Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

r""" 

Sudoku Puzzles 

 

This module provides algorithms to solve Sudoku puzzles, plus tools 

for inputting, converting and displaying various ways of writing a 

puzzle or its solution(s). Primarily this is accomplished with the 

:class:`sage.games.sudoku.Sudoku` class, though the legacy top-level 

:func:`sage.games.sudoku.sudoku` function is also available. 

 

AUTHORS: 

 

- Tom Boothby (2008/05/02): Exact Cover, Dancing Links algorithm 

- Robert Beezer (2009/05/29): Backtracking algorithm, Sudoku class 

""" 

###################################################################### 

# Copyright (C) 2009, Robert A. Beezer <beezer@ups.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# The full text of the GPL is available at: 

# http://www.gnu.org/licenses/ 

###################################################################### 

from __future__ import print_function, absolute_import 

from six.moves import range 

from six import string_types 

 

from sage.structure.sage_object import SageObject 

 

 

def sudoku(m): 

r""" 

Solves Sudoku puzzles described by matrices. 

 

INPUT: 

 

- ``m`` - a square Sage matrix over `\ZZ`, where zeros are blank entries 

 

OUTPUT: 

 

A Sage matrix over `\ZZ` containing the first solution found, 

otherwise ``None``. 

 

This function matches the behavior of the prior Sudoku solver 

and is included only to replicate that behavior. It could be 

safely deprecated, since all of its functionality is included in the :class:`~sage.games.sudoku.Sudoku` class. 

 

EXAMPLES: 

 

An example that was used in previous doctests. :: 

 

sage: A = matrix(ZZ,9,[5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0, 0,3,0, 0,6,7, 3,0,0, 0,0,1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0,8, 0,0,0, 0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4, 1,5,0, 0,3,0, 0,0,2, 0,0,0, 4,9,0, 0,5,0, 0,0,3]) 

sage: A 

[5 0 0 0 8 0 0 4 9] 

[0 0 0 5 0 0 0 3 0] 

[0 6 7 3 0 0 0 0 1] 

[1 5 0 0 0 0 0 0 0] 

[0 0 0 2 0 8 0 0 0] 

[0 0 0 0 0 0 0 1 8] 

[7 0 0 0 0 4 1 5 0] 

[0 3 0 0 0 2 0 0 0] 

[4 9 0 0 5 0 0 0 3] 

sage: sudoku(A) 

[5 1 3 6 8 7 2 4 9] 

[8 4 9 5 2 1 6 3 7] 

[2 6 7 3 4 9 5 8 1] 

[1 5 8 4 6 3 9 7 2] 

[9 7 4 2 1 8 3 6 5] 

[3 2 6 7 9 5 4 1 8] 

[7 8 2 9 3 4 1 5 6] 

[6 3 5 1 7 2 8 9 4] 

[4 9 1 8 5 6 7 2 3] 

 

Using inputs that are possible with the 

:class:`~sage.games.sudoku.Sudoku` class, 

other than a matrix, will cause an error. :: 

 

sage: sudoku('.4..32....14..3.') 

Traceback (most recent call last): 

... 

ValueError: sudoku function expects puzzle to be a matrix, perhaps use the Sudoku class 

""" 

from sage.structure.element import is_Matrix 

 

if not is_Matrix(m): 

raise ValueError('sudoku function expects puzzle to be a matrix, perhaps use the Sudoku class') 

solution = next(Sudoku(m).solve(algorithm='dlx')) 

return (solution.to_matrix() if solution else None) 

 

 

class Sudoku(SageObject): 

r""" 

An object representing a Sudoku puzzle. Primarily the purpose is to 

solve the puzzle, but conversions between formats are also provided. 

 

INPUT: 

 

- puzzle -- the first argument can take one of three forms 

* list - a Python list with elements of the puzzle in row-major order, 

where a blank entry is a zero 

* matrix - a square Sage matrix over `\ZZ` 

* string - a string where each character is an entry of 

the puzzle. For two-digit entries, a = 10, b = 11, etc. 

- verify_input -- default = ``True``, use ``False`` if you know the input is valid 

 

EXAMPLES:: 

 

sage: a = Sudoku('5...8..49...5...3..673....115..........2.8..........187....415..3...2...49..5...3') 

sage: print(a) 

+-----+-----+-----+ 

|5 | 8 | 4 9| 

| |5 | 3 | 

| 6 7|3 | 1| 

+-----+-----+-----+ 

|1 5 | | | 

| |2 8| | 

| | | 1 8| 

+-----+-----+-----+ 

|7 | 4|1 5 | 

| 3 | 2| | 

|4 9 | 5 | 3| 

+-----+-----+-----+ 

sage: print(next(a.solve())) 

+-----+-----+-----+ 

|5 1 3|6 8 7|2 4 9| 

|8 4 9|5 2 1|6 3 7| 

|2 6 7|3 4 9|5 8 1| 

+-----+-----+-----+ 

|1 5 8|4 6 3|9 7 2| 

|9 7 4|2 1 8|3 6 5| 

|3 2 6|7 9 5|4 1 8| 

+-----+-----+-----+ 

|7 8 2|9 3 4|1 5 6| 

|6 3 5|1 7 2|8 9 4| 

|4 9 1|8 5 6|7 2 3| 

+-----+-----+-----+ 

""" 

def __init__(self, puzzle, verify_input = True): 

r""" 

Initialize a Sudoku puzzle, determine its size, sanity-check the inputs. 

