Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

r""" 

Ribbon Graphs 

 

This file implements objects called *ribbon graphs*. These are graphs  

together with a cyclic ordering of the darts adjacent to each  

vertex. This data allows us to unambiguously "thicken" the ribbon  

graph to an orientable surface with boundary. Also, every orientable 

surface with non-empty boundary is the thickening of a ribbon graph. 

 

AUTHORS: 

 

- Pablo Portilla (2016) 

""" 

 

#***************************************************************************** 

# Copyright (C) 2016 Pablo Portilla <p.portilla89@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.structure.sage_object import SageObject 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.groups.perm_gps.permgroup_element import PermutationGroupElement 

from sage.rings.integer_ring import ZZ 

from sage.misc.cachefunc import cached_method 

from sage.misc.flatten import flatten 

from copy import deepcopy 

 

#Auxiliary functions that will be used in the classes. 

 

def _find(l, k): 

r""" 

Return the two coordinates of the element ``k`` in the list of 

lists ``l``. 

 

INPUT: 

 

- ``l`` -- a list of lists 

- ``k`` -- a candidate to be in a list in ``l`` 

 

OUTPUT: 

 

A list with two integers describing the position of the first 

instance of `k`` in ``l``. 

 

TESTS:: 

 

sage: from sage.geometry.ribbon_graph import _find 

sage: A = [[2,3,4],[4,5,2],[8,7]] 

sage: _find(A,2) 

[0, 0] 

sage: _find(A,7) 

[2, 1] 

sage: _find(A,5) 

[1, 1] 

sage: _find(A,-1) 

Traceback (most recent call last): 

... 

ValueError: element -1 not found 

""" 

for i,lst in enumerate(l): 

if k in lst: 

return [i, lst.index(k)] 

raise ValueError("element {} not found".format(k)) 

 

def _clean(l): 

r""" 

Return a list where empty sublists of ``l`` have been removed. 

 

INPUT: 

 

- ``l`` -- a list of lists 

 

OUTPUT: 

 

- a list which is a copy of ``l`` with all empty sublists removed 

 

EXAMPLES:: 

 

sage: from sage.geometry.ribbon_graph import _clean 

sage: A = [[1,2],[], [2,1,7],[],[],[1]] 

sage: _clean(A) 

[[1, 2], [2, 1, 7], [1]] 

""" 

return [list(elt) for elt in l if elt] 

 

 

class RibbonGraph(SageObject, UniqueRepresentation): 

r""" 

A ribbon graph codified as two elements of a certain permutation group. 

 

A comprehensive introduction on the topic can be found in the beginning 

of [GGD2011]_ Chapter 4. More concretely, we will use a variation of what 

is called in the reference "The permutation representation pair of a 

dessin". Note that in that book, ribbon graphs are called "dessins 

d'enfant". For the sake on completeness we reproduce an adapted version 

of that introduction here. 

 

**Brief introduction** 

 

Let `\Sigma` be an orientable surface with non-empty boundary and let  

`\Gamma` be the topological realization of a graph that is embedded in  

`\Sigma` in such a way that the graph is a strong deformation retract of 

the surface.  

 

Let `v(\Gamma)` be the set of vertices of `\Gamma`, suppose that these 

are white vertices. Now we mark black vertices in an interior point 

of each edge. In this way we get a bipartite graph where all the black 

vertices have valency 2 and there is no restriction on the valency 

of the white vertices. We call the edges of this new graph *darts* 

(sometimes they are also called *half eldges* of the original graph). 

Observe that each edge of the original graph is formed by two darts. 

 

Given a white vertex `v \in v(\Gamma)`, let `d(v)` be the set of darts 

adjacent to `v`. Let `D(\Gamma)` be the set of all the darts of 

`\Gamma` and suppose that we enumerate the set `D(\Gamma)` and that it 

has `n` elements. 

 

With the orientation of the surface and the embedding of the graph in  

the surface we can produce two permutations: 

 

- A permutation that we denote by `\sigma`. This permutation is a 

product of as many cycles as white vertices (that is vertices in 

`\Gamma`). For each vertex consider a small topological circle 

around it in `\Sigma`. This circle intersects each adjacent dart 

once. The circle has an orientation induced by the orientation on 

`\Sigma` and so defines a cycle that sends the number associated 

to one dart to the number associated to the next dart in the 

positive orientation of the circle. 

 

- A permutation that we denote by `\rho`. This permutation is a 

product of as many `2`-cycles as edges has `\Gamma`. It just tells 

which two darts belong to the same edge. 

 

.. RUBRIC:: Abstract definition 

 

Consider a graph `\Gamma` (not a priori embedded in any surface).  

Now we can again consider one vertex in the interior of each edge  

splitting each edge in two darts. We label the darts with numbers. 

 

We say that a ribbon structure on `\Gamma` is a set of two  

permutations `(\sigma, \rho)`. Where `\sigma` is formed by as many 

disjoint cycles as vertices had `\Gamma`. And each cycle is a  

cyclic ordering of the darts adjacent to a vertex. The permutation 

`\rho` just tell us which two darts belong to the same edge. 

 

For any two such permutations there is a way of "thickening" the 

graph to a surface with boundary in such a way that the surface 

retracts (by a strong deformation retract) to the graph and hence 

the graph is embedded in the surface in a such a way that we could 

recover `\sigma` and `\rho`. 

 

INPUT: 

 

- ``sigma`` -- a permutation a product of disjoint cycles of any 

length; singletons (vertices of valency 1) need not be specified 

- ``rho`` -- a permutation which is a product of disjoint 2-cycles 

 

Alternatively, one can pass in 2 integers and this will construct 

a ribbon graph with genus ``sigma`` and ``rho`` boundary components. 

See :func:`~sage.geometry.ribbon_graphs.make_ribbon`. 

