Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

""" 

Number-Theoretic Functions 

""" 

 

#***************************************************************************** 

# Copyright (C) 2005 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

import sys 

import sage.rings.complex_field as complex_field 

 

from sage.rings.all import (ComplexField, ZZ, RR, RDF) 

from sage.rings.complex_number import is_ComplexNumber 

from sage.rings.real_mpfr import (RealField, is_RealNumber) 

 

from sage.symbolic.function import GinacFunction, BuiltinFunction 

 

import sage.libs.mpmath.utils as mpmath_utils 

from sage.misc.superseded import deprecation 

from sage.combinat.combinat import bernoulli_polynomial 

 

from .gamma import psi 

from .other import factorial 

 

CC = complex_field.ComplexField() 

I = CC.gen(0) 

 

 

class Function_zeta(GinacFunction): 

def __init__(self): 

r""" 

Riemann zeta function at s with s a real or complex number. 

 

INPUT: 

 

- ``s`` - real or complex number 

 

If s is a real number the computation is done using the MPFR 

library. When the input is not real, the computation is done using 

the PARI C library. 

 

EXAMPLES:: 

 

sage: zeta(x) 

zeta(x) 

sage: zeta(2) 

1/6*pi^2 

sage: zeta(2.) 

1.64493406684823 

sage: RR = RealField(200) 

sage: zeta(RR(2)) 

1.6449340668482264364724151666460251892189499012067984377356 

sage: zeta(I) 

zeta(I) 

sage: zeta(I).n() 

0.00330022368532410 - 0.418155449141322*I 

sage: zeta(sqrt(2)) 

zeta(sqrt(2)) 

sage: zeta(sqrt(2)).n() # rel tol 1e-10 

3.02073767948603 

 

It is possible to use the ``hold`` argument to prevent 

automatic evaluation:: 

 

sage: zeta(2,hold=True) 

zeta(2) 

 

To then evaluate again, we currently must use Maxima via 

:meth:`sage.symbolic.expression.Expression.simplify`:: 

 

sage: a = zeta(2,hold=True); a.simplify() 

1/6*pi^2 

 

The Laurent expansion of `\zeta(s)` at `s=1` is 

implemented by means of the 

:wikipedia:`Stieltjes constants <Stieltjes_constants>`:: 

 

sage: s = SR('s') 

sage: zeta(s).series(s==1, 2) 

1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2) 

 

Generally, the Stieltjes constants occur in the Laurent 

expansion of `\zeta`-type singularities:: 

 

sage: zeta(2*s/(s+1)).series(s==1, 2) 

2*(s - 1)^(-1) + (euler_gamma + 1) + (-1/2*stieltjes(1))*(s - 1) + Order((s - 1)^2) 

 

 

TESTS:: 

 

sage: latex(zeta(x)) 

\zeta(x) 

sage: a = loads(dumps(zeta(x))) 

sage: a.operator() == zeta 

True 

sage: zeta(x)._sympy_() 

zeta(x) 

 

sage: zeta(1) 

Infinity 

sage: zeta(x).subs(x=1) 

Infinity 

 

Check that :trac:`19799` is resolved:: 

 

sage: zeta(pi) 

zeta(pi) 

sage: zeta(pi).n() # rel tol 1e-10 

1.17624173838258 

 

Check that :trac:`20082` is fixed:: 

 

sage: zeta(x).series(x==pi, 2) 

(zeta(pi)) + (zetaderiv(1, pi))*(-pi + x) + Order((pi - x)^2) 

sage: (zeta(x) * 1/(1 - exp(-x))).residue(x==2*pi*I) 

zeta(2*I*pi) 

 

Check that the right infinities are returned (:trac:`19439`):: 

 

sage: zeta(1.0) 

+infinity 

sage: zeta(SR(1.0)) 

Infinity 

""" 

GinacFunction.__init__(self, 'zeta', conversions={'giac':'Zeta'}) 

 

zeta = Function_zeta() 

 

 

class Function_stieltjes(GinacFunction): 

def __init__(self): 

r""" 

Stieltjes constant of index ``n``. 

 

``stieltjes(0)`` is identical to the Euler-Mascheroni constant 

(:class:`sage.symbolic.constants.EulerGamma`). The Stieltjes 

constants are used in the series expansions of `\zeta(s)`. 