 

TESTS:: 

 

sage: d = Sudoku('1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1') 

sage: d == loads(dumps(d)) 

True 

 

A lame attempt to construct a puzzle from a single integer:: 

 

sage: Sudoku(8) 

Traceback (most recent call last): 

... 

ValueError: Sudoku puzzle must be specified as a matrix, list or string 

 

An attempt to construct a puzzle from a non-square matrix:: 

 

sage: Sudoku(matrix(2,range(6))) 

Traceback (most recent call last): 

... 

ValueError: Sudoku puzzle must be a square matrix 

 

An attempt to construct a puzzle from a string of an impossible length (9):: 

 

sage: Sudoku('.........') 

Traceback (most recent call last): 

... 

ValueError: Sudoku puzzle dimension of 3 must be a perfect square 

 

An attempt to construct a `4\times 4` puzzle from a string with a bad entry (5):: 

 

sage: Sudoku('.1.2.......5....') 

Traceback (most recent call last): 

... 

ValueError: Sudoku puzzle has an invalid entry 

""" 

from math import sqrt 

from sage.structure.element import is_Matrix 

 

if isinstance(puzzle, list): 

puzzle_size = int(round(sqrt(len(puzzle)))) 

self.puzzle = tuple(puzzle) 

elif is_Matrix(puzzle): 

puzzle_size = puzzle.ncols() 

if verify_input and not(puzzle.is_square()): 

raise ValueError('Sudoku puzzle must be a square matrix') 

self.puzzle = tuple([int(x) for x in puzzle.list()]) 

elif isinstance(puzzle, string_types): 

puzzle_size = int(round(sqrt(len(puzzle)))) 

puzzle_numeric = [] 

for char in puzzle: 

if char.isdigit(): 

puzzle_numeric.append(int(char)) 

elif char == '.': 

puzzle_numeric.append(0) 

else: 

puzzle_numeric.append(ord(char.upper()) - ord('A')+10) 

self.puzzle = tuple(puzzle_numeric) 

else: 

raise ValueError('Sudoku puzzle must be specified as a matrix, list or string') 

self.n = int(sqrt(puzzle_size)) 

if verify_input: 

if self.n**4 != len(self.puzzle): 

raise ValueError('Sudoku puzzle dimension of %s must be a perfect square' % puzzle_size) 

for x in self.puzzle: 

if (x < 0) or (x > self.n*self.n): 

raise ValueError('Sudoku puzzle has an invalid entry') 

 

def __eq__(self, other): 

r""" 

Compares two Sudoku puzzles, based on the underlying 

representation of the puzzles as tuples. 

 

EXAMPLES:: 

 

sage: a = Sudoku('.4..32....14..3.') 

sage: b = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: c = Sudoku('1..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: d = Sudoku('81.6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

 

sage: a == b 

False 

sage: b == b 

True 

sage: b == c 

False 

sage: b == d 

False 

""" 

return self.puzzle == tuple(other.to_list()) 

 

def __hash__(self): 

""" 

Return the hash of ``self``. 

 

EXAMPLES:: 

 

sage: a = Sudoku('.4..32....14..3.') 

sage: hash(a) == hash(a.puzzle) 

True 

""" 

return hash(self.puzzle) 

 

def __ne__(self, other): 

""" 

Check that ``self`` is not equal to ``other``. 

 

EXAMPLES:: 

 

sage: a = Sudoku('.4..32....14..3.') 

sage: b = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: c = Sudoku('1..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: d = Sudoku('81.6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

 

sage: a != b 

True 

sage: b != b 

False 

sage: b != c 

True 

sage: b != d 

True 

""" 

return not (self == other) 

 

def _repr_(self): 

r""" 

Return a concise description of a Sudoku puzzle using a string representation. 

 

See the docstring for :func:`to_ascii` for more information on the format. 

 

EXAMPLES:: 

 

sage: s = Sudoku('.4..32....14..3.') 

sage: s._repr_() 

'+---+---+\n| 4| |\n|3 2| |\n+---+---+\n| |1 4|\n| |3 |\n+---+---+' 

 

""" 

return self.to_ascii() 

 

def _latex_(self): 

r"""nodetex 

Return a `\LaTeX` representation of a Sudoku puzzle as an array environment. 

