Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

r""" 

Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients 

 

Collection of functions for calculating Wigner 3-`j`, 6-`j`, 9-`j`, 

Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all 

evaluating to a rational number times the square root of a rational 

number [RH2003]_. 

 

Please see the description of the individual functions for further 

details and examples. 

 

AUTHORS: 

 

- Jens Rasch (2009-03-24): initial version for Sage 

 

- Jens Rasch (2009-05-31): updated to sage-4.0 

""" 

 

#*********************************************************************** 

# Copyright (C) 2008 Jens Rasch <jyr2000@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#*********************************************************************** 

 

from sage.rings.complex_number import ComplexNumber 

from sage.rings.integer import Integer 

from sage.rings.finite_rings.integer_mod import Mod 

from sage.symbolic.constants import pi 

 

# This list of precomputed factorials is needed to massively 

# accelerate future calculations of the various coefficients 

_Factlist=[1] 

 

def _calc_factlist(nn): 

r""" 

Function calculates a list of precomputed factorials in order to 

massively accelerate future calculations of the various 

coefficients. 

 

INPUT: 

 

- ``nn`` - integer, highest factorial to be computed 

 

OUTPUT: 

 

list of integers -- the list of precomputed factorials 

 

EXAMPLES: 

 

Calculate list of factorials:: 

 

sage: from sage.functions.wigner import _calc_factlist 

sage: _calc_factlist(10) 

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] 

""" 

if nn >= len(_Factlist): 

for ii in range(len(_Factlist), nn + 1): 

_Factlist.append(_Factlist[ii - 1] * ii) 

return _Factlist[:Integer(nn) + 1] 

 

 

def wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3, prec=None): 

r""" 

Calculate the Wigner 3-`j` symbol `\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}`. 

 

INPUT: 

 

- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer 

 

- ``prec`` - precision, default: ``None``. Providing a precision can 

drastically speed up the calculation. 

 

OUTPUT: 

 

Rational number times the square root of a rational number 

(if ``prec=None``), or real number if a precision is given. 

 

EXAMPLES:: 

 

sage: wigner_3j(2, 6, 4, 0, 0, 0) 

sqrt(5/143) 

sage: wigner_3j(2, 6, 4, 0, 0, 1) 

0 

sage: wigner_3j(0.5, 0.5, 1, 0.5, -0.5, 0) 

sqrt(1/6) 

sage: wigner_3j(40, 100, 60, -10, 60, -50) 

95608/18702538494885*sqrt(21082735836735314343364163310/220491455010479533763) 

sage: wigner_3j(2500, 2500, 5000, 2488, 2400, -4888, prec=64) 

7.60424456883448589e-12 

 

It is an error to have arguments that are not integer or half 

integer values:: 

 

sage: wigner_3j(2.1, 6, 4, 0, 0, 0) 

Traceback (most recent call last): 

... 

ValueError: j values must be integer or half integer 

sage: wigner_3j(2, 6, 4, 1, 0, -1.1) 

Traceback (most recent call last): 

... 

ValueError: m values must be integer or half integer 

 

NOTES: 

 

The Wigner 3-`j` symbol obeys the following symmetry rules: 

 

- invariant under any permutation of the columns (with the 

exception of a sign change where `J=j_1+j_2+j_3`): 

 

.. MATH:: 

 

\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} 

=\begin{pmatrix} j_3 & j_1 & j_2 \\ m_3 & m_1 & m_2 \end{pmatrix} 

=\begin{pmatrix} j_2 & j_3 & j_1 \\ m_2 & m_3 & m_1 \end{pmatrix} \hspace{10em} \\ 

=(-1)^J \begin{pmatrix} j_3 & j_2 & j_1 \\ m_3 & m_2 & m_1 \end{pmatrix} 

=(-1)^J \begin{pmatrix} j_1 & j_3 & j_2 \\ m_1 & m_3 & m_2 \end{pmatrix} 

=(-1)^J \begin{pmatrix} j_2 & j_1 & j_3 \\ m_2 & m_1 & m_3 \end{pmatrix} 

 

- invariant under space inflection, i.e. 