 

INPUT: 

 

- ``n`` - non-negative integer 

 

EXAMPLES:: 

 

sage: _ = var('n') 

sage: stieltjes(n) 

stieltjes(n) 

sage: stieltjes(0) 

euler_gamma 

sage: stieltjes(2) 

stieltjes(2) 

sage: stieltjes(int(2)) 

stieltjes(2) 

sage: stieltjes(2).n(100) 

-0.0096903631928723184845303860352 

sage: RR = RealField(200) 

sage: stieltjes(RR(2)) 

-0.0096903631928723184845303860352125293590658061013407498807014 

 

It is possible to use the ``hold`` argument to prevent 

automatic evaluation:: 

 

sage: stieltjes(0,hold=True) 

stieltjes(0) 

 

sage: latex(stieltjes(n)) 

\gamma_{n} 

sage: a = loads(dumps(stieltjes(n))) 

sage: a.operator() == stieltjes 

True 

sage: stieltjes(x)._sympy_() 

stieltjes(x) 

 

sage: stieltjes(x).subs(x==0) 

euler_gamma 

""" 

GinacFunction.__init__(self, "stieltjes", nargs=1, 

conversions=dict(mathematica='StieltjesGamma', 

sympy='stieltjes'), 

latex_name='\gamma') 

 

stieltjes = Function_stieltjes() 

 

 

class Function_HurwitzZeta(BuiltinFunction): 

def __init__(self): 

r""" 

TESTS:: 

 

sage: latex(hurwitz_zeta(x, 2)) 

\zeta\left(x, 2\right) 

sage: hurwitz_zeta(x, 2)._sympy_() 

zeta(x, 2) 

""" 

BuiltinFunction.__init__(self, 'hurwitz_zeta', nargs=2, 

conversions=dict(mathematica='HurwitzZeta', 

sympy='zeta'), 

latex_name='\zeta') 

 

def _eval_(self, s, x): 

r""" 

TESTS:: 

 

sage: hurwitz_zeta(x, 1) 

zeta(x) 

sage: hurwitz_zeta(4, 3) 

1/90*pi^4 - 17/16 

sage: hurwitz_zeta(-4, x) 

-1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x 

sage: hurwitz_zeta(3, 0.5) 

8.41439832211716 

""" 

if x == 1: 

return zeta(s) 

if s in ZZ and s > 1: 

return ((-1) ** s) * psi(s - 1, x) / factorial(s - 1) 

elif s in ZZ and s < 0: 

return -bernoulli_polynomial(x, -s + 1) / (-s + 1) 

else: 

return 

 

def _evalf_(self, s, x, parent=None, algorithm=None): 

r""" 

TESTS:: 

 

sage: hurwitz_zeta(11/10, 1/2).n() 

12.1038134956837 

sage: hurwitz_zeta(11/10, 1/2).n(100) 

12.103813495683755105709077413 

sage: hurwitz_zeta(11/10, 1 + 1j).n() 

9.85014164287853 - 1.06139499403981*I 

""" 

from mpmath import zeta 

return mpmath_utils.call(zeta, s, x, parent=parent) 

 

def _derivative_(self, s, x, diff_param): 

r""" 

TESTS:: 

 

sage: y = var('y') 

sage: diff(hurwitz_zeta(x, y), y) 

-x*hurwitz_zeta(x + 1, y) 

""" 

if diff_param == 1: 

return -s * hurwitz_zeta(s + 1, x) 

else: 

raise NotImplementedError('derivative with respect to first ' 

'argument') 

 

hurwitz_zeta_func = Function_HurwitzZeta() 

 

 

def hurwitz_zeta(s, x, prec=None, **kwargs): 

r""" 

The Hurwitz zeta function `\zeta(s, x)`, where `s` and `x` are complex. 

 

The Hurwitz zeta function is one of the many zeta functions. It 

defined as 

 

.. MATH:: 

 

\zeta(s, x) = \sum_{k=0}^{\infty} (k + x)^{-s}. 

 

 

When `x = 1`, this coincides with Riemann's zeta function. 

The Dirichlet L-functions may be expressed as a linear combination 

of Hurwitz zeta functions. 