 

EXAMPLES:: 

 

sage: s = Sudoku('.4..32....14..3.') 

sage: s._latex_() 

'\\begin{array}{|*{2}{*{2}{r}|}}\\hline\n &4& & \\\\\n3&2& & \\\\\\hline\n & &1&4\\\\\n & &3& \\\\\\hline\n\\end{array}' 

""" 

return self.to_latex() 

 

def _matrix_(self, R=None): 

r""" 

Return the puzzle as a matrix to support Sage's 

:func:`~sage.matrix.constructor.matrix` constructor. 

 

The base ring will be `\ZZ` if ``None`` is provided, 

and it is an error to specify any other base ring. 

 

EXAMPLES:: 

 

sage: k = Sudoku('.4..32....14..3.') 

sage: matrix(k) # indirect doctest 

[0 4 0 0] 

[3 2 0 0] 

[0 0 1 4] 

[0 0 3 0] 

sage: matrix(ZZ,k) 

[0 4 0 0] 

[3 2 0 0] 

[0 0 1 4] 

[0 0 3 0] 

sage: matrix(QQ,k) 

Traceback (most recent call last): 

... 

ValueError: Sudoku puzzles only convert to matrices over Integer Ring, not Rational Field 

""" 

from sage.rings.integer_ring import ZZ, IntegerRing_class 

if R and not(isinstance(R, IntegerRing_class)): 

raise ValueError('Sudoku puzzles only convert to matrices over %s, not %s' % (ZZ, R)) 

return self.to_matrix() 

 

def to_string(self): 

r""" 

Construct a string representing a Sudoku puzzle. 

 

Blank entries are represented as periods, single 

digits are not converted and two digit entries are 

converted to lower-case letters where ``10 = a``, 

``11 = b``, etc. This scheme limits puzzles to 

at most 36 symbols. 

 

EXAMPLES:: 

 

sage: b = matrix(ZZ, 9, 9, [ [0,0,0,0,1,0,9,0,0], [8,0,0,4,0,0,0,0,0], [2,0,0,0,0,0,0,0,0], [0,7,0,0,3,0,0,0,0], [0,0,0,0,0,0,2,0,4], [0,0,0,0,0,0,0,5,8], [0,6,0,0,0,0,1,3,0], [7,0,0,2,0,0,0,0,0], [0,0,0,8,0,0,0,0,0] ]) 

sage: Sudoku(b).to_string() 

'....1.9..8..4.....2.........7..3..........2.4.......58.6....13.7..2........8.....' 

 

TESTS: 

 

This tests the conversion of alphabetic characters as well as the 

input and output of Sudoku puzzles as strings. :: 

 

sage: j = Sudoku([0, 0, 0, 0, 10, 0, 0, 6, 9, 0, 3, 0, 0, 0, 0, 1, 13, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 14, 0, 4, 0, 0, 0, 0, 11, 0, 0, 0, 0, 5, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 15, 0, 0, 0, 0, 1, 0, 14, 0, 0, 2, 0, 11, 0, 8, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 13, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 7, 0, 16, 0, 0, 9, 0, 10, 0, 0, 12, 0, 0, 0, 5, 0, 0, 0, 0, 0, 8, 0, 0, 15, 0, 0, 0, 0, 0, 1, 0, 0, 14, 0, 7, 9, 0, 12, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 16, 0, 7, 0, 0, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 3, 0, 13, 0, 0, 10, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 7, 0, 0, 14, 0, 0, 0, 12, 10, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 14, 0, 0, 16, 0, 9, 2, 0, 6, 0, 0, 8, 0, 0, 0, 0]) 

sage: st = j.to_string() 

sage: st 

'....a..69.3....1d.2...8....e.4....b....5..c.......7.......g...f....1.e..2.b.8..3.......4.d.....6.........f..7.g..9.a..c...5.....8..f.....1..e.79.c....b.....2...6.....g.7......84....3.d..a.5....5...7..e...ca.....3.1.......b......f....4...d..e..g.92.6..8....' 

sage: st == Sudoku(st).to_string() 

True 

 

A `49\times 49` puzzle with all entries equal to 40, 

which doesn't convert to a letter. :: 

 

sage: empty = [40]*2401 

sage: Sudoku(empty).to_string() 

Traceback (most recent call last): 

... 

ValueError: Sudoku string representation is only valid for puzzles of size 36 or smaller 

""" 

encoded = [] 

for x in self.puzzle: 

if x == 0: 

encoded.append('.') 

elif 1 <= x <= 9: 

encoded.append(str(x)) 

elif x <= 36: 

encoded.append(chr(x-10+ord('a'))) 

else: 

raise ValueError('Sudoku string representation is only valid for puzzles of size 36 or smaller') 

return ''.join(encoded) 

 

def to_list(self): 

r""" 

Construct a list representing a Sudoku puzzle, in row-major order. 

