Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

r""" 

Base class for polyhedra over `\ZZ` 

""" 

 

#***************************************************************************** 

# Copyright (C) 2011 Volker Braun <vbraun.name@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function, absolute_import 

 

from sage.rings.all import ZZ, QQ 

from sage.misc.all import cached_method 

from sage.modules.free_module_element import vector 

from .base_QQ import Polyhedron_QQ 

from sage.arith.all import gcd 

from .constructor import Polyhedron 

from .base import Polyhedron_base 

from sage.misc.superseded import deprecated_function_alias 

 

 

######################################################################### 

class Polyhedron_ZZ(Polyhedron_QQ): 

""" 

Base class for Polyhedra over `\ZZ` 

 

TESTS:: 

 

sage: p = Polyhedron([(0,0)], base_ring=ZZ); p 

A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex 

sage: TestSuite(p).run(skip='_test_pickling') 

""" 

_base_ring = ZZ 

 

def is_lattice_polytope(self): 

r""" 

Return whether the polyhedron is a lattice polytope. 

 

OUTPUT: 

 

``True`` if the polyhedron is compact and has only integral 

vertices, ``False`` otherwise. 

 

EXAMPLES:: 

 

sage: polytopes.cross_polytope(3).is_lattice_polytope() 

True 

sage: polytopes.regular_polygon(5).is_lattice_polytope() 

False 

 

TESTS: 

 

Check :trac:`22622`:: 

 

sage: P1 = Polyhedron(vertices = [[1, 0], [0, 1]], rays = [[1, 1]]) 

sage: P1.is_lattice_polytope() 

False 

""" 

return self.is_compact() 

 

def ehrhart_polynomial(self, verbose=False, dual=None, 

irrational_primal=None, irrational_all_primal=None, maxdet=None, 

no_decomposition=None, compute_vertex_cones=None, smith_form=None, 

dualization=None, triangulation=None, triangulation_max_height=None, 

**kwds): 

r""" 

Return the Ehrhart polynomial of this polyhedron. 

 

Let `P` be a lattice polytope in `\RR^d` and define `L(P,t) = \# (tP 

\cap \ZZ^d)`. Then E. Ehrhart proved in 1962 that `L` coincides with a 

rational polynomial of degree `d` for integer `t`. `L` is called the 

*Ehrhart polynomial* of `P`. For more information see the 

:wikipedia:`Ehrhart_polynomial`. 

 

INPUT: 

 

- ``verbose`` - (boolean, default to ``False``) if ``True``, print the 

whole output of the LattE command. 

 

The following options are passed to the LattE command, for details you 

should consult `the LattE documentation 

<https://www.math.ucdavis.edu/~latte/software/packages/latte_current/>`__: 

 

- ``dual`` - (boolean) triangulate and signed-decompose in the dual 

space 

 

- ``irrational_primal`` - (boolean) triangulate in the dual space, 

signed-decompose in the primal space using irrationalization. 

 

- ``irrational_all_primal`` - (boolean) Triangulate and signed-decompose 

in the primal space using irrationalization. 

 

- ``maxdet`` -- (integer) decompose down to an index (determinant) of 

``maxdet`` instead of index 1 (unimodular cones). 

 

- ``no_decomposition`` -- (boolean) do not signed-decompose simplicial cones. 

 

- ``compute_vertex_cones`` -- (string) either 'cdd' or 'lrs' or '4ti2' 

 

- ``smith_form`` -- (string) either 'ilio' or 'lidia' 

 

- ``dualization`` -- (string) either 'cdd' or '4ti2' 

 

- ``triangulation`` - (string) 'cddlib', '4ti2' or 'topcom' 

 

- ``triangulation_max_height`` - (integer) use a uniform distribution of 

height from 1 to this number 

 

.. NOTE:: 

 

Any additional argument is forwarded to LattE's executable 

``count``. All occurrences of '_' will be replaced with a '-'. 

