

sage: f1 = 3*var('y') 

sage: p = Piecewise([[(0,1),4],[(1,4),f1]]) 

sage: p.default_variable() 

y 

 

""" 

try: 

return self.__default_variable 

except AttributeError: 

pass 

for _, fun in self._list: 

try: 

fun = SR(fun) 

if fun.variables(): 

v = fun.variables()[0] 

self.__default_variable = v 

return v 

except TypeError: 

# pass if fun is lambda function 

pass 

# default to x 

v = var('x') 

self.__default_value = v 

return v 

 

def integral(self, x=None, a=None, b=None, definite=False): 

r""" 

By default, returns the indefinite integral of the function. 

If definite=True is given, returns the definite integral. 

 

AUTHOR:  

 

- Paul Butler 

 

EXAMPLES:: 

 

sage: f1(x) = 1-x 

sage: f = Piecewise([[(0,1),1],[(1,2),f1]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.integral(definite=True) 

1/2 

 

:: 

 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.integral(definite=True) 

1/2*pi 

 

sage: f1(x) = 2 

sage: f2(x) = 3 - x 

sage: f = Piecewise([[(-2, 0), f1], [(0, 3), f2]]) 

sage: f.integral() 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 2 parts, [[(-2, 0), x |--> 2*x + 4], [(0, 3), x |--> -1/2*x^2 + 3*x + 4]] 

 

sage: f1(y) = -1 

sage: f2(y) = y + 3 

sage: f3(y) = -y - 1 

sage: f4(y) = y^2 - 1 

sage: f5(y) = 3 

sage: f = Piecewise([[(-4,-3),f1],[(-3,-2),f2],[(-2,0),f3],[(0,2),f4],[(2,3),f5]]) 

sage: F = f.integral(y) 

sage: F 

Piecewise defined function with 5 parts, [[(-4, -3), y |--> -y - 4], [(-3, -2), y |--> 1/2*y^2 + 3*y + 7/2], [(-2, 0), y |--> -1/2*y^2 - y - 1/2], [(0, 2), y |--> 1/3*y^3 - y - 1/2], [(2, 3), y |--> 3*y - 35/6]] 

 

Ensure results are consistent with FTC:: 

 

sage: F(-3) - F(-4) 

-1 

sage: F(-1) - F(-3) 

1 

sage: F(2) - F(0) 

2/3 

sage: f.integral(y, 0, 2) 

2/3 

sage: F(3) - F(-4) 

19/6 

sage: f.integral(y, -4, 3) 

19/6 

sage: f.integral(definite=True) 

19/6 

 

:: 

 

sage: f1(y) = (y+3)^2 

sage: f2(y) = y+3 

sage: f3(y) = 3 

sage: f = Piecewise([[(-infinity, -3), f1], [(-3, 0), f2], [(0, infinity), f3]]) 

sage: f.integral() 

Piecewise defined function with 3 parts, [[(-Infinity, -3), y |--> 1/3*y^3 + 3*y^2 + 9*y + 9], [(-3, 0), y |--> 1/2*y^2 + 3*y + 9/2], [(0, +Infinity), y |--> 3*y + 9/2]] 

 

:: 

 

sage: f1(x) = e^(-abs(x)) 

sage: f = Piecewise([[(-infinity, infinity), f1]]) 

sage: f.integral(definite=True) 

2 

sage: f.integral() 

Piecewise defined function with 1 parts, [[(-Infinity, +Infinity), x |--> -1/2*((sgn(x) - 1)*e^(2*x) - 2*e^x*sgn(x) + sgn(x) + 1)*e^(-x) - 1]] 

 

:: 

 

sage: f = Piecewise([((0, 5), cos(x))]) 

sage: f.integral() 

Piecewise defined function with 1 parts, [[(0, 5), x |--> sin(x)]] 

 

 

TESTS: 

 

Verify that piecewise integrals of zero work (:trac:`10841`):: 

 

sage: f0(x) = 0  

sage: f = Piecewise([[(0,1),f0]]) 

sage: f.integral(x,0,1) 

0 

sage: f = Piecewise([[(0,1), 0]]) 

sage: f.integral(x,0,1) 

0 

sage: f = Piecewise([[(0,1), SR(0)]]) 

sage: f.integral(x,0,1) 

0 

 