 

EXAMPLES: 

 

Symbolic evaluations:: 

 

sage: hurwitz_zeta(x, 1) 

zeta(x) 

sage: hurwitz_zeta(4, 3) 

1/90*pi^4 - 17/16 

sage: hurwitz_zeta(-4, x) 

-1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x 

sage: hurwitz_zeta(7, -1/2) 

127*zeta(7) - 128 

sage: hurwitz_zeta(-3, 1) 

1/120 

 

Numerical evaluations:: 

 

sage: hurwitz_zeta(3, 1/2).n() 

8.41439832211716 

sage: hurwitz_zeta(11/10, 1/2).n() 

12.1038134956837 

sage: hurwitz_zeta(3, x).series(x, 60).subs(x=0.5).n() 

8.41439832211716 

sage: hurwitz_zeta(3, 0.5) 

8.41439832211716 

 

REFERENCES: 

 

- :wikipedia:`Hurwitz_zeta_function` 

""" 

if prec: 

deprecation(15095, 'the syntax hurwitz_zeta(s, x, prec) has been ' 

'deprecated. Use hurwitz_zeta(s, x).n(digits=prec) ' 

'instead.') 

return hurwitz_zeta_func(s, x).n(digits=prec) 

return hurwitz_zeta_func(s, x, **kwargs) 

 

 

class Function_zetaderiv(GinacFunction): 

def __init__(self): 

r""" 

Derivatives of the Riemann zeta function. 

 

EXAMPLES:: 

 

sage: zetaderiv(1, x) 

zetaderiv(1, x) 

sage: zetaderiv(1, x).diff(x) 

zetaderiv(2, x) 

sage: var('n') 

n 

sage: zetaderiv(n,x) 

zetaderiv(n, x) 

sage: zetaderiv(1, 4).n() 

-0.0689112658961254 

sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4) 

mpf('-0.068911265896125382') 

 

TESTS:: 

 

sage: latex(zetaderiv(2,x)) 

\zeta^\prime\left(2, x\right) 

sage: a = loads(dumps(zetaderiv(2,x))) 

sage: a.operator() == zetaderiv 

True 

""" 

GinacFunction.__init__(self, "zetaderiv", nargs=2) 

 

def _evalf_(self, n, x, parent=None, algorithm=None): 

r""" 

TESTS:: 

 

sage: zetaderiv(0, 3, hold=True).n() == zeta(3).n() 

True 

sage: zetaderiv(2, 3 + I).n() 

0.0213814086193841 - 0.174938812330834*I 

""" 

from mpmath import zeta 

return mpmath_utils.call(zeta, x, 1, n, parent=parent) 

 

zetaderiv = Function_zetaderiv() 

 

def zeta_symmetric(s): 

r""" 

Completed function `\xi(s)` that satisfies 

`\xi(s) = \xi(1-s)` and has zeros at the same points as the 

Riemann zeta function. 

 

INPUT: 

 

 

- ``s`` - real or complex number 

 

 

If s is a real number the computation is done using the MPFR 

library. When the input is not real, the computation is done using 

the PARI C library. 

 

More precisely, 

 

.. MATH:: 

 

xi(s) = \gamma(s/2 + 1) * (s-1) * \pi^{-s/2} * \zeta(s). 

 

 

 

EXAMPLES:: 

 

sage: zeta_symmetric(0.7) 

0.497580414651127 

sage: zeta_symmetric(1-0.7) 

0.497580414651127 

sage: RR = RealField(200) 

sage: zeta_symmetric(RR(0.7)) 

0.49758041465112690357779107525638385212657443284080589766062 

sage: C.<i> = ComplexField() 

sage: zeta_symmetric(0.5 + i*14.0) 

0.000201294444235258 + 1.49077798716757e-19*I 

sage: zeta_symmetric(0.5 + i*14.1) 

0.0000489893483255687 + 4.40457132572236e-20*I 

sage: zeta_symmetric(0.5 + i*14.2) 

-0.0000868931282620101 + 7.11507675693612e-20*I 

 

REFERENCE: 

 

- I copied the definition of xi from 

http://web.viu.ca/pughg/RiemannZeta/RiemannZetaLong.html 

""" 

if not (is_ComplexNumber(s) or is_RealNumber(s)): 

s = ComplexField()(s) 

 

R = s.parent() 

if s == 1: # deal with poles, hopefully 

return R(0.5) 

 

return (s/2 + 1).gamma() * (s-1) * (R.pi()**(-s/2)) * s.zeta() 

 

import math 

from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense 

 

class DickmanRho(BuiltinFunction): 

r""" 

Dickman's function is the continuous function satisfying the 

differential equation 

 

.. MATH:: 

 

x \rho'(x) + \rho(x-1) = 0 

 

with initial conditions `\rho(x)=1` for 

`0 \le x \le 1`. It is useful in estimating the frequency 

of smooth numbers as asymptotically 

 

.. MATH:: 

 

\Psi(a, a^{1/s}) \sim a \rho(s) 

 

where `\Psi(a,b)` is the number of `b`-smooth 

numbers less than `a`. 