 

.. MATH:: 

 

\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} 

=(-1)^J \begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix} 

 

- symmetric with respect to the 72 additional symmetries based on 

the work by [Reg1958]_ 

 

- zero for `j_1`, `j_2`, `j_3` not fulfilling triangle relation 

 

- zero for `m_1 + m_2 + m_3 \neq 0` 

 

- zero for violating any one of the conditions 

`j_1 \ge |m_1|`, `j_2 \ge |m_2|`, `j_3 \ge |m_3|` 

 

ALGORITHM: 

 

This function uses the algorithm of [Ed1974]_ to calculate the 

value of the 3-`j` symbol exactly. Note that the formula contains 

alternating sums over large factorials and is therefore unsuitable 

for finite precision arithmetic and only useful for a computer 

algebra system [RH2003]_. 

 

AUTHORS: 

 

- Jens Rasch (2009-03-24): initial version 

""" 

if int(j_1 * 2) != j_1 * 2 or int(j_2 * 2) != j_2 * 2 or \ 

int(j_3 * 2) != j_3 * 2: 

raise ValueError("j values must be integer or half integer") 

if int(m_1 * 2) != m_1 * 2 or int(m_2 * 2) != m_2 * 2 or \ 

int(m_3 * 2) != m_3 * 2: 

raise ValueError("m values must be integer or half integer") 

if m_1 + m_2 + m_3 != 0: 

return 0 

prefid = Integer((-1) ** int(j_1 - j_2 - m_3)) 

m_3 = -m_3 

a1 = j_1 + j_2 - j_3 

if a1 < 0: 

return 0 

a2 = j_1 - j_2 + j_3 

if a2 < 0: 

return 0 

a3 = -j_1 + j_2 + j_3 

if a3 < 0: 

return 0 

if (abs(m_1) > j_1) or (abs(m_2) > j_2) or (abs(m_3) > j_3): 

return 0 

 

maxfact = max(j_1 + j_2 + j_3 + 1, j_1 + abs(m_1), j_2 + abs(m_2), \ 

j_3 + abs(m_3)) 

_calc_factlist(maxfact) 

 

argsqrt = Integer(_Factlist[int(j_1 + j_2 - j_3)] * \ 

_Factlist[int(j_1 - j_2 + j_3)] * \ 

_Factlist[int(-j_1 + j_2 + j_3)] * \ 

_Factlist[int(j_1 - m_1)] * \ 

_Factlist[int(j_1 + m_1)] * \ 

_Factlist[int(j_2 - m_2)] * \ 

_Factlist[int(j_2 + m_2)] * \ 

_Factlist[int(j_3 - m_3)] * \ 

_Factlist[int(j_3 + m_3)]) / \ 

_Factlist[int(j_1 + j_2 + j_3 + 1)] 

 

ressqrt = argsqrt.sqrt(prec) 

if isinstance(ressqrt, ComplexNumber): 

ressqrt = ressqrt.real() 

 

imin = max(-j_3 + j_1 + m_2, -j_3 + j_2 - m_1, 0) 

imax = min(j_2 + m_2, j_1 - m_1, j_1 + j_2 - j_3) 

sumres = 0 

for ii in range(imin, imax + 1): 

den = _Factlist[ii] * \ 

_Factlist[int(ii + j_3 - j_1 - m_2)] * \ 

_Factlist[int(j_2 + m_2 - ii)] * \ 

_Factlist[int(j_1 - ii - m_1)] * \ 

_Factlist[int(ii + j_3 - j_2 + m_1)] * \ 

_Factlist[int(j_1 + j_2 - j_3 - ii)] 

sumres = sumres + Integer((-1) ** ii) / den 

 

res = ressqrt * sumres * prefid 

return res 

 

 

def clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3, prec=None): 

r""" 

Calculates the Clebsch-Gordan coefficient 

`\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \rangle`. 

 

The reference for this function is [Ed1974]_. 

 

INPUT: 

 

- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer 

 

- ``prec`` - precision, default: ``None``. Providing a precision can 

drastically speed up the calculation. 

