Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

# -*- coding: utf-8 -*- 

r""" 

Graph Plotting 

 

*(For LaTeX drawings of graphs, see the* :mod:`~sage.graphs.graph_latex` *module.)* 

 

All graphs have an associated Sage graphics object, which you can display:: 

 

sage: G = graphs.WheelGraph(15) 

sage: P = G.plot() 

sage: P.show() # long time 

 

.. PLOT:: 

 

sphinx_plot(graphs.WheelGraph(15)) 

 

If you create a graph in Sage using the ``Graph`` command, then plot that graph, 

the positioning of nodes is determined using the spring-layout algorithm. For 

the special graph constructors, which you get using ``graphs.[tab]``, the 

positions are preset. For example, consider the Petersen graph with default node 

positioning vs. the Petersen graph constructed by this database:: 

 

sage: petersen_spring = Graph(':I`ES@obGkqegW~') 

sage: petersen_spring.show() # long time 

 

.. PLOT:: 

 

petersen_spring = Graph(':I`ES@obGkqegW~') 

sphinx_plot(petersen_spring) 

 

:: 

 

sage: petersen_database = graphs.PetersenGraph() 

sage: petersen_database.show() # long time 

 

.. PLOT:: 

 

petersen_database = graphs.PetersenGraph() 

sphinx_plot(petersen_database) 

 

For all the constructors in this database (except some random graphs), the 

position dictionary is filled in, instead of using the spring-layout algorithm. 

 

**Plot options** 

 

Here is the list of options accepted by 

:meth:`~sage.graphs.generic_graph.GenericGraph.plot` and the constructor of 

:class:`GraphPlot`. Those two functions also accept all options of 

:meth:`sage.plot.graphics.Graphics.show`. 

 

.. csv-table:: 

:class: contentstable 

:widths: 30, 70 

:delim: | 

 

{PLOT_OPTIONS_TABLE} 

 

**Default options** 

 

This module defines two dictionaries containing default options for the 

:meth:`~sage.graphs.generic_graph.GenericGraph.plot` and 

:meth:`~sage.graphs.generic_graph.GenericGraph.show` methods. These two dictionaries are 

``sage.graphs.graph_plot.DEFAULT_PLOT_OPTIONS`` and 

``sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS``, respectively. 

 

Obviously, these values are overruled when arguments are given explicitly. 

 

Here is how to define the default size of a graph drawing to be ``[6,6]``. The 

first two calls to :meth:`~sage.graphs.generic_graph.GenericGraph.show` use this 

option, while the third does not (a value for ``figsize`` is explicitly given):: 

 

sage: import sage.graphs.graph_plot 

sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = [6,6] 

sage: graphs.PetersenGraph().show() # long time 

sage: graphs.ChvatalGraph().show() # long time 

sage: graphs.PetersenGraph().show(figsize=[4,4]) # long time 

 

We can now reset the default to its initial value, and now display graphs as 

previously:: 

 

sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = [4,4] 

sage: graphs.PetersenGraph().show() # long time 

sage: graphs.ChvatalGraph().show() # long time 

 

.. NOTE:: 

 

* While ``DEFAULT_PLOT_OPTIONS`` affects both ``G.show()`` and ``G.plot()``, 

settings from ``DEFAULT_SHOW_OPTIONS`` only affects ``G.show()``. 

 

* In order to define a default value permanently, you can add a couple of 

lines to `Sage's startup scripts <../../../repl/startup.html>`_. Example :: 

 

sage: import sage.graphs.graph_plot 

sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = [4,4] 

 

**Index of methods and functions** 

 

.. csv-table:: 

:class: contentstable 

:widths: 30, 70 

:delim: | 

 

:meth:`GraphPlot.set_pos` | Sets the position plotting parameters for this GraphPlot. 

:meth:`GraphPlot.set_vertices` | Sets the vertex plotting parameters for this GraphPlot. 

:meth:`GraphPlot.set_edges` | Sets the edge (or arrow) plotting parameters for the GraphPlot object. 