 

One can also construct the bipartite graph modeling the 

corresponding Brieskorn-Pham singularity by passing 2 integers 

and the keyword ``bipartite=True``. 

See :func:`~sage.geometry.ribbon_graphs.bipartite_ribbon_graph`. 

 

EXAMPLES: 

 

Consider the ribbon graph consisting of just `1` edge and `2` 

vertices of valency `1`:: 

 

sage: s0 = PermutationGroupElement('(1)(2)') 

sage: r0 = PermutationGroupElement('(1,2)') 

sage: R0 = RibbonGraph(s0,r0); R0 

Ribbon graph of genus 0 and 1 boundary components 

 

Consider a graph that has `2` vertices of valency `3` (and hence `3` 

edges). That is represented by the following two permutations:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1, r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

 

By drawing the picture in a piece of paper, one can see that its 

thickening has only `1` boundary component. Since the thickening 

is homotopically equivalent to the graph and the graph has Euler 

characteristic `-1`, we find that the thickening has genus `1`:: 

 

sage: R1.number_boundaries() 

1 

sage: R1.genus() 

1 

 

The following example corresponds to the complete bipartite graph 

of type `(2,3)`, where we have added one more edge `(8,15)` that 

ends at a vertex of valency `1`. Observe that it is not necessary 

to specify the vertex `(15)` of valency `1` when we define sigma:: 

 

sage: s2 = PermutationGroupElement('(1,3,5,8)(2,4,6)') 

sage: r2 = PermutationGroupElement('(1,2)(3,4)(5,6)(8,15)') 

sage: R2 = RibbonGraph(s2, r2); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: R2.sigma() 

(1,3,5,8)(2,4,6) 

 

This example is constructed by taking the bipartite graph of  

type `(3,3)`:: 

 

sage: s3 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)') 

sage: r3 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)') 

sage: R3 = RibbonGraph(s3, r3); R3 

Ribbon graph of genus 1 and 3 boundary components 

 

The labeling of the darts can omit some numbers:: 

 

sage: s4 = PermutationGroupElement('(3,5,10,12)') 

sage: r4 = PermutationGroupElement('(3,10)(5,12)') 

sage: R4 = RibbonGraph(s4,r4); R4 

Ribbon graph of genus 1 and 1 boundary components 

 

The next example is the complete bipartite graph of type `(3,3)`, where we 

have added an edge that ends at a vertex of valency 1:: 

 

sage: s5 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)') 

sage: r5 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)(19,20)') 

sage: R5 = RibbonGraph(s5,r5); R5 

Ribbon graph of genus 1 and 3 boundary components 

sage: C = R5.contract_edge(9); C 

Ribbon graph of genus 1 and 3 boundary components 

sage: C.sigma() 

(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18) 

sage: C.rho() 

(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12) 

sage: S = R5.reduced(); S 

Ribbon graph of genus 1 and 3 boundary components 

sage: S.sigma() 

(5,6,8,9,14,15,11,12) 

sage: S.rho() 

(5,14)(6,11)(8,15)(9,12) 

sage: R5.boundary() 

[[1, 16, 17, 4, 5, 14, 15, 8, 9, 12, 10, 3], 

[2, 13, 14, 5, 6, 11, 12, 9, 7, 18, 19, 20, 20, 19, 16, 1], 

[3, 10, 11, 6, 4, 17, 18, 7, 8, 15, 13, 2]] 

sage: S.boundary() 

[[5, 14, 15, 8, 9, 12], [6, 11, 12, 9, 14, 5], [8, 15, 11, 6]] 

sage: R5.homology_basis() 

[[[5, 14], [13, 2], [1, 16], [17, 4]], 

[[6, 11], [10, 3], [1, 16], [17, 4]], 

[[8, 15], [13, 2], [1, 16], [18, 7]], 

[[9, 12], [10, 3], [1, 16], [18, 7]]] 

sage: S.homology_basis() 

[[[5, 14]], [[6, 11]], [[8, 15]], [[9, 12]]] 

 

We construct a ribbon graph corresponding to a genus 0 surface 

with 5 boundary components:: 

 

sage: R = RibbonGraph(0, 5); R 

Ribbon graph of genus 0 and 5 boundary components 

sage: R.sigma() 

(1,9,7,5,3)(2,4,6,8,10) 

sage: R.rho() 

(1,2)(3,4)(5,6)(7,8)(9,10) 

 

We construct the Brieskorn-Pham singularity of type `(2,3)`:: 

 

sage: B23 = RibbonGraph(2, 3, bipartite=True); B23 

Ribbon graph of genus 1 and 1 boundary components 

sage: B23.sigma() 

(1,2,3)(4,5,6)(7,8)(9,10)(11,12) 

sage: B23.rho() 

(1,8)(2,10)(3,12)(4,7)(5,9)(6,11) 

""" 

@staticmethod 

def __classcall_private__(cls, sigma, rho, bipartite=False): 

""" 

Normalize input. 

 

EXAMPLES:: 

 

sage: s1 = PermutationGroupElement('(1,3,5,8)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)(8,15)') 

sage: R1 = RibbonGraph(s1, r1) 

sage: s2 = PermutationGroupElement('(1,3,5,8)(2,4,6)(15)') 

sage: R2 = RibbonGraph(s2, r1) 

sage: R1 is R2 

True 

""" 

if bipartite: 

return bipartite_ribbon_graph(sigma, rho) 

if sigma in ZZ and rho in ZZ: 

return make_ribbon(sigma, rho) 

M = sigma.parent() 

if len(M.domain()) < len(rho.parent().domain()): 

M = rho.parent() 

return super(RibbonGraph, cls).__classcall__(cls, M(sigma), M(rho)) 

 

def __init__(self, sigma, rho): 

r""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: s0 = PermutationGroupElement('(1)(2)') 

sage: r0 = PermutationGroupElement('(1,2)') 

sage: R0 = RibbonGraph(s0,r0) 

sage: TestSuite(R0).run() 

 

sage: s1 = PermutationGroupElement('(1,3,5,8)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)(8,15)') 

sage: R1 = RibbonGraph(s1, r1) 

sage: TestSuite(R1).run() 

 

sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)') 

sage: r2 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)') 

sage: R2 = RibbonGraph(s2, r2) 

sage: TestSuite(R2).run() 

""" 

self._sigma = sigma 

self._rho = rho 

 

def _repr_(self): 

r""" 

Return string representation of the two permutations that define 

the ribbon graph. 