 

OUTPUT: 

 

Rational number times the square root of a rational number 

(if ``prec=None``), or real number if a precision is given. 

 

EXAMPLES:: 

 

sage: simplify(clebsch_gordan(3/2,1/2,2, 3/2,1/2,2)) 

1 

sage: clebsch_gordan(1.5,0.5,1, 1.5,-0.5,1) 

1/2*sqrt(3) 

sage: clebsch_gordan(3/2,1/2,1, -1/2,1/2,0) 

-sqrt(3)*sqrt(1/6) 

 

NOTES: 

 

The Clebsch-Gordan coefficient will be evaluated via its relation 

to Wigner 3-`j` symbols: 

 

.. MATH:: 

 

\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \rangle 

=(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1} 

\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & -m_3 \end{pmatrix} 

 

See also the documentation on Wigner 3-`j` symbols which exhibit much 

higher symmetry relations than the Clebsch-Gordan coefficient. 

 

AUTHORS: 

 

- Jens Rasch (2009-03-24): initial version 

""" 

res = (-1) ** int(j_1 - j_2 + m_3) * (2 * j_3 + 1).sqrt(prec) * \ 

wigner_3j(j_1, j_2, j_3, m_1, m_2, -m_3, prec) 

return res 

 

 

def _big_delta_coeff(aa, bb, cc, prec=None): 

r""" 

Calculates the Delta coefficient of the 3 angular momenta for 

Racah symbols. Also checks that the differences are of integer 

value. 

 

INPUT: 

 

- ``aa`` - first angular momentum, integer or half integer 

 

- ``bb`` - second angular momentum, integer or half integer 

 

- ``cc`` - third angular momentum, integer or half integer 

 

- ``prec`` - precision of the ``sqrt()`` calculation 

 

OUTPUT: 

 

double - Value of the Delta coefficient 

 

EXAMPLES:: 

 

sage: from sage.functions.wigner import _big_delta_coeff 

sage: _big_delta_coeff(1,1,1) 

1/2*sqrt(1/6) 

""" 

if int(aa + bb - cc) != (aa + bb - cc): 

raise ValueError("j values must be integer or half integer and fulfill the triangle relation") 

if int(aa + cc - bb) != (aa + cc - bb): 

raise ValueError("j values must be integer or half integer and fulfill the triangle relation") 

if int(bb + cc - aa) != (bb + cc - aa): 

raise ValueError("j values must be integer or half integer and fulfill the triangle relation") 

if (aa + bb - cc) < 0: 

return 0 

if (aa + cc - bb) < 0: 

return 0 

if (bb + cc - aa) < 0: 

return 0 

 

maxfact = max(aa + bb - cc, aa + cc - bb, bb + cc - aa, aa + bb + cc + 1) 

_calc_factlist(maxfact) 

 

argsqrt = Integer(_Factlist[int(aa + bb - cc)] * \ 

_Factlist[int(aa + cc - bb)] * \ 

_Factlist[int(bb + cc - aa)]) / \ 

Integer(_Factlist[int(aa + bb + cc + 1)]) 

 

ressqrt = argsqrt.sqrt(prec) 

if isinstance(ressqrt, ComplexNumber): 

res = ressqrt.real() 

else: 

res = ressqrt 

return res 

 

 

def racah(aa, bb, cc, dd, ee, ff, prec=None): 

r""" 

Calculate the Racah symbol `W(aa,bb,cc,dd;ee,ff)`. 

 

INPUT: 

 

- ``aa``, ..., ``ff`` - integer or half integer 

 

- ``prec`` - precision, default: ``None``. Providing a precision can 

drastically speed up the calculation. 

 

OUTPUT: 

 

Rational number times the square root of a rational number 

(if ``prec=None``), or real number if a precision is given. 

 

EXAMPLES:: 

 

sage: racah(3,3,3,3,3,3) 

-1/14 

 

NOTES: 

 

The Racah symbol is related to the Wigner 6-`j` symbol: 

 

.. MATH:: 

 

\begin{Bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{Bmatrix} 

=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4;j_3,j_6) 

 

Please see the 6-`j` symbol for its much richer symmetries and for 

additional properties. 