:meth:`GraphPlot.show` | Shows the (Di)Graph associated with this GraphPlot object. 

:meth:`GraphPlot.plot` | Returns a graphics object representing the (di)graph. 

:meth:`GraphPlot.layout_tree` | Compute a nice layout of a tree. 

:meth:`~sage.graphs.graph_plot._circle_embedding` | Sets some vertices on a circle in the embedding of a graph G. 

:meth:`~sage.graphs.graph_plot._line_embedding` | Sets some vertices on a line in the embedding of a graph G. 

 

Methods and classes 

------------------- 

.. autofunction:: _circle_embedding 

.. autofunction:: _line_embedding 

""" 

 

layout_options = { 

'layout': 'A layout algorithm -- one of : "acyclic", "circular" (plots the graph with vertices evenly distributed on a circle), "ranked", "graphviz", "planar", "spring" (traditional spring layout, using the graph\'s current positions as initial positions), or "tree" (the tree will be plotted in levels, depending on minimum distance for the root).', 

'iterations': 'The number of times to execute the spring layout algorithm.', 

'heights': 'A dictionary mapping heights to the list of vertices at this height.', 

'spring': 'Use spring layout to finalize the current layout.', 

'tree_root': 'A vertex designation for drawing trees. A vertex of the tree to be used as the root for the ``layout=\'tree\'`` option. If no root is specified, then one is chosen close to the center of the tree. Ignored unless ``layout=\'tree\'``', 

'tree_orientation': 'The direction of tree branches -- \'up\', \'down\', \'left\' or \'right\'.', 

'save_pos': 'Whether or not to save the computed position for the graph.', 

'dim': 'The dimension of the layout -- 2 or 3.', 

'prog': 'Which graphviz layout program to use -- one of "circo", "dot", "fdp", "neato", or "twopi".', 

'by_component': 'Whether to do the spring layout by connected component -- a boolean.', 

} 

 

graphplot_options = layout_options.copy() 

 

graphplot_options.update( 

{'pos': 'The position dictionary of vertices', 

'vertex_labels': 'Whether or not to draw vertex labels.', 

'vertex_color': 'Default color for vertices not listed ' 

'in vertex_colors dictionary.', 

'vertex_colors': 'Dictionary of vertex coloring : each ' 

'key is a color recognizable by matplotlib, and each ' 

'corresponding entry is a list of vertices. ', 

'vertex_size': 'The size to draw the vertices.', 

'vertex_shape': 'The shape to draw the vertices. ' 

'Currently unavailable for Multi-edged DiGraphs.', 

'edge_labels': 'Whether or not to draw edge labels.', 

'edge_style': 'The linestyle of the edges. It should be ' 

'one of "solid", "dashed", "dotted", dashdot", or ' 

'"-", "--", ":", "-.", respectively. ', 

'edge_thickness': 'The thickness of the edges.', 

'edge_color': 'The default color for edges not listed in edge_colors.', 

'edge_colors': 'a dictionary specifying edge colors: each ' 

'key is a color recognized by matplotlib, and each ' 

'entry is a list of edges.', 

'color_by_label': 'Whether to color the edges according ' 

'to their labels. This also accepts a function or ' 

'dictionary mapping labels to colors.', 

'partition': 'A partition of the vertex set. If specified, ' 

'plot will show each cell in a different color. ' 

'vertex_colors takes precedence.', 

'loop_size': 'The radius of the smallest loop.', 

'dist': 'The distance between multiedges.', 

'max_dist': 'The max distance range to allow multiedges.', 

'talk': 'Whether to display the vertices in talk mode ' 

'(larger and white).', 

'graph_border': 'Whether or not to draw a frame around the graph.', 

'edge_labels_background' : 'The color of the background of the edge labels'}) 

 

from six import iteritems 

 

_PLOT_OPTIONS_TABLE = "" 

for key, value in iteritems(graphplot_options): 

_PLOT_OPTIONS_TABLE += " ``"+str(key)+"`` | "+str(value)+"\n" 

__doc__ = __doc__.format(PLOT_OPTIONS_TABLE=_PLOT_OPTIONS_TABLE) 

 