""" 

if a is not None and b is not None: 

F = self.integral(x) 

return F(b) - F(a) 

 

if a is not None or b is not None: 

raise TypeError('only one endpoint given') 

 

area = 0 # cumulative definite integral of parts to the left of the current interval 

integrand_pieces = self.list() 

integrand_pieces.sort() 

new_pieces = [] 

 

if x is None: 

x = self.default_variable() 

 

# The integral is computed by iterating over the pieces in order. 

# The definite integral for each piece is calculated and accumulated in `area`. 

# Thus at any time, `area` represents the definite integral of all the pieces 

# encountered so far. The indefinite integral of each piece is also calculated, 

# and the `area` before each piece is added to the piece. 

# 

# If a definite integral is requested, `area` is returned.  

# Otherwise, a piecewise function is constructed from the indefinite integrals 

# and returned. 

# 

# An exception is made if integral is called on a piecewise function 

# that starts at -infinity. In this case, we do not try to calculate the 

# definite integral of the first piece, and the value of `area` remains 0 

# after the first piece. 

 

for (start, end), fun in integrand_pieces: 

fun = SR(fun) 

if start == -infinity and not definite: 

fun_integrated = fun.integral(x, end, x) 

else: 

try: 

assume(start < x) 

except ValueError: # Assumption is redundant 

pass 

fun_integrated = fun.integral(x, start, x) + area 

forget(start < x) 

if definite or end != infinity: 

area += fun.integral(x, start, end) 

new_pieces.append([(start, end), SR(fun_integrated).function(x)]) 

 

if definite: 

return SR(area) 

else: 

return Piecewise(new_pieces) 

 

def convolution(self, other): 

""" 

Returns the convolution function, 

`f*g(t)=\int_{-\infty}^\infty f(u)g(t-u)du`, for compactly 

supported `f,g`. 

 

EXAMPLES:: 

 

sage: x = PolynomialRing(QQ,'x').gen() 

sage: f = Piecewise([[(0,1),1*x^0]]) ## example 0 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: g = f.convolution(f) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: h = f.convolution(g) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1)); 

sage: # Type show(P+Q+R) to view 

sage: f = Piecewise([[(0,1),1*x^0],[(1,2),2*x^0],[(2,3),1*x^0]]) ## example 1 

sage: g = f.convolution(f) 

sage: h = f.convolution(g) 

sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1)); 

sage: # Type show(P+Q+R) to view 

sage: f = Piecewise([[(-1,1),1]]) ## example 2 

sage: g = Piecewise([[(0,3),x]]) 

sage: f.convolution(g) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 3 parts, [[(-1, 1), 0], [(1, 2), -3/2*x], [(2, 4), -3/2*x]] 

sage: g = Piecewise([[(0,3),1*x^0],[(3,4),2*x^0]]) 

sage: f.convolution(g) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 5 parts, [[(-1, 1), x + 1], [(1, 2), 3], [(2, 3), x], [(3, 4), -x + 8], [(4, 5), -2*x + 10]] 

""" 

f = self 

g = other 

M = min(min(f.end_points()),min(g.end_points())) 

N = max(max(f.end_points()),max(g.end_points())) 

R2 = PolynomialRing(QQ,2,names=["tt","uu"]) 

tt,uu = R2.gens() 

conv = 0 

f0 = f.functions()[0] 

g0 = g.functions()[0] 

R1 = f0.parent() 

xx = R1.gen() 

var = repr(xx) 

if len(f.intervals())==1 and len(g.intervals())==1: 

f = f.unextend() 

g = g.unextend() 

a1 = f.intervals()[0][0] 

a2 = f.intervals()[0][1] 

b1 = g.intervals()[0][0] 

b2 = g.intervals()[0][1] 

i1 = repr(f0).replace(var,repr(uu)) 

i2 = repr(g0).replace(var,"("+repr(tt-uu)+")") 

cmd1 = "integrate((%s)*(%s),%s,%s,%s)"%(i1,i2, uu, a1, tt-b1) ## if a1+b1 < tt < a2+b1 

cmd2 = "integrate((%s)*(%s),%s,%s,%s)"%(i1,i2, uu, tt-b2, tt-b1) ## if a1+b2 < tt < a2+b1 

cmd3 = "integrate((%s)*(%s),%s,%s,%s)"%(i1,i2, uu, tt-b2, a2) ## if a1+b2 < tt < a2+b2 

cmd4 = "integrate((%s)*(%s),%s,%s,%s)"%(i1,i2, uu, a1, a2) ## if a2+b1 < tt < a1+b2 

conv1 = maxima.eval(cmd1) 

conv2 = maxima.eval(cmd2) 

conv3 = maxima.eval(cmd3) 

conv4 = maxima.eval(cmd4) 