 

ALGORITHM: 

 

This function uses the algorithm of [Ed1974]_ to calculate the 

value of the 6-`j` symbol exactly. Note that the formula contains 

alternating sums over large factorials and is therefore unsuitable 

for finite precision arithmetic and only useful for a computer 

algebra system [RH2003]_. 

 

AUTHORS: 

 

- Jens Rasch (2009-03-24): initial version 

""" 

prefac = _big_delta_coeff(aa, bb, ee, prec) * \ 

_big_delta_coeff(cc, dd, ee, prec) * \ 

_big_delta_coeff(aa, cc, ff, prec) * \ 

_big_delta_coeff(bb, dd, ff, prec) 

if prefac == 0: 

return 0 

imin = max(aa + bb + ee, cc + dd + ee, aa + cc + ff, bb + dd + ff) 

imax = min(aa + bb + cc + dd, aa + dd + ee + ff, bb + cc + ee + ff) 

 

maxfact = max(imax + 1, aa + bb + cc + dd, aa + dd + ee + ff, \ 

bb + cc + ee + ff) 

_calc_factlist(maxfact) 

 

sumres = 0 

for kk in range(imin, imax + 1): 

den = _Factlist[int(kk - aa - bb - ee)] * \ 

_Factlist[int(kk - cc - dd - ee)] * \ 

_Factlist[int(kk - aa - cc - ff)] * \ 

_Factlist[int(kk - bb - dd - ff)] * \ 

_Factlist[int(aa + bb + cc + dd - kk)] * \ 

_Factlist[int(aa + dd + ee + ff - kk)] * \ 

_Factlist[int(bb + cc + ee + ff - kk)] 

sumres = sumres + Integer((-1) ** kk * _Factlist[kk + 1]) / den 

 

res = prefac * sumres * (-1) ** int(aa + bb + cc + dd) 

return res 

 

 

def wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None): 

r""" 

Calculate the Wigner 6-`j` symbol `\begin{Bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{Bmatrix}`. 

 

INPUT: 

 

- ``j_1``, ..., ``j_6`` - integer or half integer 

 

- ``prec`` - precision, default: ``None``. Providing a precision can 

drastically speed up the calculation. 

 

OUTPUT: 

 

Rational number times the square root of a rational number 

(if ``prec=None``), or real number if a precision is given. 

 

EXAMPLES:: 

 

sage: wigner_6j(3,3,3,3,3,3) 

-1/14 

sage: wigner_6j(5,5,5,5,5,5) 

1/52 

sage: wigner_6j(6,6,6,6,6,6) 

309/10868 

sage: wigner_6j(8,8,8,8,8,8) 

-12219/965770 

sage: wigner_6j(30,30,30,30,30,30) 

36082186869033479581/87954851694828981714124 

sage: wigner_6j(0.5,0.5,1,0.5,0.5,1) 

1/6 

sage: wigner_6j(200,200,200,200,200,200, prec=1000)*1.0 

0.000155903212413242 

 

It is an error to have arguments that are not integer or half 

integer values or do not fulfill the triangle relation:: 

 

sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5) 

Traceback (most recent call last): 

... 

ValueError: j values must be integer or half integer and fulfill the triangle relation 

sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1) 

Traceback (most recent call last): 

... 

ValueError: j values must be integer or half integer and fulfill the triangle relation 

 

NOTES: 

 

The Wigner 6-`j` symbol is related to the Racah symbol but exhibits 

more symmetries as detailed below. 

 

.. MATH:: 

 

\begin{Bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{Bmatrix} 

=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4;j_3,j_6) 

 

The Wigner 6-`j` symbol obeys the following symmetry rules: 

 

- Wigner 6-`j` symbols are left invariant under any permutation of 

the columns: 

 

.. MATH:: 

 

\begin{Bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{Bmatrix} 

=\begin{Bmatrix} j_3 & j_1 & j_2 \\ j_6 & j_4 & j_5 \end{Bmatrix} 

=\begin{Bmatrix} j_2 & j_3 & j_1 \\ j_5 & j_6 & j_4 \end{Bmatrix} \hspace{7em} \\ 

=\begin{Bmatrix} j_3 & j_2 & j_1 \\ j_6 & j_5 & j_4 \end{Bmatrix} 

=\begin{Bmatrix} j_1 & j_3 & j_2 \\ j_4 & j_6 & j_5 \end{Bmatrix} 

=\begin{Bmatrix} j_2 & j_1 & j_3 \\ j_5 & j_4 & j_6 \end{Bmatrix} \hspace{3em} 

 

- They are invariant under the exchange of the upper and lower 

arguments in each of any two columns, i.e. 