 

EXAMPLES:: 

 

sage: s = Sudoku('1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1') 

sage: s.to_list() 

[1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 9, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, 5, 0, 9, 0, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 8, 5, 0, 0, 4, 0, 7, 0, 0, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 9, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1] 

 

TESTS: 

 

This tests the input and output of Sudoku puzzles as lists. :: 

 

sage: alist = [0, 4, 0, 0, 3, 2, 0, 0, 0, 0, 1, 4, 0, 0, 3, 0] 

sage: alist == Sudoku(alist).to_list() 

True 

""" 

return list(self.puzzle) 

 

def to_matrix(self): 

r""" 

Construct a Sage matrix over `\ZZ` representing a Sudoku puzzle. 

 

EXAMPLES:: 

 

sage: s = Sudoku('.4..32....14..3.') 

sage: s.to_matrix() 

[0 4 0 0] 

[3 2 0 0] 

[0 0 1 4] 

[0 0 3 0] 

 

TESTS: 

 

This tests the input and output of Sudoku puzzles as matrices over `\ZZ`. :: 

 

sage: g = matrix(ZZ, 9, 9, [ [1,0,0,0,0,7,0,9,0], [0,3,0,0,2,0,0,0,8], [0,0,9,6,0,0,5,0,0], [0,0,5,3,0,0,9,0,0], [0,1,0,0,8,0,0,0,2], [6,0,0,0,0,4,0,0,0], [3,0,0,0,0,0,0,1,0], [0,4,0,0,0,0,0,0,7], [0,0,7,0,0,0,3,0,0] ]) 

sage: g == Sudoku(g).to_matrix() 

True 

""" 

from sage.rings.integer_ring import ZZ 

from sage.matrix.constructor import matrix 

return matrix(ZZ, self.n*self.n, self.puzzle) 

 

 

def to_ascii(self): 

r""" 

Construct an ASCII-art version of a Sudoku puzzle. 

This is a modified version of the ASCII version of a subdivided matrix. 

 

EXAMPLES:: 

 

sage: s = Sudoku('.4..32....14..3.') 

sage: print(s.to_ascii()) 

+---+---+ 

| 4| | 

|3 2| | 

+---+---+ 

| |1 4| 

| |3 | 

+---+---+ 

sage: s.to_ascii() 

'+---+---+\n| 4| |\n|3 2| |\n+---+---+\n| |1 4|\n| |3 |\n+---+---+' 

""" 

from re import compile 

n = self.n 

nsquare = n*n 

m = self.to_matrix() 

m.subdivide(list(range(0,nsquare+1,n)), list(range(0,nsquare+1,n))) 

naked_zero = compile('([\|, ]+)0') 

blanked = naked_zero.sub(lambda x: x.group(1)+' ', m.str()) 

brackets = compile('[\[,\]]') 

return brackets.sub('', blanked) 

 

 

def to_latex(self): 

r""" 

Create a string of `\LaTeX` code representing a Sudoku puzzle or solution. 

 

EXAMPLES:: 

 

sage: s = Sudoku('.4..32....14..3.') 

sage: print(s.to_latex()) 

\begin{array}{|*{2}{*{2}{r}|}}\hline 

&4& & \\ 

3&2& & \\\hline 

& &1&4\\ 

& &3& \\\hline 

\end{array} 

 

TESTS:: 

 

sage: s = Sudoku('.4..32....14..3.') 

sage: s.to_latex() 

'\\begin{array}{|*{2}{*{2}{r}|}}\\hline\n &4& & \\\\\n3&2& & \\\\\\hline\n & &1&4\\\\\n & &3& \\\\\\hline\n\\end{array}' 

""" 

n = self.n 

nsquare = n*n 

array = [] 

array.append('\\begin{array}{|*{%s}{*{%s}{r}|}}\\hline\n' % (n, n)) 

gen = (x for x in self.puzzle) 

for row in range(nsquare): 

for col in range(nsquare): 

entry = next(gen) 

array.append((str(entry) if entry else ' ')) 

array.append(('' if col == nsquare - 1 else '&')) 

array.append(('\\\\\n' if (row+1) % n else '\\\\\\hline\n')) 

array.append('\\end{array}') 

return ''.join(array) 

 

 

def solve(self, algorithm = 'dlx'): 

r""" 

Return a generator object for the solutions of a Sudoku puzzle. 

 

INPUT: 

 

- algorithm -- default = ``'dlx'``, specify choice of solution algorithm. The 

two possible algorithms are ``'dlx'`` and ``'backtrack'``. 

 

OUTPUT: 

 

A generator that provides all solutions, as objects of 

the :class:`~sage.games.sudoku.Sudoku` class. 