# this is a very, very, very ugly hack 

x = PolynomialRing(QQ,'x').gen() 

fg1 = sage_eval(conv1.replace("tt",var), {'x':x}) ## should be = R2(conv1) 

fg2 = sage_eval(conv2.replace("tt",var), {'x':x}) ## should be = R2(conv2) 

fg3 = sage_eval(conv3.replace("tt",var), {'x':x}) ## should be = R2(conv3) 

fg4 = sage_eval(conv4.replace("tt",var), {'x':x}) ## should be = R2(conv4) 

if a1-b1<a2-b2: 

if a2+b1!=a1+b2: 

h = Piecewise([[(a1+b1,a1+b2),fg1],[(a1+b2,a2+b1),fg4],[(a2+b1,a2+b2),fg3]]) 

else: 

h = Piecewise([[(a1+b1,a1+b2),fg1],[(a1+b2,a2+b2),fg3]]) 

else: 

if a1+b2!=a2+b1: 

h = Piecewise([[(a1+b1,a2+b1),fg1],[(a2+b1,a1+b2),fg2],[(a1+b2,a2+b2),fg3]]) 

else: 

h = Piecewise([[(a1+b1,a2+b1),fg1],[(a2+b1,a2+b2),fg3]]) 

return h 

 

if len(f.intervals())>1 or len(g.intervals())>1: 

z = Piecewise([[(-3*abs(N-M),3*abs(N-M)),0*xx**0]]) 

ff = f.functions() 

gg = g.functions() 

intvlsf = f.intervals() 

intvlsg = g.intervals() 

for i in range(len(ff)): 

for j in range(len(gg)): 

f0 = Piecewise([[intvlsf[i],ff[i]]]) 

g0 = Piecewise([[intvlsg[j],gg[j]]]) 

h = g0.convolution(f0) 

z = z + h 

return z.unextend() 

 

def derivative(self): 

r""" 

Returns the derivative (as computed by maxima) 

Piecewise(I,`(d/dx)(self|_I)`), as I runs over the 

intervals belonging to self. self must be piecewise polynomial. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.derivative() 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

Piecewise defined function with 2 parts, [[(0, 1), x |--> 0], [(1, 2), x |--> -1]] 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.derivative() 

Piecewise defined function with 2 parts, [[(0, 1/2*pi), x |--> 0], [(1/2*pi, pi), x |--> 0]] 

 

:: 

 

sage: f = Piecewise([[(0,1), (x * 2)]], x) 

sage: f.derivative() 

Piecewise defined function with 1 parts, [[(0, 1), x |--> 2]] 

""" 

x = self.default_variable() 

dlist = [[(a, b), derivative(f(x), x).function(x)] for (a,b),f in self.list()] 

return Piecewise(dlist) 

 

def tangent_line(self, pt): 

""" 

Computes the linear function defining the tangent line of the 

piecewise function self. 

 

EXAMPLES:: 

 

sage: f1(x) = x^2 

sage: f2(x) = 5-x^3+x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: tf = f.tangent_line(0.9) ## tangent line at x=0.9 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot(rgbcolor=(0.7,0.1,0.5), plot_points=40) 

sage: Q = tf.plot(rgbcolor=(0.7,0.2,0.2), plot_points=40) 

sage: P + Q 

Graphics object consisting of 4 graphics primitives 

""" 

pt = QQ(pt) 

R = QQ[self.default_variable()] 

x = R.gen() 

der = self.derivative() 

tanline = (x-pt)*der(pt)+self(pt) 

dlist = [[(a, b), tanline] for (a,b),f in self.list()] 

return Piecewise(dlist) 

 

def plot(self, *args, **kwds): 

""" 

Returns the plot of self. 