 

.. MATH:: 

 

\begin{Bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{Bmatrix} 

=\begin{Bmatrix} j_1 & j_5 & j_6 \\ j_4 & j_2 & j_3 \end{Bmatrix} 

=\begin{Bmatrix} j_4 & j_2 & j_6 \\ j_1 & j_5 & j_3 \end{Bmatrix} 

=\begin{Bmatrix} j_4 & j_5 & j_3 \\ j_1 & j_2 & j_6 \end{Bmatrix} 

 

- additional 6 symmetries [Reg1959]_ giving rise to 144 symmetries 

in total 

 

- only non-zero if any triple of `j`'s fulfill a triangle relation 

 

ALGORITHM: 

 

This function uses the algorithm of [Ed1974]_ to calculate the 

value of the 6-`j` symbol exactly. Note that the formula contains 

alternating sums over large factorials and is therefore unsuitable 

for finite precision arithmetic and only useful for a computer 

algebra system [RH2003]_. 

""" 

res = (-1) ** int(j_1 + j_2 + j_4 + j_5) * \ 

racah(j_1, j_2, j_5, j_4, j_3, j_6, prec) 

return res 

 

 

def wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None): 

r""" 

Calculate the Wigner 9-`j` symbol 

`\begin{Bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \\ j_7 & j_8 & j_9 \end{Bmatrix}`. 

 

INPUT: 

 

- ``j_1``, ..., ``j_9`` - integer or half integer 

 

- ``prec`` - precision, default: ``None``. Providing a precision can 

drastically speed up the calculation. 

 

OUTPUT: 

 

Rational number times the square root of a rational number 

(if ``prec=None``), or real number if a precision is given. 

 

EXAMPLES: 

 

A couple of examples and test cases, note that for speed reasons a 

precision is given:: 

 

sage: wigner_9j(1,1,1, 1,1,1, 1,1,0 ,prec=64) # ==1/18 

0.0555555555555555555 

sage: wigner_9j(1,1,1, 1,1,1, 1,1,1) 

0 

sage: wigner_9j(1,1,1, 1,1,1, 1,1,2 ,prec=64) # ==1/18 

0.0555555555555555556 

sage: wigner_9j(1,2,1, 2,2,2, 1,2,1 ,prec=64) # ==-1/150 

-0.00666666666666666667 

sage: wigner_9j(3,3,2, 2,2,2, 3,3,2 ,prec=64) # ==157/14700 

0.0106802721088435374 

sage: wigner_9j(3,3,2, 3,3,2, 3,3,2 ,prec=64) # ==3221*sqrt(70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105)) 

0.00944247746651111739 

sage: wigner_9j(3,3,1, 3.5,3.5,2, 3.5,3.5,1 ,prec=64) # ==3221*sqrt(70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105)) 

0.0110216678544351364 

sage: wigner_9j(100,80,50, 50,100,70, 60,50,100 ,prec=1000)*1.0 

1.05597798065761e-7 

sage: wigner_9j(30,30,10, 30.5,30.5,20, 30.5,30.5,10 ,prec=1000)*1.0 # ==(80944680186359968990/95103769817469)*sqrt(1/682288158959699477295) 

0.0000325841699408828 

sage: wigner_9j(64,62.5,114.5, 61.5,61,112.5, 113.5,110.5,60, prec=1000)*1.0 

-3.41407910055520e-39 

sage: wigner_9j(15,15,15, 15,3,15, 15,18,10, prec=1000)*1.0 

-0.0000778324615309539 

sage: wigner_9j(1.5,1,1.5, 1,1,1, 1.5,1,1.5) 

0 

 

It is an error to have arguments that are not integer or half 

integer values or do not fulfill the triangle relation:: 

 

sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64) 

Traceback (most recent call last): 

... 