 

ALGORITHM: 

 

Dickmans's function is analytic on the interval 

`[n,n+1]` for each integer `n`. To evaluate at 

`n+t, 0 \le t < 1`, a power series is recursively computed 

about `n+1/2` using the differential equation stated above. 

As high precision arithmetic may be needed for intermediate results 

the computed series are cached for later use. 

 

Simple explicit formulas are used for the intervals [0,1] and 

[1,2]. 

 

EXAMPLES:: 

 

sage: dickman_rho(2) 

0.306852819440055 

sage: dickman_rho(10) 

2.77017183772596e-11 

sage: dickman_rho(10.00000000000000000000000000000000000000) 

2.77017183772595898875812120063434232634e-11 

sage: plot(log(dickman_rho(x)), (x, 0, 15)) 

Graphics object consisting of 1 graphics primitive 

 

AUTHORS: 

 

- Robert Bradshaw (2008-09) 

 

REFERENCES: 

 

- G. Marsaglia, A. Zaman, J. Marsaglia. "Numerical 

Solutions to some Classical Differential-Difference Equations." 

Mathematics of Computation, Vol. 53, No. 187 (1989). 

""" 

def __init__(self): 

""" 

Constructs an object to represent Dickman's rho function. 

 

TESTS:: 

 

sage: dickman_rho(x) 

dickman_rho(x) 

sage: dickman_rho(3) 

0.0486083882911316 

sage: dickman_rho(pi) 

0.0359690758968463 

""" 

self._cur_prec = 0 

BuiltinFunction.__init__(self, "dickman_rho", 1) 

 

def _eval_(self, x): 

""" 

EXAMPLES:: 

 

sage: [dickman_rho(n) for n in [1..10]] 

[1.00000000000000, 0.306852819440055, 0.0486083882911316, 0.00491092564776083, 0.000354724700456040, 0.0000196496963539553, 8.74566995329392e-7, 3.23206930422610e-8, 1.01624828273784e-9, 2.77017183772596e-11] 

sage: dickman_rho(0) 

1.00000000000000 

""" 

if not is_RealNumber(x): 

try: 

x = RR(x) 

except (TypeError, ValueError): 

return None #PrimitiveFunction.__call__(self, SR(x)) 

if x < 0: 

return x.parent()(0) 

elif x <= 1: 

return x.parent()(1) 

elif x <= 2: 

return 1 - x.log() 

n = x.floor() 

if self._cur_prec < x.parent().prec() or n not in self._f: 

self._cur_prec = rel_prec = x.parent().prec() 

# Go a bit beyond so we're not constantly re-computing. 

max = x.parent()(1.1)*x + 10 

abs_prec = (-self.approximate(max).log2() + rel_prec + 2*max.log2()).ceil() 

self._f = {} 

if sys.getrecursionlimit() < max + 10: 

sys.setrecursionlimit(int(max) + 10) 

self._compute_power_series(max.floor(), abs_prec, cache_ring=x.parent()) 

return self._f[n](2*(x-n-x.parent()(0.5))) 

 

def power_series(self, n, abs_prec): 

""" 

This function returns the power series about `n+1/2` used 

to evaluate Dickman's function. It is scaled such that the interval 

`[n,n+1]` corresponds to x in `[-1,1]`. 

 

INPUT: 

 

- ``n`` - the lower endpoint of the interval for which 

this power series holds 

 

- ``abs_prec`` - the absolute precision of the 

resulting power series 

 

EXAMPLES:: 

 

sage: f = dickman_rho.power_series(2, 20); f 

-9.9376e-8*x^11 + 3.7722e-7*x^10 - 1.4684e-6*x^9 + 5.8783e-6*x^8 - 0.000024259*x^7 + 0.00010341*x^6 - 0.00045583*x^5 + 0.0020773*x^4 - 0.0097336*x^3 + 0.045224*x^2 - 0.11891*x + 0.13032 

sage: f(-1), f(0), f(1) 

(0.30685, 0.13032, 0.048608) 

sage: dickman_rho(2), dickman_rho(2.5), dickman_rho(3) 

(0.306852819440055, 0.130319561832251, 0.0486083882911316) 

""" 

return self._compute_power_series(n, abs_prec, cache_ring=None) 

 

def _compute_power_series(self, n, abs_prec, cache_ring=None): 

""" 

Compute the power series giving Dickman's function on [n, n+1], by 

recursion in n. For internal use; self.power_series() is a wrapper 

around this intended for the user. 