 

Keyword arguments are passed onto the plot command for each piece 

of the function. E.g., the plot_points keyword affects each 

segment of the plot. 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = exp(x) 

sage: f4(x) = sin(2*x) 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot(rgbcolor=(0.7,0.1,0), plot_points=40) 

sage: P 

Graphics object consisting of 4 graphics primitives 

 

Remember: to view this, type show(P) or P.save("path/myplot.png") 

and then open it in a graphics viewer such as GIMP. 

 

TESTS: 

 

We should not add each piece to the legend individually, since 

this creates duplicates (:trac:`12651`). This tests that only 

one of the graphics objects in the plot has a non-``None`` 

``legend_label``:: 

 

sage: f1 = sin(x) 

sage: f2 = cos(x) 

sage: f = piecewise([[(-1,0), f1],[(0,1), f2]]) 

sage: p = f.plot(legend_label='$f(x)$') 

sage: lines = [ 

....: line 

....: for line in p._objects 

....: if line.options()['legend_label'] is not None ] 

sage: len(lines) 

1 

""" 

from sage.plot.all import plot, Graphics 

 

g = Graphics() 

 

for i, ((a,b), f) in enumerate(self.list()): 

# If it's the first piece, pass all arguments. Otherwise, 

# filter out 'legend_label' so that we don't add each 

# piece to the legend separately (trac #12651). 

if i != 0 and 'legend_label' in kwds: 

del kwds['legend_label'] 

 

g += plot(f, a, b, *args, **kwds) 

 

return g 

 

def fourier_series_cosine_coefficient(self,n,L): 

r""" 

Returns the n-th Fourier series coefficient of 

`\cos(n\pi x/L)`, `a_n`. 

 

INPUT: 

 

 

- ``self`` - the function f(x), defined over -L x L 

 

- ``n`` - an integer n=0 

 

- ``L`` - (the period)/2 

 

 

OUTPUT: 

`a_n = \frac{1}{L}\int_{-L}^L f(x)\cos(n\pi x/L)dx` 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_cosine_coefficient(2,1) 

pi^(-2) 

sage: f(x) = x^2 

sage: f = Piecewise([[(-pi,pi),f]]) 

sage: f.fourier_series_cosine_coefficient(2,pi) 

1 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.fourier_series_cosine_coefficient(5,pi) 

-3/5/pi 

""" 

from sage.all import cos, pi 

x = var('x') 

result = sum([(f(x)*cos(pi*x*n/L)/L).integrate(x, a, b) 

for (a,b), f in self.list()]) 

if is_Expression(result): 

return result.simplify_trig() 

return result 

 

def fourier_series_sine_coefficient(self,n,L): 

r""" 

Returns the n-th Fourier series coefficient of 

`\sin(n\pi x/L)`, `b_n`. 

 

INPUT: 

 

 

- ``self`` - the function f(x), defined over -L x L 

 

- ``n`` - an integer n0 

 

- ``L`` - (the period)/2 

 

 

OUTPUT: 

`b_n = \frac{1}{L}\int_{-L}^L f(x)\sin(n\pi x/L)dx` 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_sine_coefficient(2,1) # L=1, n=2 

0 

""" 

from sage.all import sin, pi 

x = var('x') 

result = sum([(f(x)*sin(pi*x*n/L)/L).integrate(x, a, b) 

for (a,b), f in self.list()]) 

if is_Expression(result): 

return result.simplify_trig() 

return result 

 

def _fourier_series_helper(self, N, L, scale_function): 

r""" 

A helper function for the construction of Fourier series. The 

argument scale_function is a function which takes in n, 

representing the `n^{th}` coefficient, and return an 

expression to scale the sine and cosine coefficients by. 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f._fourier_series_helper(3, 1, lambda n: 1) 

cos(2*pi*x)/pi^2 - 4*cos(pi*x)/pi^2 + 1/3 

""" 

from sage.all import pi, sin, cos, srange 

x = self.default_variable() 

a0 = self.fourier_series_cosine_coefficient(0,L) 

result = a0/2 + sum([(self.fourier_series_cosine_coefficient(n,L)*cos(n*pi*x/L) + 

self.fourier_series_sine_coefficient(n,L)*sin(n*pi*x/L))* 

scale_function(n) 

for n in srange(1,N)]) 

return result.expand() 

 

 

def fourier_series_partial_sum(self,N,L): 

r""" 