 

Calling ``next()`` on the returned generator just once will find 

a solution, presuming it exists, otherwise it will return a 

``StopIteration`` exception. The generator may be used for 

iteration or wrapping the generator with ``list()`` will return 

all of the solutions as a list. Solutions are returned as 

new objects of the :class:`~sage.games.sudoku.Sudoku` class, 

so may be printed or converted using other methods in this class. 

 

Generally, the DLX algorithm is very fast and very consistent. 

The backtrack algorithm is very variable in its performance, 

on some occasions markedly faster than DLX but usually slower 

by a similar factor, with the potential to be orders of magnitude 

slower. See the docstrings for the 

:meth:`~sage.games.sudoku.Sudoku.dlx` and 

:meth:`~sage.games.sudoku.Sudoku.backtrack_all` 

methods for further discussions and examples of performance. 

Note that the backtrack algorithm is limited to puzzles of 

size `16\times 16` or smaller. 

 

EXAMPLES: 

 

This puzzle has 5 solutions, but the first one returned by each algorithm are identical. :: 

 

sage: h = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: h 

+-----+-----+-----+ 

|8 |6 |9 5| 

| | | | 

| | 2 |3 1 | 

+-----+-----+-----+ 

| 7|3 1 8| 6 | 

|2 4 | | 7 3| 

| | | | 

+-----+-----+-----+ 

| 2|7 9 |1 | 

|5 | 8 | 3 6| 

| 3| | | 

+-----+-----+-----+ 

sage: next(h.solve(algorithm='backtrack')) 

+-----+-----+-----+ 

|8 1 4|6 3 7|9 2 5| 

|3 2 5|1 4 9|6 8 7| 

|7 9 6|8 2 5|3 1 4| 

+-----+-----+-----+ 

|9 5 7|3 1 8|4 6 2| 

|2 4 1|9 5 6|8 7 3| 

|6 3 8|2 7 4|5 9 1| 

+-----+-----+-----+ 

|4 6 2|7 9 3|1 5 8| 

|5 7 9|4 8 1|2 3 6| 

|1 8 3|5 6 2|7 4 9| 

+-----+-----+-----+ 

sage: next(h.solve(algorithm='dlx')) 

+-----+-----+-----+ 

|8 1 4|6 3 7|9 2 5| 

|3 2 5|1 4 9|6 8 7| 

|7 9 6|8 2 5|3 1 4| 

+-----+-----+-----+ 

|9 5 7|3 1 8|4 6 2| 

|2 4 1|9 5 6|8 7 3| 

|6 3 8|2 7 4|5 9 1| 

+-----+-----+-----+ 

|4 6 2|7 9 3|1 5 8| 

|5 7 9|4 8 1|2 3 6| 

|1 8 3|5 6 2|7 4 9| 

+-----+-----+-----+ 

 

Gordon Royle maintains a list of 48072 Sudoku puzzles that each has 

a unique solution and exactly 17 "hints" (initially filled boxes). 

At this writing (May 2009) there is no known 16-hint puzzle with 

exactly one solution. [sudoku:royle]_ This puzzle is number 3000 

in his database. We solve it twice. :: 

 

sage: b = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: next(b.solve(algorithm='dlx')) == next(b.solve(algorithm='backtrack')) 

True 

 

 

These are the first 10 puzzles in a list of "Top 95" puzzles, 

[sudoku:top95]_ which we use to show that the two available algorithms obtain 

the same solution for each. :: 

 

sage: top =['4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......',\ 

'52...6.........7.13...........4..8..6......5...........418.........3..2...87.....',\ 

'6.....8.3.4.7.................5.4.7.3..2.....1.6.......2.....5.....8.6......1....',\ 

'48.3............71.2.......7.5....6....2..8.............1.76...3.....4......5....',\ 

'....14....3....2...7..........9...3.6.1.............8.2.....1.4....5.6.....7.8...',\ 

'......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.',\ 

'6.2.5.........3.4..........43...8....1....2........7..5..27...........81...6.....',\ 

'.524.........7.1..............8.2...3.....6...9.5.....1.6.3...........897........',\ 

'6.2.5.........4.3..........43...8....1....2........7..5..27...........81...6.....',\ 

'.923.........8.1...........1.7.4...........658.........6.5.2...4.....7.....9.....'] 

sage: p = [Sudoku(top[i]) for i in range(10)] 

sage: verify = [next(p[i].solve(algorithm='dlx')) == next(p[i].solve(algorithm='backtrack')) for i in range(10)] 

sage: verify == [True]*10 

True 

 

TESTS: 

 

A `25\times 25` puzzle that the backtrack algorithm is not equipped to handle. Since ``solve`` returns a generator this test will not go boom until we ask for a solution with ``next``. :: 

 

sage: too_big = Sudoku([0]*625) 

sage: next(too_big.solve(algorithm='backtrack')) 

Traceback (most recent call last): 

... 