 

ALGORITHM: 

 

This method calls the program ``count`` from LattE integrale, a program 

for lattice point enumeration (see 

https://www.math.ucdavis.edu/~latte/). 

 

.. SEEALSO:: 

 

:mod:`~sage.interfaces.latte` the interface to LattE integrale 

 

EXAMPLES:: 

 

sage: P = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)]) 

sage: p = P.ehrhart_polynomial() # optional - latte_int 

sage: p # optional - latte_int 

7/2*t^3 + 2*t^2 - 1/2*t + 1 

sage: p(1) # optional - latte_int 

6 

sage: len(P.integral_points()) 

6 

sage: p(2) # optional - latte_int 

36 

sage: len((2*P).integral_points()) 

36 

 

The unit hypercubes:: 

 

sage: from itertools import product 

sage: def hypercube(d): 

....: return Polyhedron(vertices=list(product([0,1],repeat=d))) 

sage: hypercube(3).ehrhart_polynomial() # optional - latte_int 

t^3 + 3*t^2 + 3*t + 1 

sage: hypercube(4).ehrhart_polynomial() # optional - latte_int 

t^4 + 4*t^3 + 6*t^2 + 4*t + 1 

sage: hypercube(5).ehrhart_polynomial() # optional - latte_int 

t^5 + 5*t^4 + 10*t^3 + 10*t^2 + 5*t + 1 

sage: hypercube(6).ehrhart_polynomial() # optional - latte_int 

t^6 + 6*t^5 + 15*t^4 + 20*t^3 + 15*t^2 + 6*t + 1 

 

An empty polyhedron:: 

 

sage: P = Polyhedron(ambient_dim=3, vertices=[]) 

sage: P.ehrhart_polynomial() # optional - latte_int 

0 

sage: parent(_) # optional - latte_int 

Univariate Polynomial Ring in t over Rational Field 

 

TESTS: 

 

Test options:: 

 

sage: P = Polyhedron(ieqs=[[1,-1,1,0], [-1,2,-1,0], [1,1,-2,0]], eqns=[[-1,2,-1,-3]], base_ring=ZZ) 

 

sage: p = P.ehrhart_polynomial(maxdet=5, verbose=True) # optional - latte_int 

This is LattE integrale ... 

... 

Invocation: count --ehrhart-polynomial '--redundancy-check=none' --cdd '--maxdet=5' /dev/stdin 

... 

sage: p # optional - latte_int 

1/2*t^2 + 3/2*t + 1 

 

sage: p = P.ehrhart_polynomial(dual=True, verbose=True) # optional - latte_int 

This is LattE integrale ... 

... 

Invocation: count --ehrhart-polynomial '--redundancy-check=none' --cdd --dual /dev/stdin 

... 

sage: p # optional - latte_int 

1/2*t^2 + 3/2*t + 1 

 

sage: p = P.ehrhart_polynomial(irrational_primal=True, verbose=True) # optional - latte_int 

This is LattE integrale ... 

... 

Invocation: count --ehrhart-polynomial '--redundancy-check=none' --cdd --irrational-primal /dev/stdin 

... 

sage: p # optional - latte_int 

1/2*t^2 + 3/2*t + 1 

 

sage: p = P.ehrhart_polynomial(irrational_all_primal=True, verbose=True) # optional - latte_int 

This is LattE integrale ... 

... 

Invocation: count --ehrhart-polynomial '--redundancy-check=none' --cdd --irrational-all-primal /dev/stdin 

... 

sage: p # optional - latte_int 

1/2*t^2 + 3/2*t + 1 

 

Test bad options:: 

 

sage: P.ehrhart_polynomial(bim_bam_boum=19) # optional - latte_int 

Traceback (most recent call last): 

... 

RuntimeError: LattE integrale program failed (exit code 1): 

... 