Returns the partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N [a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

as a string. 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_partial_sum(3,1) 

cos(2*pi*x)/pi^2 - 4*cos(pi*x)/pi^2 + 1/3 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.fourier_series_partial_sum(3,pi) 

-3*cos(x)/pi - 3*sin(2*x)/pi + 3*sin(x)/pi - 1/4 

""" 

return self._fourier_series_helper(N, L, lambda n: 1) 

 

def fourier_series_partial_sum_cesaro(self,N,L): 

r""" 

Returns the Cesaro partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N (1-n/N)*[a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

 

as a string. This is a "smoother" partial sum - the Gibbs 

phenomenon is mollified. 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_partial_sum_cesaro(3,1) 

1/3*cos(2*pi*x)/pi^2 - 8/3*cos(pi*x)/pi^2 + 1/3 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.fourier_series_partial_sum_cesaro(3,pi) 

-2*cos(x)/pi - sin(2*x)/pi + 2*sin(x)/pi - 1/4 

""" 

return self._fourier_series_helper(N, L, lambda n: 1-n/N) 

 

def fourier_series_partial_sum_hann(self,N,L): 

r""" 

Returns the Hann-filtered partial sum (named after von Hann, not 

Hamming) 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N H_N(n)*[a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

as a string, where `H_N(x) = (1+\cos(\pi x/N))/2`. This is 

a "smoother" partial sum - the Gibbs phenomenon is mollified. 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_partial_sum_hann(3,1) 

1/4*cos(2*pi*x)/pi^2 - 3*cos(pi*x)/pi^2 + 1/3 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.fourier_series_partial_sum_hann(3,pi) 

-9/4*cos(x)/pi - 3/4*sin(2*x)/pi + 9/4*sin(x)/pi - 1/4 

""" 

from sage.all import cos, pi 

return self._fourier_series_helper(N, L, lambda n: (1+cos(pi*n/N))/2) 

 

def fourier_series_partial_sum_filtered(self,N,L,F): 

r""" 

Returns the "filtered" partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N F_n*[a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

as a string, where `F = [F_1,F_2, ..., F_{N}]` is a list 

of length `N` consisting of real numbers. This can be used 

to plot FS solutions to the heat and wave PDEs. 

 

EXAMPLES:: 

 

sage: f(x) = x^2 

sage: f = Piecewise([[(-1,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_partial_sum_filtered(3,1,[1,1,1]) 

cos(2*pi*x)/pi^2 - 4*cos(pi*x)/pi^2 + 1/3 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.fourier_series_partial_sum_filtered(3,pi,[1,1,1]) 

-3*cos(x)/pi - 3*sin(2*x)/pi + 3*sin(x)/pi - 1/4 

""" 

return self._fourier_series_helper(N, L, lambda n: F[n]) 

 

def plot_fourier_series_partial_sum(self,N,L,xmin,xmax, **kwds): 

r""" 

Plots the partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + sum_{n=1}^N [a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

over xmin x xmin. 

 

EXAMPLES:: 

 

sage: f1(x) = -2 

sage: f2(x) = 1 

sage: f3(x) = -1 

sage: f4(x) = 2 

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot_fourier_series_partial_sum(3,pi,-5,5) # long time 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: P = f.plot_fourier_series_partial_sum(15,pi,-5,5) # long time 

 

Remember, to view this type show(P) or P.save("path/myplot.png") 

and then open it in a graphics viewer such as GIMP. 

""" 

from sage.plot.all import plot 

return plot(self.fourier_series_partial_sum(N,L), xmin, xmax, **kwds) 

 

def plot_fourier_series_partial_sum_cesaro(self,N,L,xmin,xmax, **kwds): 

r""" 

Plots the partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N (1-n/N)*[a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

 

over xmin x xmin. This is a "smoother" partial sum - the Gibbs 

phenomenon is mollified. 

 

EXAMPLES:: 

 

sage: f1(x) = -2 

sage: f2(x) = 1 

sage: f3(x) = -1 

sage: f4(x) = 2 

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot_fourier_series_partial_sum_cesaro(3,pi,-5,5) # long time 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: P = f.plot_fourier_series_partial_sum_cesaro(15,pi,-5,5) # long time 

 

Remember, to view this type show(P) or P.save("path/myplot.png") 

and then open it in a graphics viewer such as GIMP. 