ValueError: j values must be integer or half integer and fulfill the triangle relation 

sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64) 

Traceback (most recent call last): 

... 

ValueError: j values must be integer or half integer and fulfill the triangle relation 

 

ALGORITHM: 

 

This function uses the algorithm of [Ed1974]_ to calculate the 

value of the 3-`j` symbol exactly. Note that the formula contains 

alternating sums over large factorials and is therefore unsuitable 

for finite precision arithmetic and only useful for a computer 

algebra system [RH2003]_. 

""" 

imin = 0 

imax = min(j_1 + j_9, j_2 + j_6, j_4 + j_8) 

 

sumres = 0 

for kk in range(imin, imax + 1): 

sumres = sumres + (2 * kk + 1) * \ 

racah(j_1, j_2, j_9, j_6, j_3, kk, prec) * \ 

racah(j_4, j_6, j_8, j_2, j_5, kk, prec) * \ 

racah(j_1, j_4, j_9, j_8, j_7, kk, prec) 

return sumres 

 

 

def gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None): 

r""" 

Calculate the Gaunt coefficient. 

 

The Gaunt coefficient is defined as the integral over three 

spherical harmonics: 

 

.. MATH:: 

 

Y(l_1,l_2,l_3,m_1,m_2,m_3) \hspace{12em} \\  

=\int Y_{l_1,m_1}(\Omega) \ 

Y_{l_2,m_2}(\Omega) \ Y_{l_3,m_3}(\Omega) \ d\Omega \hspace{5em} \\ 

=\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \hspace{6.5em} \\  

\times \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} 

\begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} 

 

INPUT: 

 

- ``l_1``, ``l_2``, ``l_3``, ``m_1``, ``m_2``, ``m_3`` - integer 

 

- ``prec`` - precision, default: ``None``. Providing a precision can 

drastically speed up the calculation. 

 

OUTPUT: 

 

Rational number times the square root of a rational number 

(if ``prec=None``), or real number if a precision is given. 

 

EXAMPLES:: 

 

sage: gaunt(1,0,1,1,0,-1) 

-1/2/sqrt(pi) 

sage: gaunt(1,0,1,1,0,0) 

0 

sage: gaunt(29,29,34,10,-5,-5) 

1821867940156/215552371055153321*sqrt(22134)/sqrt(pi) 

sage: gaunt(20,20,40,1,-1,0) 

28384503878959800/74029560764440771/sqrt(pi) 

sage: gaunt(12,15,5,2,3,-5) 

91/124062*sqrt(36890)/sqrt(pi) 

sage: gaunt(10,10,12,9,3,-12) 

-98/62031*sqrt(6279)/sqrt(pi) 

sage: gaunt(1000,1000,1200,9,3,-12).n(64) 

0.00689500421922113448 

 

If the sum of the `l_i` is odd, the answer is zero, even for Python 

ints (see :trac:`14766`):: 

 

sage: gaunt(1,2,2,1,0,-1) 

0 

sage: gaunt(int(1),int(2),int(2),1,0,-1) 

0 

 

It is an error to use non-integer values for `l` or `m`:: 

 

sage: gaunt(1.2,0,1.2,0,0,0) 

Traceback (most recent call last): 

... 

TypeError: Attempt to coerce non-integral RealNumber to Integer 

sage: gaunt(1,0,1,1.1,0,-1.1) 

Traceback (most recent call last): 

... 

TypeError: Attempt to coerce non-integral RealNumber to Integer 

 

NOTES: 

 

The Gaunt coefficient obeys the following symmetry rules: 

 

- invariant under any permutation of the columns 

 

.. MATH:: 

 

Y(l_1,l_2,l_3,m_1,m_2,m_3) 

=Y(l_3,l_1,l_2,m_3,m_1,m_2) \hspace{3em} \\ \hspace{3em} 

=Y(l_2,l_3,l_1,m_2,m_3,m_1) 

=Y(l_3,l_2,l_1,m_3,m_2,m_1) \\ \hspace{3em} 

=Y(l_1,l_3,l_2,m_1,m_3,m_2) 

=Y(l_2,l_1,l_3,m_2,m_1,m_3) 

 

- invariant under space inflection, i.e. 