Invocation: count --ehrhart-polynomial '--redundancy-check=none' --cdd '--bim-bam-boum=19' /dev/stdin 

Unknown command/option --bim-bam-boum=19 

""" 

if self.is_empty(): 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.rings.rational_field import QQ 

R = PolynomialRing(QQ, 't') 

return R.zero() 

 

# note: the options below are explicitely written in the function 

# declaration in order to keep tab completion (see #18211). 

kwds.update({ 

'dual' : dual, 

'irrational_primal' : irrational_primal, 

'irrational_all_primal' : irrational_all_primal, 

'maxdet' : maxdet, 

'no_decomposition' : no_decomposition, 

'compute_vertex_cones' : compute_vertex_cones, 

'smith_form' : smith_form, 

'dualization' : dualization, 

'triangulation' : triangulation, 

'triangulation_max_height': triangulation_max_height}) 

 

from sage.interfaces.latte import count 

ine = self.cdd_Hrepresentation() 

return count(ine, cdd=True, ehrhart_polynomial=True, verbose=verbose, **kwds) 

 

@cached_method 

def polar(self): 

""" 

Return the polar (dual) polytope. 

 

The polytope must have the IP-property (see 

:meth:`has_IP_property`), that is, the origin must be an 

interior point. In particular, it must be full-dimensional. 

 

OUTPUT: 

 

The polytope whose vertices are the coefficient vectors of the 

inequalities of ``self`` with inhomogeneous term normalized to 

unity. 

 

EXAMPLES:: 

 

sage: p = Polyhedron(vertices=[(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)], base_ring=ZZ) 

sage: p.polar() 

A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices 

sage: type(_) 

<class 'sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category.element_class'> 

sage: p.polar().base_ring() 

Integer Ring 

""" 

if not self.has_IP_property(): 

raise ValueError('The polytope must have the IP property.') 

 

vertices = [ ieq.A()/ieq.b() for 

ieq in self.inequality_generator() ] 

if all( all(v_i in ZZ for v_i in v) for v in vertices): 

return Polyhedron(vertices=vertices, base_ring=ZZ) 

else: 

return Polyhedron(vertices=vertices, base_ring=QQ) 

 

@cached_method 

def is_reflexive(self): 

""" 

EXAMPLES:: 

 

sage: p = Polyhedron(vertices=[(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)], base_ring=ZZ) 

sage: p.is_reflexive() 

True 

""" 

return self.polar().is_lattice_polytope() 

 

@cached_method 

def has_IP_property(self): 

""" 

Test whether the polyhedron has the IP property. 

 

The IP (interior point) property means that 

 

* ``self`` is compact (a polytope). 

 

* ``self`` contains the origin as an interior point. 

 

This implies that 

 

* ``self`` is full-dimensional. 

 

* The dual polyhedron is again a polytope (that is, a compact 

polyhedron), though not necessarily a lattice polytope. 

 

EXAMPLES:: 

 

sage: Polyhedron([(1,1),(1,0),(0,1)], base_ring=ZZ).has_IP_property() 

False 

sage: Polyhedron([(0,0),(1,0),(0,1)], base_ring=ZZ).has_IP_property() 

False 

sage: Polyhedron([(-1,-1),(1,0),(0,1)], base_ring=ZZ).has_IP_property() 

True 

 

REFERENCES: 

 

- [PALP]_ 

""" 

return self.is_compact() and self.interior_contains(self.ambient_space().zero()) 

 

def fibration_generator(self, dim): 

""" 

Generate the lattice polytope fibrations. 

 

For the purposes of this function, a lattice polytope fiber is 

a sub-lattice polytope. Projecting the plane spanned by the 

subpolytope to a point yields another lattice polytope, the 

base of the fibration. 

 

INPUT: 

 

- ``dim`` -- integer. The dimension of the lattice polytope 

fiber. 

 

OUTPUT: 

 

A generator yielding the distinct lattice polytope fibers of 

given dimension. 