 

EXAMPLES:: 

 

sage: s = PermutationGroupElement('(3,5,10,12)') 

sage: r = PermutationGroupElement('(3,10)(5,12)') 

sage: RibbonGraph(s,r) 

Ribbon graph of genus 1 and 1 boundary components 

""" 

return "Ribbon graph of genus {} and {} boundary components".format(self.genus(), self.number_boundaries()) 

 

def sigma(self): 

r""" 

Return the permutation `\sigma` of ``self``. 

 

EXAMPLES:: 

 

sage: s1 = PermutationGroupElement('(1,3,5,8)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)(8,15)') 

sage: R = RibbonGraph(s1, r1) 

sage: R.sigma() 

(1,3,5,8)(2,4,6) 

""" 

return self._sigma 

 

def rho(self): 

r""" 

Return the permutation `\rho` of ``self``. 

 

EXAMPLES:: 

 

sage: s1 = PermutationGroupElement('(1,3,5,8)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)(8,15)') 

sage: R = RibbonGraph(s1, r1) 

sage: R.rho() 

(1,2)(3,4)(5,6)(8,15) 

""" 

return self._rho 

 

@cached_method 

def number_boundaries(self): 

r""" 

Return number of boundary components of the thickening of the 

ribbon graph. 

 

EXAMPLES: 

 

The first example is the ribbon graph corresponding to the torus 

with one hole:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1) 

sage: R1.number_boundaries() 

1 

 

This example is constructed by taking the bipartite graph of  

type `(3,3)`:: 

 

sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)') 

sage: r2 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)') 

sage: R2 = RibbonGraph(s2,r2) 

sage: R2.number_boundaries() 

3 

""" 

# It might seem a bit overkill to call boundary() here but it is 

# necessary to either call it or do similar computations here. 

# The function boundary() avoids some patologies with boundaries 

# formed by just one loop. 

return len(self.boundary()) 

 

def contract_edge(self, k): 

r""" 

Return the ribbon graph resulting from the contraction of 

the ``k``-th edge in ``self``. 

 

For a ribbon graph `(\sigma, \rho)`, we contract the edge 

corresponding to the `k`-th transposition of `\rho`. 

 

INPUT: 

 

- ``k`` -- non-negative integer; the position in `\rho` of the  

transposition that is going to be contracted 

 

OUTPUT: 

 

- a ribbon graph resulting from the contraction of that edge 

 

EXAMPLES: 

 

We start again with the one-holed torus ribbon graph:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: S1 = R1.contract_edge(1); S1 

Ribbon graph of genus 1 and 1 boundary components 

sage: S1.sigma() 

(1,6,2,5) 

sage: S1.rho() 

(1,2)(5,6) 

 

However, this ribbon graphs is formed only by loops and hence 

it cannot be longer reduced, we get an error if we try to 

contract a loop:: 

 

sage: S1.contract_edge(1) 

Traceback (most recent call last): 

... 

ValueError: the edge is a loop and cannot be contracted 

 

In this example, we consider a graph that has one edge ``(19,20)`` 

such that one of its ends is a vertex of valency 1. This is  

the vertex ``(20)`` that is not specified when defining `\sigma`. 

We contract precisely this edge and get a ribbon graph with no 

vertices of valency 1:: 

 

sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)') 

sage: r2 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)(19,20)') 

sage: R2 = RibbonGraph(s2,r2); R2 

Ribbon graph of genus 1 and 3 boundary components 

sage: R2.sigma() 

(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19) 

sage: R2c = R2.contract_edge(9); R2; R2c.sigma(); R2c.rho() 

Ribbon graph of genus 1 and 3 boundary components 

(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18) 

(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12) 

""" 

#the following two lines convert the list of tuples to list of lists 

aux_sigma = [list(x) for x in self._sigma.cycle_tuples(singletons=True)] 

aux_rho = [list(x) for x in self._rho.cycle_tuples()] 

#The following ''if'' rules out the cases when we would be  

#contracting a loop (which is not admissible since we would  

#lose the topological type of the graph). 

if (_find(aux_sigma, aux_rho[k][0])[0] == 

_find(aux_sigma, aux_rho[k][1])[0]): 

raise ValueError("the edge is a loop and cannot be contracted") 

#We store in auxiliary variables the positions of the vertices 

#that are the ends of the edge to be contracted and we delete 

#from them the darts corresponding to the edge that is going 

#to be contracted. We also delete the contracted edge  

#from aux_rho 

pos1 = _find(aux_sigma, aux_rho[k][0]) 

pos2 = _find(aux_sigma, aux_rho[k][1]) 

del aux_sigma[pos1[0]][pos1[1]] 

del aux_sigma[pos2[0]][pos2[1]] 

del aux_rho[k] 

 

#Now we insert in one of the two vertices, the darts of the other 

#vertex that appears after. We make sure that we don't 

#change the topological type of the thickening of the graph by 

#preserving the cyclic ordering. 

n = len(aux_sigma[pos2[0]]) 

for i in range(n): 

aux_sigma[pos1[0]].insert( 

pos1[1] + i, 

aux_sigma[pos2[0]][(pos2[1]+i) % n] 

) 

#Finally we delete the vertex from which we copied all the darts. 

del aux_sigma[pos2[0]] 

 

#Now we convert this data that is on the form of lists of lists 

#to actual permutations that form a ribbon graph. 

return RibbonGraph(PermutationGroupElement([tuple(x) for x in aux_sigma]), 

PermutationGroupElement([tuple(x) for x in aux_rho])) 

 

def extrude_edge(self, vertex, dart1, dart2): 

r""" 

Return a ribbon graph resulting from extruding an edge from a 

vertex, pulling from it, all darts from ``dart1`` to ``dart2`` 

including both. 