 

#***************************************************************************** 

# Copyright (C) 2009 Emily Kirkman 

# 2009 Robert L. Miller <rlmillster@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from sage.structure.sage_object import SageObject 

from sage.plot.all import Graphics, scatter_plot, bezier_path, line, arrow, text, circle 

from sage.misc.decorators import options 

from math import sqrt, cos, sin, atan, pi 

import six 

from six import text_type as str 

 

DEFAULT_SHOW_OPTIONS = { 

"figsize" : [4,4] 

} 

 

DEFAULT_PLOT_OPTIONS = { 

"vertex_size" : 200, 

"vertex_labels" : True, 

"layout" : None, 

"edge_style" : 'solid', 

"edge_thickness" : 1, 

"edge_color" : 'black', 

"edge_colors" : None, 

"edge_labels" : False, 

"iterations" : 50, 

"tree_orientation" : 'down', 

"heights" : None, 

"graph_border" : False, 

"talk" : False, 

"color_by_label" : False, 

"partition" : None, 

"dist" : .075, 

"max_dist" : 1.5, 

"loop_size" : .075, 

"edge_labels_background" : "white" 

} 

 

class GraphPlot(SageObject): 

def __init__(self, graph, options): 

""" 

Returns a ``GraphPlot`` object, which stores all the parameters needed for 

plotting (Di)Graphs. A ``GraphPlot`` has a plot and show function, as well 

as some functions to set parameters for vertices and edges. This constructor 

assumes default options are set. Defaults are shown in the example below. 

 

EXAMPLES:: 

 

sage: from sage.graphs.graph_plot import GraphPlot 

sage: options = { 

....: 'vertex_size':200, 

....: 'vertex_labels':True, 

....: 'layout':None, 

....: 'edge_style':'solid', 

....: 'edge_color':'black', 

....: 'edge_colors':None, 

....: 'edge_labels':False, 

....: 'iterations':50, 

....: 'tree_orientation':'down', 

....: 'heights':None, 

....: 'graph_border':False, 

....: 'talk':False, 

....: 'color_by_label':False, 

....: 'partition':None, 

....: 'dist':.075, 

....: 'max_dist':1.5, 

....: 'loop_size':.075, 

....: 'edge_labels_background':'transparent'} 

sage: g = Graph({0:[1,2], 2:[3], 4:[0,1]}) 

sage: GP = GraphPlot(g, options) 

 

""" 

# Setting the default values if needed 

for k, value in iteritems(DEFAULT_PLOT_OPTIONS): 

if k not in options: 

options[k] = value 

self._plot_components = {} 

self._nodelist = graph.vertices() 

self._graph = graph 

self._options = options # contains both plot and show options 

self.set_pos() 

self._arcs = self._graph.has_multiple_edges(to_undirected=True) 

self._loops = self._graph.has_loops() 

if self._graph.is_directed() and self._arcs: 

self._arcdigraph = True 

else: 

self._arcdigraph = False 

 

self.set_vertices() 

self.set_edges() 

 

def _repr_(self): 

""" 

Returns a string representation of a ``GraphPlot`` object. 

 

EXAMPLES: 

 

This function is called implicitly by the code below:: 

 

sage: g = Graph({0:[1,2], 2:[3], 4:[0,1]}) 

sage: g.graphplot() # indirect doctest 

GraphPlot object for Graph on 5 vertices 

""" 

return "GraphPlot object for %s"%self._graph 

 

def set_pos(self): 

""" 

Sets the position plotting parameters for this GraphPlot. 