 

EXAMPLES:: 

 

sage: P = Polyhedron(toric_varieties.P4_11169().fan().rays(), base_ring=ZZ) 

sage: list( P.fibration_generator(2) ) 

[A 2-dimensional polyhedron in ZZ^4 defined as the convex hull of 3 vertices] 

""" 

from sage.combinat.combination import Combinations 

if not self.is_compact(): 

raise ValueError('Only polytopes (compact polyhedra) are allowed.') 

 

nonzero_points = [p for p in self.integral_points() if not p.is_zero()] 

origin = [[0]*self.ambient_dim()] 

fibers = set() 

parent = self.parent() 

 

for points in Combinations(nonzero_points, dim): 

plane = parent.element_class(parent, [origin,[],points], None) 

if plane.dim() != dim: 

continue 

fiber = self.intersection(plane) 

if fiber.base_ring() is not ZZ: 

continue 

fiber_vertices = tuple(sorted(tuple(v) for v in fiber.vertex_generator())) 

if fiber_vertices not in fibers: 

yield fiber 

fibers.update([fiber_vertices]) 

plane._delete() 

 

def find_translation(self, translated_polyhedron): 

""" 

Return the translation vector to ``translated_polyhedron``. 

 

INPUT: 

 

- ``translated_polyhedron`` -- a polyhedron. 

 

OUTPUT: 

 

A `\ZZ`-vector that translates ``self`` to 

``translated_polyhedron``. A ``ValueError`` is raised if 

``translated_polyhedron`` is not a translation of ``self``, 

this can be used to check that two polyhedra are not 

translates of each other. 

 

EXAMPLES:: 

 

sage: X = polytopes.cube() 

sage: X.find_translation(X + vector([2,3,5])) 

(2, 3, 5) 

sage: X.find_translation(2*X) 

Traceback (most recent call last): 

... 

ValueError: polyhedron is not a translation of self 

""" 

no_translation_exception = ValueError('polyhedron is not a translation of self') 

if ( set(self.rays()) != set(translated_polyhedron.rays()) or 

set(self.lines()) != set(translated_polyhedron.lines()) or 

self.n_vertices() != translated_polyhedron.n_vertices() ): 

raise no_translation_exception 

sorted_vertices = sorted(map(vector, self.vertices())) 

sorted_translated_vertices = sorted(map(vector, translated_polyhedron.vertices())) 

v = sorted_translated_vertices[0] - sorted_vertices[0] 

if any(vertex+v != translated_vertex 

for vertex, translated_vertex in zip(sorted_vertices, sorted_translated_vertices)): 

raise no_translation_exception 

return v 

 

def _subpoly_parallel_facets(self): 

""" 

Generator for all lattice sub-polyhedra with parallel facets. 

 

In a sub-polyhedron `Y\subset X` not all edges of `Y` need to 

be parallel to `X`. This method iterates over all 

sub-polyhedra where they are parallel, up to an overall 

translation of the sub-polyhedron. Degenerate sub-polyhedra of 

dimension strictly smaller are included. 

 

OUTPUT: 

 

A generator yielding `\ZZ`-polyhedra. By construction, each 

facet of the returned polyhedron is parallel to one of the 

facets of ``self``. 

 

EXAMPLES:: 

 

sage: X = Polyhedron(vertices=[(0,0), (0,1), (1,0), (1,1)]) 

sage: X._subpoly_parallel_facets() 

<generator object _subpoly_parallel_facets at 0x...> 

sage: for p in X._subpoly_parallel_facets(): 

....: print(p.Vrepresentation()) 

(A vertex at (0, 0),) 

(A vertex at (0, -1), A vertex at (0, 0)) 

(A vertex at (-1, 0), A vertex at (0, 0)) 

(A vertex at (-1, -1), A vertex at (-1, 0), A vertex at (0, -1), A vertex at (0, 0)) 

 

TESTS:: 

 

sage: X = Polyhedron(vertices=[(0,), (3,)]) 

sage: [ p.vertices() for p in X._subpoly_parallel_facets() ] 