 

INPUT: 

 

- ``vertex`` -- the position of the vertex in the permutation 

`\sigma`, which must have valency at least 2 

 

- ``dart1`` -- the position of the first in the 

cycle corresponding to ``vertex`` 

 

- ``dart2`` -- the position of the second dart in the cycle 

corresponding to ``vertex`` 

 

OUTPUT: 

 

A ribbon graph resulting from extruding a new edge that  

pulls from ``vertex`` a new vertex that is, now, adjacent 

to all the darts from ``dart1``to ``dart2`` (not including 

``dart2``) in the cyclic ordering given by the cycle corresponding 

to ``vertex``. Note that ``dart1`` may be equal to ``dart2`` 

allowing thus to extrude a contractible edge from a vertex. 

 

EXAMPLES: 

 

We try several possibilities in the same graph:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: E1 = R1.extrude_edge(1,1,2); E1 

Ribbon graph of genus 1 and 1 boundary components 

sage: E1.sigma() 

(1,3,5)(2,8,6)(4,7) 

sage: E1.rho() 

(1,2)(3,4)(5,6)(7,8) 

sage: E2 = R1.extrude_edge(1,1,3); E2 

Ribbon graph of genus 1 and 1 boundary components 

sage: E2.sigma() 

(1,3,5)(2,8)(4,6,7) 

sage: E2.rho() 

(1,2)(3,4)(5,6)(7,8) 

 

We can also extrude a contractible edge from a vertex. This 

new edge will end at a vertex of valency 1:: 

 

sage: E1p = R1.extrude_edge(0,0,0); E1p 

Ribbon graph of genus 1 and 1 boundary components 

sage: E1p.sigma() 

(1,3,5,8)(2,4,6) 

sage: E1p.rho() 

(1,2)(3,4)(5,6)(7,8) 

 

In the following example we first extrude one edge from a vertex 

of valency 3 generating a new vertex of valency 2. Then we  

extrude a new edge from this vertex of valency 2:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: E1 = R1.extrude_edge(0,0,1); E1 

Ribbon graph of genus 1 and 1 boundary components 

sage: E1.sigma() 

(1,7)(2,4,6)(3,5,8) 

sage: E1.rho() 

(1,2)(3,4)(5,6)(7,8) 

sage: F1 = E1.extrude_edge(0,0,1); F1 

Ribbon graph of genus 1 and 1 boundary components 

sage: F1.sigma() 

(1,9)(2,4,6)(3,5,8)(7,10) 

sage: F1.rho() 

(1,2)(3,4)(5,6)(7,8)(9,10) 

""" 

#We first compute the vertices of valency 1 as in _repr_ 

repr_sigma = [list(x) for x in self._sigma.cycle_tuples()] 

repr_rho = [list(x) for x in self._rho.cycle_tuples()] 

darts_rho = flatten(repr_rho) 

darts_sigma = flatten(repr_sigma) 

val_one = [x for x in darts_rho if x not in darts_sigma] 

for val in val_one: 

repr_sigma += [[val]] 

 

# We find which is the highes value a dart has, in order to  

# add new darts that do not conflict with previous ones. 

k = max(darts_rho) 

 

# We create the new vertex and append it to sigma. 

new_vertex = [repr_sigma[vertex][j] for j in range(dart1, dart2)] 

new_vertex.insert(0, k+1) 

repr_sigma.append(new_vertex) 

 

# We add the new dart at the vertex from which we are extruding 

# an edge. Also we delete the darts that have been extruded. 

repr_sigma[vertex].insert(dart1,k+2) 

del repr_sigma[vertex][dart1+1:dart2+1] 

 

#We update rho 

repr_rho.append([k+1,k+2]) 

 

perm_group = self._sigma.parent() 

return RibbonGraph(PermutationGroupElement([tuple(x) for x in repr_sigma]), 

PermutationGroupElement([tuple(x) for x in repr_rho])) 

 

@cached_method 

def genus(self): 

r""" 

Return the genus of the thickening of ``self``. 

 

OUTPUT: 

 

- ``g`` -- non-negative integer representing the genus of the 

thickening of the ribbon graph 

 

EXAMPLES:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1) 

sage: R1.genus() 

1 

 

sage: s3=PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)') 

sage: r3=PermutationGroupElement('(1,21)(2,17)(3,13)(4,22)(7,23)(5,18)(6,14)(8,19)(9,15)(10,24)(11,20)(12,16)') 

sage: R3 = RibbonGraph(s3,r3); R3.genus() 

3 

""" 

#We now use the same procedure as in _repr_ to get the vertices 

#of valency 1 and distinguish them from the extra singletons of 

#the permutation sigma.  

repr_sigma = [list(x) for x in self._sigma.cycle_tuples()] 

repr_rho = [list(x) for x in self._rho.cycle_tuples()] 

darts_rho = flatten(repr_rho) 

darts_sigma = flatten(repr_sigma) 

val_one = [x for x in darts_rho if x not in darts_sigma] 

 

#the total number of vertices of sigma is its number of cycles 

#of length >1 plus the number of singletons that are actually 

#vertices of valency 1 

 

vertices = len(self._sigma.cycle_tuples()) + len(val_one) 

edges = len(self._rho.cycle_tuples()) 

#formula for the genus using that the thickening is homotopically  

#equivalent to the graph 

g = (-vertices + edges - self.number_boundaries() + 2) // 2 

 

return g 

 

def mu(self): 

r""" 

Return the rank of the first homology group of the thickening 

of the ribbon graph. 