ValueError: The Sudoku backtrack algorithm is limited to puzzles of size 16 or smaller. 

 

An attempt to use a non-existent algorithm. :: 

 

sage: next(Sudoku([0]).solve(algorithm='bogus')) 

Traceback (most recent call last): 

... 

NotImplementedError: bogus is not an algorithm for Sudoku puzzles 

""" 

if algorithm == 'backtrack': 

if self.n > 4: 

raise ValueError('The Sudoku backtrack algorithm is limited to puzzles of size 16 or smaller.') 

else: 

gen = self.backtrack() 

elif algorithm == 'dlx': 

gen = self.dlx() 

else: 

raise NotImplementedError('%s is not an algorithm for Sudoku puzzles' % algorithm) 

for soln in gen: 

yield Sudoku(soln, verify_input = 'False') 

 

def backtrack(self): 

r""" 

Return a generator which iterates through all solutions of a Sudoku puzzle. 

 

This function is intended to be called from the 

:func:`~sage.games.sudoku.Sudoku.solve` method 

when the ``algorithm='backtrack'`` option is specified. 

However it may be called directly as a method of an 

instance of a Sudoku puzzle. 

 

At this point, this method calls 

:func:`~sage.games.sudoku_backtrack.backtrack_all` which 

constructs *all* of the solutions as a list. Then the 

present method just returns the items of the list one at 

a time. Once Cython supports closures and a yield statement 

is supported, then the contents of ``backtrack_all()`` 

may be subsumed into this method and the 

:mod:`sage.games.sudoku_backtrack` module can be removed. 

 

This routine can have wildly variable performance, with a 

factor of 4000 observed between the fastest and slowest 

`9\times 9` examples tested. Examples designed to perform 

poorly for naive backtracking, will do poorly 

(such as ``d`` below). However, examples meant to be 

difficult for humans often do very well, with a factor 

of 5 improvement over the `DLX` algorithm. 

 

Without dynamically allocating arrays in the Cython version, 

we have limited this function to `16\times 16` puzzles. 

Algorithmic details are in the 

:mod:`sage.games.sudoku_backtrack` module. 

 

EXAMPLES: 

 

This example was reported to be very difficult for human solvers. 

This algorithm works very fast on it, at about half the time 

of the DLX solver. [sudoku:escargot]_ :: 

 

sage: g = Sudoku('1....7.9..3..2...8..96..5....53..9...1..8...26....4...3......1..4......7..7...3..') 

sage: print(g) 

+-----+-----+-----+ 

|1 | 7| 9 | 

| 3 | 2 | 8| 

| 9|6 |5 | 

+-----+-----+-----+ 

| 5|3 |9 | 

| 1 | 8 | 2| 

|6 | 4| | 

+-----+-----+-----+ 

|3 | | 1 | 

| 4 | | 7| 

| 7| |3 | 

+-----+-----+-----+ 

sage: print(next(g.solve(algorithm='backtrack'))) 

+-----+-----+-----+ 

|1 6 2|8 5 7|4 9 3| 

|5 3 4|1 2 9|6 7 8| 

|7 8 9|6 4 3|5 2 1| 

+-----+-----+-----+ 

|4 7 5|3 1 2|9 8 6| 

|9 1 3|5 8 6|7 4 2| 

|6 2 8|7 9 4|1 3 5| 

+-----+-----+-----+ 

|3 5 6|4 7 8|2 1 9| 

|2 4 1|9 3 5|8 6 7| 

|8 9 7|2 6 1|3 5 4| 

+-----+-----+-----+ 

 

This example has no entries in the top row and a half, 

and the top row of the solution is ``987654321`` and 

therefore a backtracking approach is slow, taking about 

750 times as long as the DLX solver. [sudoku:wikipedia]_ :: 

 

sage: c = Sudoku('..............3.85..1.2.......5.7.....4...1...9.......5......73..2.1........4...9') 

sage: print(c) 

+-----+-----+-----+ 

| | | | 

| | 3| 8 5| 

| 1| 2 | | 

+-----+-----+-----+ 

| |5 7| | 

| 4| |1 | 

| 9 | | | 

+-----+-----+-----+ 

|5 | | 7 3| 

| 2| 1 | | 

| | 4 | 9| 

+-----+-----+-----+ 

sage: print(next(c.solve(algorithm='backtrack'))) 

+-----+-----+-----+ 

|9 8 7|6 5 4|3 2 1| 

|2 4 6|1 7 3|9 8 5| 

|3 5 1|9 2 8|7 4 6| 

+-----+-----+-----+ 

|1 2 8|5 3 7|6 9 4| 

|6 3 4|8 9 2|1 5 7| 

|7 9 5|4 6 1|8 3 2| 

+-----+-----+-----+ 

|5 1 9|2 8 6|4 7 3| 

|4 7 2|3 1 9|5 6 8| 

|8 6 3|7 4 5|2 1 9| 

+-----+-----+-----+ 

""" 

from .sudoku_backtrack import backtrack_all 

solutions = backtrack_all(self.n, self.puzzle) 

for soln in solutions: 

yield soln 

 

def dlx(self, count_only=False): 

r""" 

Return a generator that iterates through all solutions of a Sudoku puzzle. 