""" 

from sage.plot.all import plot 

return plot(self.fourier_series_partial_sum_cesaro(N,L), xmin, xmax, **kwds) 

 

def plot_fourier_series_partial_sum_hann(self,N,L,xmin,xmax, **kwds): 

r""" 

Plots the partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N H_N(n)*[a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

 

over xmin x xmin, where H_N(x) = (0.5)+(0.5)\*cos(x\*pi/N) is the 

N-th Hann filter. 

 

EXAMPLES:: 

 

sage: f1(x) = -2 

sage: f2(x) = 1 

sage: f3(x) = -1 

sage: f4(x) = 2 

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot_fourier_series_partial_sum_hann(3,pi,-5,5) # long time 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,pi/2),f1],[(pi/2,pi),f2]]) 

sage: P = f.plot_fourier_series_partial_sum_hann(15,pi,-5,5) # long time 

 

Remember, to view this type show(P) or P.save("path/myplot.png") 

and then open it in a graphics viewer such as GIMP. 

""" 

from sage.plot.all import plot 

return plot(self.fourier_series_partial_sum_hann(N,L), xmin, xmax, **kwds) 

 

def plot_fourier_series_partial_sum_filtered(self,N,L,F,xmin,xmax, **kwds): 

r""" 

Plots the partial sum 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^N F_n*[a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})],  

 

 

over xmin x xmin, where `F = [F_1,F_2, ..., F_{N}]` is a 

list of length `N` consisting of real numbers. This can be 

used to plot FS solutions to the heat and wave PDEs. 

 

EXAMPLES:: 

 

sage: f1(x) = -2 

sage: f2(x) = 1 

sage: f3(x) = -1 

sage: f4(x) = 2 

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: P = f.plot_fourier_series_partial_sum_filtered(3,pi,[1]*3,-5,5) # long time 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f1],[(pi/2,pi),f2]]) 

sage: P = f.plot_fourier_series_partial_sum_filtered(15,pi,[1]*15,-5,5) # long time 

 

Remember, to view this type show(P) or P.save("path/myplot.png") 

and then open it in a graphics viewer such as GIMP. 

""" 

from sage.plot.all import plot 

return plot(self.fourier_series_partial_sum_filtered(N,L,F), xmin, xmax, **kwds) 

 

def fourier_series_value(self,x,L): 

r""" 

Returns the value of the Fourier series coefficient of self at 

`x`, 

 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty [a_n\cos(\frac{n\pi x}{L}) + b_n\sin(\frac{n\pi x}{L})], \ \ \ -L<x<L.  

 

 

This method applies to piecewise non-polynomial functions as well. 

 

INPUT: 

 

 

- ``self`` - the function f(x), defined over -L x L 

 

- ``x`` - a real number 

 

- ``L`` - (the period)/2 

 

 

OUTPUT: `(f^*(x+)+f^*(x-)/2`, where `f^*` denotes 

the function `f` extended to `\RR` with period 

`2L` (Dirichlet's Theorem for Fourier series). 

 

EXAMPLES:: 

 

sage: f1(x) = 1 

sage: f2(x) = 1-x 

sage: f3(x) = exp(x) 

sage: f4(x) = sin(2*x) 

sage: f = Piecewise([[(-10,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.fourier_series_value(101,10)  

1/2 

sage: f.fourier_series_value(100,10) 

1 

sage: f.fourier_series_value(10,10) 

1/2*sin(20) + 1/2 

sage: f.fourier_series_value(20,10) 

1 

sage: f.fourier_series_value(30,10) 

1/2*sin(20) + 1/2 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(-pi,0),lambda x:0],[(0,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.fourier_series_value(-1,pi) 

0 

sage: f.fourier_series_value(20,pi) 

-1 

sage: f.fourier_series_value(pi/2,pi) 

1/2 

""" 

xnew = x - int(RR(x/(2*L)))*2*L 

endpts = self.end_points() 

if xnew == endpts[0] or xnew == endpts[-1]: 

return (self.functions()[0](endpts[0]) + self.functions()[-1](endpts[-1]))/2 

else: 

return self(xnew) 

 

def cosine_series_coefficient(self,n,L): 

r""" 

Returns the n-th cosine series coefficient of 

`\cos(n\pi x/L)`, `a_n`. 