 

EXAMPLES:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1);R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: R1.mu() 

2 

""" 

return 2 * self.genus() + self.number_boundaries() - 1 

 

def boundary(self): 

r""" 

Return the labeled boundaries of ``self``. 

 

If you cut the thickening of the graph along the graph. you 

get a collection of cylinders (recall that the graph was a 

strong deformation retract of the thickening). In each cylinder 

one of the boundary components has a labelling of its edges 

induced by the labelling of the darts. 

 

OUTPUT: 

 

A list of lists. The number of inner lists is the number of  

boundary components of the surface. Each list in the list 

consists of an ordered tuple of numbers, each number comes 

from the number assigned to the corresponding dart before 

cutting. 

 

EXAMPLES: 

 

We start with a ribbon graph whose thickening has one boundary 

component. We compute its labeled boundary, then reduce it and 

compute the labeled boundary of the reduced ribbon graph:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: R1.boundary() 

[[1, 2, 4, 3, 5, 6, 2, 1, 3, 4, 6, 5]] 

sage: H1 = R1.reduced(); H1 

Ribbon graph of genus 1 and 1 boundary components 

sage: H1.sigma() 

(3,5,4,6) 

sage: H1.rho() 

(3,4)(5,6) 

sage: H1.boundary() 

[[3, 4, 6, 5, 4, 3, 5, 6]] 

 

We now consider a ribbon graph whose thickening has 3 boundary 

components. Also observe that in one of the labeled boundary 

components, a numbers appears twice in a row. That is because 

the ribbon graph has a vertex of valency 1:: 

 

sage: s2=PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)') 

sage: r2=PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)(19,20)') 

sage: R2 = RibbonGraph(s2,r2) 

sage: R2.number_boundaries() 

3 

sage: R2.boundary() 

[[1, 16, 17, 4, 5, 14, 15, 8, 9, 12, 10, 3], 

[2, 13, 14, 5, 6, 11, 12, 9, 7, 18, 19, 20, 20, 19, 16, 1], 

[3, 10, 11, 6, 4, 17, 18, 7, 8, 15, 13, 2]] 

""" 

#initialize and empty list to hold the labels of the boundaries 

bound = [] 

 

#since lists of tuples are not modifiable, we change the data to a 

#list of lists  

aux_perm = (self._rho * self._sigma).cycle_tuples(singletons=True) 

 

#the cycles of the permutation rho*sigma are in 1:1 correspondence with  

#the boundary components of the thickening (see function number_boundaries()) 

#but they are not the labeled boundary components. 

#With the next for, we convert the cycles of rho*sigma to actually  

#the labelling of the edges. Each edge, therefore, should appear twice 

 

for i,p in enumerate(aux_perm): 

bound = bound + [[]] 

for j in range(len(p)): 

if self._rho(p[j]) != p[j]: 

bound[i].append(p[j]) 

bound[i].append(self._rho(p[j])) 

else: 

continue 

 

#finally the function returns a List of lists. Each list contains 

#a sequence of numbers and each number corresponds to a half-edge. 

return _clean(bound) 

 

def reduced(self): 

r""" 

Return a ribbon graph with 1 vertex and `\mu` edges (where `\mu` 

is the first betti number of the graph). 

 

OUTPUT: 

 

- a ribbon graph whose `\sigma` permutation has only 1 non-singleton 

cycle and whose `\rho` permutation is a product of `\mu` disjoint 

2-cycles 

 

EXAMPLES:: 

 

sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)') 

sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)') 

sage: R1 = RibbonGraph(s1,r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: G1 = R1.reduced(); G1 

Ribbon graph of genus 1 and 1 boundary components 

sage: G1.sigma() 

(3,5,4,6) 

sage: G1.rho() 

(3,4)(5,6) 

 

sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)') 

sage: r2 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)(19,20)') 

sage: R2 = RibbonGraph(s2,r2); R2 

Ribbon graph of genus 1 and 3 boundary components 

sage: G2 = R2.reduced(); G2 

Ribbon graph of genus 1 and 3 boundary components 

sage: G2.sigma() 

(5,6,8,9,14,15,11,12) 

sage: G2.rho() 

(5,14)(6,11)(8,15)(9,12) 

 

sage: s3 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)') 

sage: r3 = PermutationGroupElement('(1,21)(2,17)(3,13)(4,22)(7,23)(5,18)(6,14)(8,19)(9,15)(10,24)(11,20)(12,16)') 

sage: R3 = RibbonGraph(s3,r3); R3 

Ribbon graph of genus 3 and 1 boundary components 

sage: G3 = R3.reduced(); G3 

Ribbon graph of genus 3 and 1 boundary components 

sage: G3.sigma() 

(5,6,8,9,11,12,18,19,20,14,15,16) 

sage: G3.rho() 

(5,18)(6,14)(8,19)(9,15)(11,20)(12,16) 

""" 

#the following two lines convert the list of tuples to list of lists 

#we have to contract exactly n edges 

aux_ribbon = deepcopy(self) 

aux_rho = [list(x) for x in aux_ribbon._rho.cycle_tuples()] 

 

#Observe that in the end we will have `\mu` edges, so we 

#know exactly how many steps we will iterate 

while len(aux_rho) > self.mu(): 

aux_sigma = [list(x) for x in aux_ribbon._sigma.cycle_tuples(singletons=True)] 

aux_rho = [list(x) for x in aux_ribbon._rho.cycle_tuples()] 

for j in range(len(aux_rho)): 

if (_find(aux_sigma, aux_rho[j][0])[0] != 

_find(aux_sigma, aux_rho[j][1])[0]): 

aux_ribbon = aux_ribbon.contract_edge(j) 

aux_rho = [list(x) for 

x in aux_ribbon._rho.cycle_tuples()] 

break 

#finally we change the data to a list of tuples and return the 

#information as a ribbon graph.  

return aux_ribbon 

 

#the next function computes a basis of homology, it uses 

#the previous function. 