 

INPUT: 

 

- count_only -- boolean, default = False. 

If set to ``True`` the generator returned as output will 

simply generate ``None`` for each solution, so the 

calling routine can count these. 

 

OUTPUT: 

 

Returns a generator that that iterates over all the solutions. 

 

This function is intended to be called from the 

:func:`~sage.games.sudoku.Sudoku.solve` method 

with the ``algorithm='dlx'`` option. However it 

may be called directly as a method of an instance 

of a Sudoku puzzle if speed is important and you 

do not need automatic conversions on the output 

(or even just want to count solutions without looking 

at them). In this case, inputting a puzzle as a list, 

with ``verify_input=False`` is the fastest way to 

create a puzzle. 

 

Or if only one solution is needed it can be obtained with 

one call to ``next()``, while the existence of a solution 

can be tested by catching the ``StopIteration`` exception 

with a ``try``. Calling this particular method returns 

solutions as lists, in row-major order. It is up to you 

to work with this list for your own purposes. If you want 

fancier formatting tools, use the 

:func:`~sage.games.sudoku.Sudoku.solve` method, which 

returns a generator that creates 

:class:`sage.games.sudoku.Sudoku` objects. 

 

EXAMPLES: 

 

A `9\times 9` known to have one solution. We get the one 

solution and then check to see if there are more or not. :: 

 

sage: e = Sudoku('4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......') 

sage: print(next(e.dlx())) 

[4, 1, 7, 3, 6, 9, 8, 2, 5, 6, 3, 2, 1, 5, 8, 9, 4, 7, 9, 5, 8, 7, 2, 4, 3, 1, 6, 8, 2, 5, 4, 3, 7, 1, 6, 9, 7, 9, 1, 5, 8, 6, 4, 3, 2, 3, 4, 6, 9, 1, 2, 7, 5, 8, 2, 8, 9, 6, 4, 3, 5, 7, 1, 5, 7, 3, 2, 9, 1, 6, 8, 4, 1, 6, 4, 8, 7, 5, 2, 9, 3] 

sage: len(list(e.dlx())) 

1 

 

A `9\times 9` puzzle with multiple solutions. 

Once with actual solutions, once just to count. :: 

 

sage: h = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: len(list(h.dlx())) 

5 

sage: len(list(h.dlx(count_only=True))) 

5 

 

A larger puzzle, with multiple solutions, but we just get one. :: 

 

sage: j = Sudoku('....a..69.3....1d.2...8....e.4....b....5..c.......7.......g...f....1.e..2.b.8..3.......4.d.....6.........f..7.g..9.a..c...5.....8..f.....1..e.79.c....b.....2...6.....g.7......84....3.d..a.5....5...7..e...ca.....3.1.......b......f....4...d..e..g.92.6..8....') 

sage: print(next(j.dlx())) 

[5, 15, 16, 14, 10, 13, 7, 6, 9, 2, 3, 4, 11, 8, 12, 1, 13, 3, 2, 12, 11, 16, 8, 15, 1, 6, 7, 14, 10, 4, 9, 5, 1, 10, 11, 6, 9, 4, 3, 5, 15, 8, 12, 13, 16, 7, 14, 2, 9, 8, 7, 4, 12, 2, 1, 14, 10, 5, 16, 11, 6, 3, 15, 13, 12, 16, 4, 1, 13, 14, 9, 10, 2, 7, 11, 6, 8, 15, 5, 3, 3, 14, 5, 7, 16, 11, 15, 4, 12, 13, 8, 9, 1, 2, 10, 6, 2, 6, 13, 11, 1, 8, 5, 3, 4, 15, 14, 10, 7, 9, 16, 12, 15, 9, 8, 10, 2, 6, 12, 7, 3, 16, 5, 1, 4, 14, 13, 11, 8, 11, 3, 15, 5, 10, 4, 2, 13, 1, 6, 12, 14, 16, 7, 9, 16, 12, 14, 13, 7, 15, 11, 1, 8, 9, 4, 5, 2, 6, 3, 10, 6, 2, 10, 5, 14, 12, 16, 9, 7, 11, 15, 3, 13, 1, 4, 8, 4, 7, 1, 9, 8, 3, 6, 13, 16, 14, 10, 2, 5, 12, 11, 15, 11, 5, 9, 8, 6, 7, 13, 16, 14, 3, 1, 15, 12, 10, 2, 4, 7, 13, 15, 3, 4, 1, 10, 8, 5, 12, 2, 16, 9, 11, 6, 14, 10, 1, 6, 2, 15, 5, 14, 12, 11, 4, 9, 7, 3, 13, 8, 16, 14, 4, 12, 16, 3, 9, 2, 11, 6, 10, 13, 8, 15, 5, 1, 7] 