 

INPUT: 

 

 

- ``self`` - the function f(x), defined over 0 x L (no 

checking is done to insure this) 

 

- ``n`` - an integer n=0 

 

- ``L`` - (the period)/2 

 

 

OUTPUT: 

`a_n = \frac{2}{L}\int_{-L}^L f(x)\cos(n\pi x/L)dx` such 

that 

 

.. MATH:: 

 

f(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty a_n\cos(\frac{n\pi x}{L}),\ \ 0<x<L.  

 

 

 

EXAMPLES:: 

 

sage: f(x) = x 

sage: f = Piecewise([[(0,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.cosine_series_coefficient(2,1)  

0 

sage: f.cosine_series_coefficient(3,1) 

-4/9/pi^2 

sage: f1(x) = -1 

sage: f2(x) = 2 

sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]]) 

sage: f.cosine_series_coefficient(2,pi) 

0 

sage: f.cosine_series_coefficient(3,pi) 

2/pi 

sage: f.cosine_series_coefficient(111,pi) 

2/37/pi 

sage: f1 = lambda x: x*(pi-x) 

sage: f = Piecewise([[(0,pi),f1]]) 

sage: f.cosine_series_coefficient(0,pi) 

1/3*pi^2 

 

""" 

from sage.all import cos, pi 

x = var('x') 

result = sum([(2*f(x)*cos(pi*x*n/L)/L).integrate(x, a, b) 

for (a,b), f in self.list()]) 

if is_Expression(result): 

return result.simplify_trig() 

return result 

 

 

def sine_series_coefficient(self,n,L): 

r""" 

Returns the n-th sine series coefficient of 

`\sin(n\pi x/L)`, `b_n`. 

 

INPUT: 

 

- ``self`` - the function f(x), defined over 0 x L (no 

checking is done to insure this) 

 

- ``n`` - an integer n0 

 

- ``L`` - (the period)/2 

 

OUTPUT: 

 

`b_n = \frac{2}{L}\int_{-L}^L f(x)\sin(n\pi x/L)dx` such 

that 

 

.. MATH:: 

 

f(x) \sim \sum_{n=1}^\infty b_n\sin(\frac{n\pi x}{L}),\ \ 0<x<L.  

 

EXAMPLES:: 

 

sage: f(x) = 1 

sage: f = Piecewise([[(0,1),f]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.sine_series_coefficient(2,1)  

0 

sage: f.sine_series_coefficient(3,1) 

4/3/pi 

""" 

from sage.all import sin, pi 

x = var('x') 

result = sum([(2*f(x)*sin(pi*x*n/L)/L).integrate(x, a, b) 

for (a,b), f in self.list()]) 

if is_Expression(result): 

return result.simplify_trig() 

return result 

 

def laplace(self, x='x', s='t'): 

r""" 

Returns the Laplace transform of self with respect to the variable 

var. 

 

INPUT: 

 

 

- ``x`` - variable of self 

 

- ``s`` - variable of Laplace transform. 

 

 

We assume that a piecewise function is 0 outside of its domain and 

that the left-most endpoint of the domain is 0. 

 

EXAMPLES:: 

 

sage: x, s, w = var('x, s, w') 

sage: f = Piecewise([[(0,1),1],[(1,2), 1-x]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f.laplace(x, s) 

-e^(-s)/s + (s + 1)*e^(-2*s)/s^2 + 1/s - e^(-s)/s^2 

sage: f.laplace(x, w) 

-e^(-w)/w + (w + 1)*e^(-2*w)/w^2 + 1/w - e^(-w)/w^2 

 

:: 

 

sage: y, t = var('y, t') 

sage: f = Piecewise([[(1,2), 1-y]])  

sage: f.laplace(y, t) 

(t + 1)*e^(-2*t)/t^2 - e^(-t)/t^2 

 

:: 

 

sage: s = var('s') 

sage: t = var('t') 

sage: f1(t) = -t 

sage: f2(t) = 2 

sage: f = Piecewise([[(0,1),f1],[(1,infinity),f2]]) 

sage: f.laplace(t,s) 