 

def make_generic(self): 

r""" 

Return a ribbon graph equivalent to ``self`` but where every 

vertex has valency 3. 

 

OUTPUT: 

 

- a ribbon graph that is equivalent to ``self`` but is generic 

in the sense that all vertices have valency 3 

 

EXAMPLES:: 

 

sage: R = RibbonGraph(1,3); R 

Ribbon graph of genus 1 and 3 boundary components 

sage: R.sigma() 

(1,2,3,9,7)(4,8,10,5,6) 

sage: R.rho() 

(1,4)(2,5)(3,6)(7,8)(9,10) 

sage: G = R.make_generic(); G 

Ribbon graph of genus 1 and 3 boundary components 

sage: G.sigma() 

(2,3,11)(5,6,13)(7,8,15)(9,16,17)(10,14,19)(12,18,21)(20,22) 

sage: G.rho() 

(2,5)(3,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) 

sage: R.genus() == G.genus() and R.number_boundaries() == G.number_boundaries() 

True 

 

sage: R = RibbonGraph(5,4); R 

Ribbon graph of genus 5 and 4 boundary components 

sage: R.sigma() 

(1,2,3,4,5,6,7,8,9,10,11,27,25,23)(12,24,26,28,13,14,15,16,17,18,19,20,21,22) 

sage: R.rho() 

(1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,26)(27,28) 

sage: G = R.reduced(); G 

Ribbon graph of genus 5 and 4 boundary components 

sage: G.sigma() 

(2,3,4,5,6,7,8,9,10,11,27,25,23,24,26,28,13,14,15,16,17,18,19,20,21,22) 

sage: G.rho() 

(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,26)(27,28) 

sage: G.genus() == R.genus() and G.number_boundaries() == R.number_boundaries() 

True 

 

sage: R = RibbonGraph(0,6); R 

Ribbon graph of genus 0 and 6 boundary components 

sage: R.sigma() 

(1,11,9,7,5,3)(2,4,6,8,10,12) 

sage: R.rho() 

(1,2)(3,4)(5,6)(7,8)(9,10)(11,12) 

sage: G = R.reduced(); G 

Ribbon graph of genus 0 and 6 boundary components 

sage: G.sigma() 

(3,4,6,8,10,12,11,9,7,5) 

sage: G.rho() 

(3,4)(5,6)(7,8)(9,10)(11,12) 

sage: G.genus() == R.genus() and G.number_boundaries() == R.number_boundaries() 

True 

""" 

aux_ribbon = self.reduced() 

 

for i in range(2*aux_ribbon.mu() - 2): 

aux_ribbon = aux_ribbon.extrude_edge(i,0,2) 

 

return aux_ribbon 

 

def homology_basis(self): 

r""" 

Return an oriented basis of the first homology group of the  

graph. 

 

OUTPUT: 

 

- A 2-dimensional array of ordered edges in the graph (given by pairs). 

The length of the first dimension is `\mu`. Each row corresponds 

to an element of the basis and is a circle contained in the graph. 

 

EXAMPLES:: 

 

sage: R = RibbonGraph(0,6); R 

Ribbon graph of genus 0 and 6 boundary components 

sage: R.mu() 

5 

sage: R.homology_basis() 

[[[3, 4], [2, 1]], 

[[5, 6], [2, 1]], 

[[7, 8], [2, 1]], 

[[9, 10], [2, 1]], 

[[11, 12], [2, 1]]] 

 

sage: R = RibbonGraph(1,1); R 

Ribbon graph of genus 1 and 1 boundary components 

sage: R.mu() 

2 

sage: R.homology_basis() 

[[[2, 5], [4, 1]], [[3, 6], [4, 1]]] 

sage: H = R.reduced(); H 

Ribbon graph of genus 1 and 1 boundary components 

sage: H.sigma() 

(2,3,5,6) 

sage: H.rho() 

(2,5)(3,6) 

sage: H.homology_basis() 

[[[2, 5]], [[3, 6]]] 

 

sage: s3 = PermutationGroupElement('(1,2,3,4,5,6,7,8,9,10,11,27,25,23)(12,24,26,28,13,14,15,16,17,18,19,20,21,22)') 

sage: r3 = PermutationGroupElement('(1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,26)(27,28)') 

sage: R3 = RibbonGraph(s3,r3); R3 

Ribbon graph of genus 5 and 4 boundary components 

sage: R3.mu() 

13 

sage: R3.homology_basis() 

[[[2, 13], [12, 1]], 

[[3, 14], [12, 1]], 

[[4, 15], [12, 1]], 

[[5, 16], [12, 1]], 

[[6, 17], [12, 1]], 

[[7, 18], [12, 1]], 

[[8, 19], [12, 1]], 

[[9, 20], [12, 1]], 

[[10, 21], [12, 1]], 

[[11, 22], [12, 1]], 

[[23, 24], [12, 1]], 

[[25, 26], [12, 1]], 

[[27, 28], [12, 1]]] 

sage: H3 = R3.reduced(); H3 

Ribbon graph of genus 5 and 4 boundary components 

sage: H3.sigma() 

(2,3,4,5,6,7,8,9,10,11,27,25,23,24,26,28,13,14,15,16,17,18,19,20,21,22) 

sage: H3.rho() 

(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,24)(25,26)(27,28) 

sage: H3.homology_basis() 

[[[2, 13]], 

[[3, 14]], 

[[4, 15]], 

[[5, 16]], 

[[6, 17]], 

[[7, 18]], 

[[8, 19]], 

[[9, 20]], 

[[10, 21]], 

[[11, 22]], 

[[23, 24]], 

[[25, 26]], 

[[27, 28]]] 

""" 

aux_sigma = [list(x) for x in self._sigma.cycle_tuples(singletons=True)] 

 

basis = [[list(x)] for x in self.reduced()._rho.cycle_tuples()] 

 

#Now we define center as the set of edges that were contracted  

#in reduced() this set is contractible and can be define as the  

#complement of reduced_rho in rho 

 

center = [list(x) for x in self._rho.cycle_tuples() 

if (x not in self.reduced()._rho.cycle_tuples())] 

 

#We define an auxiliary list 'vertices' that will contain the 

#vertices (cycles of sigma) corresponding to each half edge.  