 

EXAMPLES: 

 

This function is called implicitly by the code below:: 

 

sage: g = Graph({0:[1,2], 2:[3], 4:[0,1]}) 

sage: g.graphplot(save_pos=True, layout='circular') # indirect doctest 

GraphPlot object for Graph on 5 vertices 

 

The following illustrates the format of a position dictionary, 

but due to numerical noise we do not check the values themselves:: 

 

sage: g.get_pos() 

{0: [...e-17, 1.0], 

1: [-0.951..., 0.309...], 

2: [-0.587..., -0.809...], 

3: [0.587..., -0.809...], 

4: [0.951..., 0.309...]} 

 

:: 

 

sage: T = list(graphs.trees(7)) 

sage: t = T[3] 

sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}) 

Graphics object consisting of 14 graphics primitives 

 

.. PLOT:: 

 

g = Graph({0:[1,2], 2:[3], 4:[0,1]}) 

g.graphplot(save_pos=True, layout='circular') # indirect doctest 

T = list(graphs.trees(7)) 

t = T[3] 

P = t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}) 

sphinx_plot(P) 

 

TESTS: 

 

Make sure that vertex locations are floats. Not being floats 

isn't a bug in itself but makes it too easy to accidentally 

introduce a bug elsewhere, such as in :meth:`set_edges` (:trac:`10124`), 

via silent truncating division of integers:: 

 

sage: g = graphs.FruchtGraph() 

sage: gp = g.graphplot() 

sage: set(map(type, flatten(gp._pos.values()))) 

{<... 'float'>} 

sage: g = graphs.BullGraph() 

sage: gp = g.graphplot(save_pos=True) 

sage: set(map(type, flatten(gp._pos.values()))) 

{<... 'float'>} 

 

Non-ascii labels are also possible using unicode (:trac:`21008`):: 

 

sage: Graph({u'où': [u'là', u'ici']}).plot() 

Graphics object consisting of 6 graphics primitives 

""" 

self._pos = self._graph.layout(**self._options) 

# make sure the positions are floats (trac #10124) 

self._pos = dict((k, (float(v[0]), float(v[1]))) 

for k, v in iteritems(self._pos)) 

 

def set_vertices(self, **vertex_options): 

""" 

Sets the vertex plotting parameters for this ``GraphPlot``. This function 

is called by the constructor but can also be called to make updates to 

the vertex options of an existing ``GraphPlot`` object. Note that the 

changes are cumulative. 

 

EXAMPLES:: 

 

sage: g = Graph({}, loops=True, multiedges=True, sparse=True) 

sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

....: edge_style='dashed') 

sage: GP.set_vertices(talk=True) 

sage: GP.plot() 

Graphics object consisting of 26 graphics primitives 

sage: GP.set_vertices(vertex_color='green', vertex_shape='^') 

sage: GP.plot() 

Graphics object consisting of 26 graphics primitives 

 

.. PLOT:: 

 

g = Graph({}, loops=True, multiedges=True, sparse=True) 

g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),(0,1,'e'),(0,1,'f'), 

(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True,  

edge_style='dashed') 

GP.set_vertices(talk=True) 

sphinx_plot(GP) 

 

.. PLOT:: 

 

g = Graph({}, loops=True, multiedges=True, sparse=True) 

g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),(0,1,'e'),(0,1,'f'), 

(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

edge_style='dashed') 

GP.set_vertices(talk=True) 

GP.set_vertices(vertex_color='green', vertex_shape='^') 

sphinx_plot(GP) 

 

""" 

from sage.misc.superseded import deprecation 

 

# Handle base vertex options 

voptions = {} 

 

for arg in vertex_options: 

self._options[arg] = vertex_options[arg] 

 

# First set defaults for styles 

vertex_colors = None 

if self._options['talk']: 

voptions['markersize'] = 500 

if self._options['partition'] is None: 

vertex_colors = '#ffffff' 

else: 

voptions['markersize'] = self._options['vertex_size'] 

 

if 'vertex_color' not in self._options or self._options['vertex_color'] is None: 

vertex_color = '#fec7b8' 

else: 

vertex_color = self._options['vertex_color'] 

 

if ('vertex_colors' in self._options and 

not isinstance(self._options['vertex_colors'], dict)): 

deprecation(21048, "Use of vertex_colors=<string> is deprecated, use vertex_color=<string> and/or vertex_colors=<dict>.") 