[(A vertex at (0),), 

(A vertex at (-1), A vertex at (0)), 

(A vertex at (-2), A vertex at (0)), 

(A vertex at (-3), A vertex at (0))] 

sage: list( Polyhedron(vertices=[[0,0]])._subpoly_parallel_facets() ) 

[A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex] 

sage: list( Polyhedron()._subpoly_parallel_facets() ) 

[The empty polyhedron in ZZ^0] 

""" 

if self.dim()>2 or not self.is_compact(): 

raise NotImplementedError('only implemented for bounded polygons') 

from sage.geometry.polyhedron.plot import cyclic_sort_vertices_2d 

vertices = cyclic_sort_vertices_2d(self.vertices()) 

n = len(vertices) 

if n==1: # single point 

yield self 

return 

edge_vectors = [] 

for i in range(0,n): 

v = vertices[(i+1) % n].vector() - vertices[i].vector() 

d = gcd(list(v)) 

v_prim = (v/d).change_ring(ZZ) 

edge_vectors.append([ v_prim*i for i in range(d+1) ]) 

origin = self.ambient_space().zero() 

parent = self.parent() 

from itertools import product 

for edges in product(*edge_vectors): 

v = [] 

point = origin 

for e in edges: 

point += e 

v.append(point) 

if point!=origin: # does not close up, not a subpolygon 

continue 

yield parent([v, [], []], None) 

 

@cached_method 

def minkowski_decompositions(self): 

""" 

Return all Minkowski sums that add up to the polyhedron. 

 

OUTPUT: 

 

A tuple consisting of pairs `(X,Y)` of `\ZZ`-polyhedra that 

add up to ``self``. All pairs up to exchange of the summands 

are returned, that is, `(Y,X)` is not included if `(X,Y)` 

already is. 

 

EXAMPLES:: 

 

sage: square = Polyhedron(vertices=[(0,0),(1,0),(0,1),(1,1)]) 

sage: square.minkowski_decompositions() 

((A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices), 

(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices, 

A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices)) 

 

Example from http://cgi.di.uoa.gr/~amantzaf/geo/ :: 

 

sage: Q = Polyhedron(vertices=[(4,0), (6,0), (0,3), (4,3)]) 

sage: R = Polyhedron(vertices=[(0,0), (5,0), (8,4), (3,2)]) 

sage: (Q+R).minkowski_decompositions() 

((A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7 vertices), 

(A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices), 

(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7 vertices), 

(A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 5 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices), 

(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7 vertices), 

(A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 5 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices), 

(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 7 vertices), 

(A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices, 

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 6 vertices)) 

 

sage: [ len(square.dilation(i).minkowski_decompositions()) 

....: for i in range(6) ] 

[1, 2, 5, 8, 13, 18] 

sage: [ ceil((i^2+2*i-1)/2)+1 for i in range(10) ] 

[1, 2, 5, 8, 13, 18, 25, 32, 41, 50] 

 

TESTS:: 

 

sage: Q = Polyhedron(vertices=[(4,0), (6,0), (0,3), (4,3)]) 

sage: D = Q.Minkowski_decompositions() 

doctest:warning...: 

DeprecationWarning: Minkowski_decompositions is deprecated. Please use minkowski_decompositions instead. 

See http://trac.sagemath.org/23685 for details. 

""" 

if self.dim() > 2 or not self.is_compact(): 

raise NotImplementedError('only implemented for bounded polygons') 

summands = [] 

def is_known_summand(poly): 

for summand in summands: 

try: 

poly.find_translation(summand) 

return True 

except ValueError: 

pass 

decompositions = [] 

for X in self._subpoly_parallel_facets(): 

if is_known_summand(X): 

continue 

Y = self - X 

if X+Y != self: 

continue 

decompositions.append((X, Y)) 

summands += [X, Y] 

return tuple(decompositions) 

 

Minkowski_decompositions = deprecated_function_alias(23685, 

minkowski_decompositions)