(s + 1)*e^(-s)/s^2 + 2*e^(-s)/s - 1/s^2 

""" 

from sage.all import assume, exp, forget 

x = var(x) 

s = var(s) 

assume(s>0) 

result = sum([(SR(f)*exp(-s*x)).integral(x,a,b) 

for (a,b),f in self.list()]) 

forget(s>0) 

return result 

 

def _make_compatible(self, other): 

""" 

Returns self and other extended to be defined on the same domain as 

well as a refinement of their intervals. This is used for adding 

and multiplying piecewise functions. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: f1 = Piecewise([[(0, 2), x]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: f2 = Piecewise([[(1, 3), x^2]]) 

sage: f1._make_compatible(f2) 

(Piecewise defined function with 2 parts, [[(0, 2), x], [(2, 3), 0]], 

Piecewise defined function with 2 parts, [[(0, 1), 0], [(1, 3), x^2]], 

[(0, 1), (1, 2), (2, 3)]) 

""" 

a1, b1 = self.domain() 

a2, b2 = other.domain() 

a = min(a1, a2) 

b = max(b1, b2) 

F = self.extend_by_zero_to(a,b) 

G = other.extend_by_zero_to(a,b) 

endpts = list(set(F.end_points()).union(set(G.end_points()))) 

endpts.sort() 

return F, G, list(zip(endpts, endpts[1:])) 

 

def __add__(self,other): 

""" 

Returns the piecewise defined function which is the sum of self and 

other. Does not require both domains be the same. 

 

EXAMPLES:: 

 

sage: x = PolynomialRing(QQ,'x').gen() 

sage: f1 = x^0 

sage: f2 = 1-x 

sage: f3 = 2*x 

sage: f4 = 10-x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: g1 = x-2 

sage: g2 = x-5 

sage: g = Piecewise([[(0,5),g1],[(5,10),g2]]) 

sage: h = f+g 

sage: h 

Piecewise defined function with 5 parts, [[(0, 1), x - 1], [(1, 2), -1], [(2, 3), 3*x - 2], [(3, 5), 8], [(5, 10), 5]] 

 

Note that in this case the functions must be defined using 

polynomial expressions *not* using the lambda notation. 

""" 

F, G, intervals = self._make_compatible(other) 

fcn = [] 

for a,b in intervals: 

fcn.append([(a,b), F.which_function(b)+G.which_function(b)]) 

return Piecewise(fcn) 

 

def __mul__(self,other): 

r""" 

Returns the piecewise defined function which is the product of one 

piecewise function (self) with another one (other). 

 

EXAMPLES:: 

 

sage: x = PolynomialRing(QQ,'x').gen() 

sage: f1 = x^0 

sage: f2 = 1-x 

sage: f3 = 2*x 

sage: f4 = 10-x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: g1 = x-2 

sage: g2 = x-5 

sage: g = Piecewise([[(0,5),g1],[(5,10),g2]]) 

sage: h = f*g 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: h 

Piecewise defined function with 5 parts, [[(0, 1), x - 2], [(1, 2), -x^2 + 3*x - 2], [(2, 3), 2*x^2 - 4*x], [(3, 5), -x^2 + 12*x - 20], [(5, 10), -x^2 + 15*x - 50]] 

sage: g*(11/2) 

Piecewise defined function with 2 parts, [[(0, 5), 11/2*x - 11], [(5, 10), 11/2*x - 55/2]] 

 

Note that in this method the functions must be defined using 

polynomial expressions *not* using the lambda notation. 

""" 

## needed for scalar multiplication 

if isinstance(other,Rational) or isinstance(other,Integer): 

return Piecewise([[(a,b), other*f] for (a,b),f in self.list()]) 

else: 

F, G, intervals = self._make_compatible(other) 

fcn = [] 

for a,b in intervals: 

fcn.append([(a,b),F.which_function(b)*G.which_function(b)]) 

return Piecewise(fcn) 

 

__rmul__ = __mul__ 

 

def __eq__(self,other): 

""" 

Implements Boolean == operator. 

 

EXAMPLES:: 

 

sage: f1 = x^0 

sage: f2 = 1-x 

sage: f3 = 2*x 

sage: f4 = 10-x 

sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

doctest:...: DeprecationWarning: use lower-case piecewise instead 

See http://trac.sagemath.org/14801 for details. 

sage: g = Piecewise([[(0,1),1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) 

sage: f==g 

True 

""" 

return self.list()==other.list()