 

.. MATH:: 

 

Y(l_1,l_2,l_3,m_1,m_2,m_3) 

=Y(l_1,l_2,l_3,-m_1,-m_2,-m_3) 

 

- symmetric with respect to the 72 Regge symmetries as inherited 

for the 3-`j` symbols [Reg1958]_ 

 

- zero for `l_1`, `l_2`, `l_3` not fulfilling triangle relation 

 

- zero for violating any one of the conditions: `l_1 \ge |m_1|`, 

`l_2 \ge |m_2|`, `l_3 \ge |m_3|` 

 

- non-zero only for an even sum of the `l_i`, i.e. 

`J=l_1+l_2+l_3=2n` for `n` in `\Bold{N}` 

 

ALGORITHM: 

 

This function uses the algorithm of [LdB1982]_ to 

calculate the value of the Gaunt coefficient exactly. Note that 

the formula contains alternating sums over large factorials and is 

therefore unsuitable for finite precision arithmetic and only 

useful for a computer algebra system [RH2003]_. 

 

AUTHORS: 

 

- Jens Rasch (2009-03-24): initial version for Sage 

""" 

l_1 = Integer(l_1) 

l_2 = Integer(l_2) 

l_3 = Integer(l_3) 

m_1 = Integer(m_1) 

m_2 = Integer(m_2) 

m_3 = Integer(m_3) 

 

bigL = (l_1 + l_2 + l_3) / 2 

a1 = l_1 + l_2 - l_3 

if a1 < 0: 

return 0 

a2 = l_1 - l_2 + l_3 

if a2 < 0: 

return 0 

a3 = -l_1 + l_2 + l_3 

if a3 < 0: 

return 0 

if Mod(2 * bigL, 2) != 0: 

return 0 

if (m_1 + m_2 + m_3) != 0: 

return 0 

if (abs(m_1) > l_1) or (abs(m_2) > l_2) or (abs(m_3) > l_3): 

return 0 

 

imin = max(-l_3 + l_1 + m_2, -l_3 + l_2 - m_1, 0) 

imax = min(l_2 + m_2, l_1 - m_1, l_1 + l_2 - l_3) 

 

maxfact = max(l_1 + l_2 + l_3 + 1, imax + 1) 

_calc_factlist(maxfact) 

 

argsqrt = (2 * l_1 + 1) * (2 * l_2 + 1) * (2 * l_3 + 1) * \ 

_Factlist[l_1 - m_1] * _Factlist[l_1 + m_1] * _Factlist[l_2 - m_2] * \ 

_Factlist[l_2 + m_2] * _Factlist[l_3 - m_3] * _Factlist[l_3 + m_3] / \ 

(4*pi) 

ressqrt = argsqrt.sqrt() 

 

prefac = Integer(_Factlist[bigL] * _Factlist[l_2 - l_1 + l_3] * \ 

_Factlist[l_1 - l_2 + l_3] * _Factlist[l_1 + l_2 - l_3])/ \ 

_Factlist[2 * bigL+1]/ \ 

(_Factlist[bigL - l_1] * _Factlist[bigL - l_2] * _Factlist[bigL - l_3]) 

 

sumres = 0 

for ii in range(imin, imax + 1): 

den = _Factlist[ii] * _Factlist[ii + l_3 - l_1 - m_2] * \ 

_Factlist[l_2 + m_2 - ii] * _Factlist[l_1 - ii - m_1] * \ 

_Factlist[ii + l_3 - l_2 + m_1] * _Factlist[l_1 + l_2 - l_3 - ii] 

sumres = sumres + Integer((-1) ** ii) / den 

 

res = ressqrt * prefac * sumres * (-1) ** (bigL + l_3 + m_1 - m_2) 

if prec is not None: 

res = res.n(prec) 

return res