 

if 'vertex_colors' not in self._options or self._options['vertex_colors'] is None: 

if self._options['partition'] is not None: 

from sage.plot.colors import rainbow,rgbcolor 

partition = self._options['partition'] 

l = len(partition) 

R = rainbow(l) 

vertex_colors = {} 

for i in range(l): 

vertex_colors[R[i]] = partition[i] 

elif not vertex_colors: 

vertex_colors = vertex_color 

else: 

vertex_colors = self._options['vertex_colors'] 

 

if 'vertex_shape' in self._options: 

voptions['marker'] = self._options['vertex_shape'] 

 

if self._graph.is_directed(): 

self._vertex_radius = sqrt(voptions['markersize']/pi) 

self._arrowshorten = 2*self._vertex_radius 

if self._arcdigraph: 

self._vertex_radius = sqrt(voptions['markersize']/(20500*pi)) 

 

voptions['zorder'] = 7 

 

if not isinstance(vertex_colors, dict): 

voptions['facecolor'] = vertex_colors 

if self._arcdigraph: 

self._plot_components['vertices'] = [circle(center, 

self._vertex_radius, 

fill=True, 

facecolor=vertex_colors, 

edgecolor='black', 

clip=False) 

for center in self._pos.values()] 

else: 

self._plot_components['vertices'] = scatter_plot(list(self._pos.values()), 

clip=False, **voptions) 

else: 

# Color list must be ordered: 

pos = [] 

colors = [] 

for i in vertex_colors: 

pos += [self._pos[j] for j in vertex_colors[i]] 

colors += [i]*len(vertex_colors[i]) 

 

# If all the vertices have not been assigned a color 

if len(self._pos) != len(pos): 

leftovers = [j for j in self._pos.values() if j not in pos] 

pos += leftovers 

colors += [vertex_color]*len(leftovers) 

 

if self._arcdigraph: 

self._plot_components['vertices'] = [circle(pos[i], 

self._vertex_radius, 

fill=True, 

facecolor=colors[i], 

edgecolor='black', 

clip=False) 

for i in range(len(pos))] 

else: 

self._plot_components['vertices'] = scatter_plot(pos, 

facecolor=colors, 

clip=False, **voptions) 

 

if self._options['vertex_labels']: 

self._plot_components['vertex_labels'] = [] 

# TODO: allow text options 

for v in self._nodelist: 

self._plot_components['vertex_labels'].append(text(str(v), 

self._pos[v], rgbcolor=(0,0,0), zorder=8)) 

 

def set_edges(self, **edge_options): 

""" 

Sets the edge (or arrow) plotting parameters for the ``GraphPlot`` object. 

 

This function is called by the constructor but can also be called to make 

updates to the vertex options of an existing ``GraphPlot`` object. Note 

that the changes are cumulative. 

 

EXAMPLES:: 

 

sage: g = Graph({}, loops=True, multiedges=True, sparse=True) 

sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

....: edge_style='dashed') 

sage: GP.set_edges(edge_style='solid') 

sage: GP.plot() 

Graphics object consisting of 26 graphics primitives 

 

.. PLOT:: 

 

g = Graph({}, loops=True, multiedges=True, sparse=True) 

g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

(0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

GP = g.graphplot(vertex_size=100, edge_labels=True, 

color_by_label=True, edge_style='dashed') 

GP.set_edges(edge_style='solid') 

sphinx_plot(GP) 

 

:: 

 

sage: GP.set_edges(edge_color='black') 

sage: GP.plot() 

Graphics object consisting of 26 graphics primitives 

 

.. PLOT:: 

 

g = Graph({}, loops=True, multiedges=True, sparse=True) 

g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

(0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

GP = g.graphplot(vertex_size=100, edge_labels=True, 

color_by_label=True, edge_style='dashed') 

GP.set_edges(edge_style='solid') 

GP.set_edges(edge_color='black') 

sphinx_plot(GP) 

 

:: 

 

sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True) 

sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

....: edge_style='dashed') 

sage: GP.set_edges(edge_style='solid') 

sage: GP.plot() 

Graphics object consisting of 28 graphics primitives 

 

.. PLOT:: 