 

INPUT: 

 

- ``n`` - the lower endpoint of the interval for which 

this power series holds 

 

- ``abs_prec`` - the absolute precision of the 

resulting power series 

 

- ``cache_ring`` - for internal use, caches the power 

series at this precision. 

 

EXAMPLES:: 

 

sage: f = dickman_rho.power_series(2, 20); f 

-9.9376e-8*x^11 + 3.7722e-7*x^10 - 1.4684e-6*x^9 + 5.8783e-6*x^8 - 0.000024259*x^7 + 0.00010341*x^6 - 0.00045583*x^5 + 0.0020773*x^4 - 0.0097336*x^3 + 0.045224*x^2 - 0.11891*x + 0.13032 

""" 

if n <= 1: 

if n <= -1: 

return PolynomialRealDense(RealField(abs_prec)['x']) 

if n == 0: 

return PolynomialRealDense(RealField(abs_prec)['x'], [1]) 

elif n == 1: 

nterms = (RDF(abs_prec) * RDF(2).log()/RDF(3).log()).ceil() 

R = RealField(abs_prec) 

neg_three = ZZ(-3) 

coeffs = [1 - R(1.5).log()] + [neg_three**-k/k for k in range(1, nterms)] 

f = PolynomialRealDense(R['x'], coeffs) 

if cache_ring is not None: 

self._f[n] = f.truncate_abs(f[0] >> (cache_ring.prec()+1)).change_ring(cache_ring) 

return f 

else: 

f = self._compute_power_series(n-1, abs_prec, cache_ring) 

# integrand = f / (2n+1 + x) 

# We calculate this way because the most significant term is the constant term, 

# and so we want to push the error accumulation and remainder out to the least 

# significant terms. 

integrand = f.reverse().quo_rem(PolynomialRealDense(f.parent(), [1, 2*n+1]))[0].reverse() 

integrand = integrand.truncate_abs(RR(2)**-abs_prec) 

iintegrand = integrand.integral() 

ff = PolynomialRealDense(f.parent(), [f(1) + iintegrand(-1)]) - iintegrand 

i = 0 

while abs(f[i]) < abs(f[i+1]): 

i += 1 

rel_prec = int(abs_prec + abs(RR(f[i])).log2()) 

if cache_ring is not None: 

self._f[n] = ff.truncate_abs(ff[0] >> (cache_ring.prec()+1)).change_ring(cache_ring) 

return ff.change_ring(RealField(rel_prec)) 

 

def approximate(self, x, parent=None): 

r""" 

Approximate using de Bruijn's formula 

 

.. MATH:: 

 

\rho(x) \sim \frac{exp(-x \xi + Ei(\xi))}{\sqrt{2\pi x}\xi} 

 

which is asymptotically equal to Dickman's function, and is much 

faster to compute. 

 

REFERENCES: 

 

- N. De Bruijn, "The Asymptotic behavior of a function 

occurring in the theory of primes." J. Indian Math Soc. v 15. 

(1951) 

 

EXAMPLES:: 

 

sage: dickman_rho.approximate(10) 

2.41739196365564e-11 

sage: dickman_rho(10) 

2.77017183772596e-11 

sage: dickman_rho.approximate(1000) 

4.32938809066403e-3464 

""" 

log, exp, sqrt, pi = math.log, math.exp, math.sqrt, math.pi 

x = float(x) 

xi = log(x) 

y = (exp(xi)-1.0)/xi - x 

while abs(y) > 1e-12: 

dydxi = (exp(xi)*(xi-1.0) + 1.0)/(xi*xi) 

xi -= y/dydxi 

y = (exp(xi)-1.0)/xi - x 

return (-x*xi + RR(xi).eint()).exp() / (sqrt(2*pi*x)*xi) 

 

dickman_rho = DickmanRho()