 

The puzzle ``h`` from above, but purposely made unsolvable with addition in second entry. :: 

 

sage: hbad = Sudoku('82.6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: len(list(hbad.dlx())) 

0 

sage: next(hbad.dlx()) 

Traceback (most recent call last): 

... 

StopIteration 

 

A stupidly small puzzle to test the lower limits of arbitrary sized input. :: 

 

sage: s = Sudoku('.') 

sage: print(next(s.solve(algorithm='dlx'))) 

+-+ 

|1| 

+-+ 

 

ALGORITHM: 

 

The ``DLXCPP`` solver finds solutions to the exact-cover 

problem with a "Dancing Links" backtracking algorithm. 

Given a `0-1` matrix, the solver finds a subset of the 

rows that sums to the all `1`'s vector. The columns 

correspond to conditions, or constraints, that must be 

met by a solution, while the rows correspond to some 

collection of choices, or decisions. A `1` in a row 

and column indicates that the choice corresponding to 

the row meets the condition corresponding to the column. 

 

So here, we code the notion of a Sudoku puzzle, and the 

hints already present, into such a `0-1` matrix. Then the 

:class:`sage.combinat.matrices.dlxcpp.DLXCPP` solver makes 

the choices for the blank entries. 

""" 

from sage.combinat.matrices.dlxcpp import DLXCPP 

 

n = self.n 

nsquare = n*n 

nfour = nsquare*nsquare 

 

# Boxes of the grid are numbered in row-major order 

# ``rcbox`` simply maps a row-column index pair to the box number it lives in 

rcbox = [ [i//n + n*(j//n) for i in range(nsquare)] for j in range(nsquare)] 

 

# Every entry in a Sudoku puzzle satisfies four constraints 

# Every location has a single entry, and each row, column and box has each symbol once 

# These arrays can be thought of as assigning ID numbers to these constraints, 

# and correspond to column numbers of the `0-1` matrix describing the exact cover 

rows = [[i+j for i in range(nsquare)] for j in range(0, nfour, nsquare)] 

cols = [[i+j for i in range(nsquare)] for j in range(nfour, 2*nfour, nsquare)] 

boxes = [[i+j for i in range(nsquare)] for j in range(2*nfour, 3*nfour, nsquare)] 

rowcol = [[i+j for i in range(nsquare)] for j in range(3*nfour, 4*nfour, nsquare)] 

 

def make_row(row, col, entry): 

r""" 

Constructs a row of the `0-1` matrix describing 

the exact cover constraints for a Sudoku puzzle. 

 

If a (zero-based) ``entry`` is placed in location 

``(row, col)`` of a Sudoku puzzle, then exactly four 

constraints are satisfied: the location has this entry, 

and the entry occurs in the row, column and box. 

This method looks up the constraint IDs for each of 

these four constraints, and returns a list of these four IDs. 

 

TESTS:: 

 

sage: h = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1..5...8..36..3......') 

sage: len(list(h.solve(algorithm='dlx'))) # indirect doctest 

5 

""" 

box = rcbox[row][col] 

return [rows[row][entry], cols[col][entry], boxes[box][entry], rowcol[row][col]] 

 

# Construct the sparse `0-1` matrix for the exact cover formulation as the ``ones`` array 

# ``rowinfo`` remembers the location and entry that led to the row being added to the matrix 

rowinfo = [] 

ones = [] 

gen = (entry for entry in self.puzzle) 

for row in range(nsquare): 

for col in range(nsquare): 

puzz = next(gen) 

# All (zero-based) entries are possible, or only one is possible 

entries = ([puzz-1] if puzz else range(nsquare)) 

for entry in entries: 

ones.append(make_row(row, col, entry)) 

rowinfo.append((row, col, entry)) 

 

# ``DLXCPP`` will solve the exact cover problem for the ``ones`` matrix 

# ``cover`` will contain a subset of the row indices so that the sum of the rows is the all `1`'s vector 

# These rows will represent the original hints, plus a single entry in every other location, 

# consistent with the requirements imposed on a solution to a Sudoku puzzle 

for cover in DLXCPP(ones): 

if not(count_only): 

solution = [0]*nfour 

for r in cover: 

row, col, entry = rowinfo[r] 

solution[row*nsquare+col] = entry+1 

yield solution 

else: 

yield None