 

d = DiGraph({}, loops=True, multiedges=True, sparse=True) 

d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

(0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

edge_style='dashed') 

GP.set_edges(edge_style='solid') 

sphinx_plot(GP) 

 

:: 

 

sage: GP.set_edges(edge_color='black') 

sage: GP.plot() 

Graphics object consisting of 28 graphics primitives 

 

.. PLOT:: 

 

d = DiGraph({}, loops=True, multiedges=True, sparse=True) 

d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

(0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

edge_style='dashed') 

GP.set_edges(edge_style='solid') 

GP.set_edges(edge_color='black') 

sphinx_plot(GP) 

 

TESTS:: 

 

sage: G = Graph("Fooba") 

sage: G.show(edge_colors={'red':[(3,6),(2,5)]}) 

 

Verify that default edge labels are pretty close to being between the vertices 

in some cases where they weren't due to truncating division (:trac:`10124`):: 

 

sage: test_graphs = graphs.FruchtGraph(), graphs.BullGraph() 

sage: tol = 0.001 

sage: for G in test_graphs: 

....: E=G.edges() 

....: for e0, e1, elab in E: 

....: G.set_edge_label(e0, e1, '%d %d' % (e0, e1)) 

....: gp = G.graphplot(save_pos=True,edge_labels=True) 

....: vx = gp._plot_components['vertices'][0].xdata 

....: vy = gp._plot_components['vertices'][0].ydata 

....: for elab in gp._plot_components['edge_labels']: 

....: textobj = elab[0] 

....: x, y, s = textobj.x, textobj.y, textobj.string 

....: v0, v1 = map(int, s.split()) 

....: vn = vector(((x-(vx[v0]+vx[v1])/2.),y-(vy[v0]+vy[v1])/2.)).norm() 

....: assert vn < tol 

 

Ticket :trac:`24051` is fixed:: 

 

sage: G = Graph([(0,1), (0,1)], multiedges=True) 

sage: G.plot(edge_colors={"red":[(1,0)]}) 

Graphics object consisting of 5 graphics primitives 

""" 

for arg in edge_options: 

self._options[arg] = edge_options[arg] 

if 'edge_colors' in edge_options: self._options['color_by_label'] = False 

if self._options['edge_labels_background']=="transparent": 

self._options['edge_labels_background']="None" 

 

# Handle base edge options: thickness, linestyle 

eoptions={} 

if 'edge_style' in self._options: 

from sage.plot.misc import get_matplotlib_linestyle 

eoptions['linestyle'] = get_matplotlib_linestyle( 

self._options['edge_style'], 

return_type='long') 

if 'edge_thickness' in self._options: 

eoptions['thickness'] = self._options['edge_thickness'] 

 

# Set labels param to add labels on the fly 

labels = False 

if self._options['edge_labels']: 

labels = True 

self._plot_components['edge_labels'] = [] 

 

# Make dict collection of all edges (keep label and edge color) 

edges_to_draw = {} 

 

def append_or_set(key, label, color, head): 

if key in edges_to_draw: 

edges_to_draw[key].append((label, color, head)) 

else: 

edges_to_draw[key] = [(label, color, head)] 

 

if self._options['color_by_label'] or isinstance(self._options['edge_colors'], dict): 

if self._options['color_by_label']: 

edge_colors = self._graph._color_by_label(format=self._options['color_by_label']) 

else: 

edge_colors = self._options['edge_colors'] 

edges_drawn = [] 

for color in edge_colors: 

for edge in edge_colors[color]: 

key = tuple(sorted([edge[0],edge[1]])) 

if key == (edge[0],edge[1]): head = 1 

else: head = 0 

 

if len(edge) < 3: 

label = self._graph.edge_label(edge[0],edge[1]) 

if isinstance(label, list): 

append_or_set(key, label[-1], color, head) 

edges_drawn.append((edge[0],edge[1],label[-1])) 

for i in range(len(label)-1): 

edges_to_draw[key].append((label[i], color, head)) 

edges_drawn.append((edge[0],edge[1],label[i])) 

else: 

append_or_set(key, label, color, head) 

edges_drawn.append((edge[0],edge[1],label)) 

else: 

label = edge[2] 

labelList = self._graph.edge_label(edge[0],edge[1]) 

if isinstance(labelList, list): 

for i in range(len(labelList)): 

if labelList[i] == label: 

append_or_set(key, label, color, head) 

edges_drawn.append((edge[0],edge[1],label)) 

else: 

if labelList == label: 

append_or_set(key, label, color, head) 

edges_drawn.append((edge[0],edge[1],label)) 