 

vertices = [] 

 

for i in range(len(basis)): 

vertices = vertices + [[]] 

basis[i].extend(deepcopy(center)) 

 

for j in range (len(basis[i])): 

vertices[i].append(_find(aux_sigma, basis[i][j][0])[0]) 

vertices[i].append(_find(aux_sigma, basis[i][j][1])[0]) 

k = 0 

 

while k < len(vertices[i]): 

if vertices[i].count(vertices[i][k]) == 1: 

m = k // 2 

del basis[i][m] 

del vertices[i][2*m:2*m+2] 

k = 0 

else: 

k+=1 

 

for i in range(len(basis)): 

for j in range(1, len(basis[i])): 

n = [t for t, n in enumerate(vertices[i]) 

if n == vertices[i][2*j-1]][1] 

 

ind = n // 2 

 

if j != ind: 

basis[i][j], basis[i][ind] = basis[i][ind], basis[i][j] 

 

vertices[i][2*j], vertices[i][2*ind] = \ 

vertices[i][2*ind], vertices[i][2*j] 

 

vertices[i][2*j+1], vertices[i][2*ind+1] = \ 

vertices[i][2*ind+1], vertices[i][2*j+1] 

 

if (vertices[i][2*j-1] != vertices[i][2*j]): 

vertices[i][2*j], vertices[i][2*j+1] = \ 

vertices[i][2*j+1], vertices[i][2*j] 

 

basis[i][j][0], basis[i][j][1] = \ 

basis[i][j][1], basis[i][j][0] 

 

#the variable basis is a LIST of Lists of lists. Each List  

#corresponds to an element of the basis and each list in a List 

#is just a 2-tuple which corresponds to an ''ordered'' edge of rho. 

 

return basis 

 

def normalize(self): 

r""" 

Return an equivalent graph such that the enumeration of its darts 

exhausts all numbers from 1 to the number of darts. 

 

OUTPUT: 

 

- a ribbon graph equivalent to ``self`` such that the enumeration 

of its darts exhausts all numbers from 1 to the number of darts. 

 

EXAMPLES:: 

 

sage: s0 = PermutationGroupElement('(1,22,3,4,5,6,7,15)(8,16,9,10,11,12,13,14)') 

sage: r0 = PermutationGroupElement('(1,8)(22,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,16)') 

sage: R0 = RibbonGraph(s0,r0); R0 

Ribbon graph of genus 3 and 2 boundary components 

sage: RN0 = R0.normalize(); RN0; RN0.sigma(); RN0.rho() 

Ribbon graph of genus 3 and 2 boundary components 

(1,16,2,3,4,5,6,14)(7,15,8,9,10,11,12,13) 

(1,7)(2,9)(3,10)(4,11)(5,12)(6,13)(8,16)(14,15) 

 

sage: s1 = PermutationGroupElement('(5,10,12)(30,34,78)') 

sage: r1 = PermutationGroupElement('(5,30)(10,34)(12,78)') 

sage: R1 = RibbonGraph(s1,r1); R1 

Ribbon graph of genus 1 and 1 boundary components 

sage: RN1 = R1.normalize(); RN1; RN1.sigma(); RN1.rho() 

Ribbon graph of genus 1 and 1 boundary components 

(1,2,3)(4,5,6) 

(1,4)(2,5)(3,6) 

 

""" 

#First we compute the vertices of valency 1 and store them in val_one. 

aux_sigma = [list(x) for x in self._sigma.cycle_tuples()] 

aux_rho = [list(x) for x in self._rho.cycle_tuples()] 

darts_rho = flatten(aux_rho) 

darts_sigma = flatten(aux_sigma) 

val_one = [x for x in darts_rho if x not in darts_sigma] 

 

#We add them to aux_sigma 

for i in range(len(val_one)): 

aux_sigma += [[val_one[i]]] 

#Now we proceed to normalize the numbers enumerating the darts. 

#We do this by checking if every number from 1 to len(darts_rho) 

#is actually in darts_rho. 

for i in range(len(darts_rho)): 

found = i+1 in darts_rho 

#if a value is not in darts_rho, we take the next number that appears 

#and change it to the new value. 

if not found: 

aux_val = min(x for x in darts_rho if x > i+1) 

pos_darts = darts_rho.index(aux_val) 

pos_rho = _find(aux_rho,aux_val) 

pos_sigma = _find(aux_sigma,aux_val) 

 

#Now we set the found positions to the new normalized value 

darts_rho[pos_darts]=i+1 

aux_sigma[pos_sigma[0]][pos_sigma[1]]=i+1 

aux_rho[pos_rho[0]][pos_rho[1]]=i+1 

 

return RibbonGraph( 

PermutationGroupElement([tuple(x) for x in aux_sigma]), 

PermutationGroupElement([tuple(x) for x in aux_rho]) 

) 

 

def make_ribbon(g, r): 

r""" 

Return a ribbon graph whose thickening has genus ``g`` and ``r`` 

boundary components. 

 

INPUT: 

 

- ``g`` -- non-negative integer representing the genus of the 

thickening 

 

- ``r`` -- positive integer representing the number of boundary 

components of the thickening 

 

OUTPUT: 

 

- a ribbon graph that has 2 vertices (two non-trivial cycles  

in its sigma permutation) of valency `2g + r` and it has  

`2g + r` edges (and hence `4g + 2r` darts) 

 

EXAMPLES:: 

 

sage: from sage.geometry.ribbon_graph import make_ribbon 

sage: R = make_ribbon(0,1); R 

Ribbon graph of genus 0 and 1 boundary components 

sage: R.sigma() 

() 

sage: R.rho() 

(1,2) 

 

sage: R = make_ribbon(0,5); R 

Ribbon graph of genus 0 and 5 boundary components 

sage: R.sigma() 

(1,9,7,5,3)(2,4,6,8,10) 

sage: R.rho() 

(1,2)(3,4)(5,6)(7,8)(9,10) 

 

sage: R = make_ribbon(1,1); R 

Ribbon graph of genus 1 and 1 boundary components 

sage: R.sigma() 

(1,2,3)(4,5,6) 

sage: R.rho() 

(1,4)(2,5)(3,6) 

 

sage: R = make_ribbon(7,3); R 

Ribbon graph of genus 7 and 3 boundary components 

sage: R.sigma() 

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,33,31)(16,32,34,17,18,19,20,21,22,23,24,25,26,27,28,29,30) 

sage: R.rho() 

(1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,32)(33,34) 

 

""" 

#Initialize the two vertices of sigma and the edge joining them 

repr_sigma = [[1],[2*g+2]] 

repr_rho = [[1,2*g+2]] 

 

#We first generate the surface of genus g and 1 boundary component. 

#This is done by considering the usual planar representation of 

#a surface as a polygon of 4*g+2 edges with identifications. (see 

#any topology book on the classification of surfaces) 

for i in range(2*g): 

repr_sigma[0].append(i+2) 

repr_sigma[1].append(i+(2*g+2)+1) 

repr_rho += [[i+2,i+(2*g+2)+1]] 

 

#finally we add an edge for each additional boundary component.  

max_dart = 4*g+2 

for j in range(r-1): 

repr_sigma[0].insert(0, max_dart+2*(j+1)-1) 

repr_sigma[1].insert(j+1, max_dart+2*(j+1)) 

repr_rho += [[max_dart+2*(j+1)-1, max_dart+2*(j+1)]] 

 

return RibbonGraph(PermutationGroupElement([tuple(x) for x in repr_sigma]), 

PermutationGroupElement([tuple(x) for x in repr_rho])) 

 

def bipartite_ribbon_graph(p, q): 

r""" 

Return the bipartite graph modeling the corresponding 

Brieskorn-Pham singularity. 

 

Take two parallel lines in the plane, and consider `p` points in 

one of them and `q` points in the other. Join with a line each 

point from the first set with every point with the second set. 

The resulting is a planar projection of the complete bipartite 

graph of type `(p,q)`. If you consider the cyclic ordering at 

each vertex induced by the positive orientation of the plane, 

the result is a ribbon graph whose associated orientable surface 

with boundary is homeomorphic to the Milnor fiber of the 

Brieskorn-Pham singularity `x^p + y^q`. It satisfies that it has 

`\gcd(p,q)` number of boundary components and genus 

`(pq - p - q - \gcd(p,q) - 2) / 2`. 

 

INPUT: 

 

- ``p`` -- a positive integer 

- ``q`` -- a positive integer 

 

EXAMPLES:: 

 

sage: B23 = RibbonGraph(2,3,bipartite=True); B23; B23.sigma(); B23.rho() 

Ribbon graph of genus 1 and 1 boundary components 

(1,2,3)(4,5,6)(7,8)(9,10)(11,12) 

(1,8)(2,10)(3,12)(4,7)(5,9)(6,11) 

 

sage: B32 = RibbonGraph(3,2,bipartite=True); B32; B32.sigma(); B32.rho() 

Ribbon graph of genus 1 and 1 boundary components 

(1,2)(3,4)(5,6)(7,8,9)(10,11,12) 

(1,9)(2,12)(3,8)(4,11)(5,7)(6,10) 

 

sage: B33 = RibbonGraph(3,3,bipartite=True); B33; B33.sigma(); B33.rho() 

Ribbon graph of genus 1 and 3 boundary components 

(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18) 

(1,12)(2,15)(3,18)(4,11)(5,14)(6,17)(7,10)(8,13)(9,16) 

 

sage: B24 = RibbonGraph(2,4,bipartite=True); B24; B24.sigma(); B24.rho() 

Ribbon graph of genus 1 and 2 boundary components 

(1,2,3,4)(5,6,7,8)(9,10)(11,12)(13,14)(15,16) 

(1,10)(2,12)(3,14)(4,16)(5,9)(6,11)(7,13)(8,15) 

 

sage: B47 = RibbonGraph(4,7, bipartite=True); B47; B47.sigma(); B47.rho() 

Ribbon graph of genus 9 and 1 boundary components 

(1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56) 

(1,32)(2,36)(3,40)(4,44)(5,48)(6,52)(7,56)(8,31)(9,35)(10,39)(11,43)(12,47)(13,51)(14,55)(15,30)(16,34)(17,38)(18,42)(19,46)(20,50)(21,54)(22,29)(23,33)(24,37)(25,41)(26,45)(27,49)(28,53) 

 

""" 

sigma = [] 

rho = [] 

for i in range(p): 

aux_tuple = [i*q + j + 1 for j in range(q)] 

sigma += [aux_tuple] 

for i in range(q): 

aux_tuple = [p*q + i*p + j +1 for j in range(p)] 

sigma += [aux_tuple] 

for i in range(p*q): 

if (i+1) % q == 0: 

k = q 

elif (i+1) % q != 0: 

k = (i+1) % q 

t = 0 

if (i+1) % q != 0: 

t = 1 

aux_edge = [i+1, p*q + k*p - ((i+1 + t*q)/q).floor() +1] 

rho += [aux_edge] 

return RibbonGraph( 

PermutationGroupElement([tuple(x) for x in sigma]), 

PermutationGroupElement([tuple(x) for x in rho]) 

)