 

# Add unspecified edges (default color black set in DEFAULT_PLOT_OPTIONS) 

for edge in self._graph.edge_iterator(): 

if (edge[0],edge[1],edge[2]) not in edges_drawn and \ 

( self._graph.is_directed() or 

(edge[1],edge[0],edge[2]) not in edges_drawn 

): 

key = tuple(sorted([edge[0],edge[1]])) 

if key == (edge[0],edge[1]): head = 1 

else: head = 0 

append_or_set(key, edge[2], self._options['edge_color'], head) 

 

else: 

for edge in self._graph.edges(sort=True): 

key = tuple(sorted([edge[0],edge[1]])) 

if key == (edge[0],edge[1]): head = 1 

else: head = 0 

append_or_set(key, edge[2], self._options['edge_color'], head) 

 

if edges_to_draw: 

self._plot_components['edges'] = [] 

else: 

return 

 

# Check for multi-edges or loops 

if self._arcs or self._loops: 

tmp = edges_to_draw.copy() 

dist = self._options['dist']*2. 

loop_size = self._options['loop_size'] 

max_dist = self._options['max_dist'] 

from sage.functions.all import sqrt 

for (a,b) in tmp: 

if a == b: 

# Loops 

distance = dist 

local_labels = edges_to_draw.pop((a,b)) 

if len(local_labels)*dist > max_dist: 

distance = float(max_dist)/len(local_labels) 

curr_loop_size = loop_size 

for i in range(len(local_labels)): 

self._plot_components['edges'].append(circle((self._pos[a][0], 

self._pos[a][1]-curr_loop_size), curr_loop_size, 

rgbcolor=local_labels[i][1], **eoptions)) 

if labels: 

self._plot_components['edge_labels'].append(text(local_labels[i][0], 

(self._pos[a][0], self._pos[a][1]-2*curr_loop_size), 

background_color=self._options['edge_labels_background'])) 

curr_loop_size += distance/4 

elif len(edges_to_draw[(a,b)]) > 1: 

# Multi-edge 

local_labels = edges_to_draw.pop((a,b)) 

 

# Compute perpendicular bisector 

p1 = self._pos[a] 

p2 = self._pos[b] 

M = ((p1[0]+p2[0])/2., (p1[1]+p2[1])/2.) # midpoint 

if not p1[1] == p2[1]: 

S = float(p1[0]-p2[0])/(p2[1]-p1[1]) # perp slope 

y = lambda x : S*x-S*M[0]+M[1] # perp bisector line 

 

# f,g are functions of distance d to determine x values 

# on line y at d from point M 

f = lambda d : sqrt(d**2/(1.+S**2)) + M[0] 

g = lambda d : -sqrt(d**2/(1.+S**2)) + M[0] 

 

odd_x = f 

even_x = g 

if p1[0] == p2[0]: 

odd_y = lambda d : M[1] 

even_y = odd_y 

else: 

odd_y = lambda x : y(f(x)) 

even_y = lambda x : y(g(x)) 

else: 

odd_x = lambda d : M[0] 

even_x = odd_x 

odd_y = lambda d : M[1] + d 

even_y = lambda d : M[1] - d 

 

# We now have the control points for each bezier curve 

# in terms of distance parameter d. 

# Also note that the label for each edge should be drawn at d/2. 

# (This is because we're using the perp bisectors). 

distance = dist 

if len(local_labels)*dist > max_dist: 

distance = float(max_dist)/len(local_labels) 

for i in range(len(local_labels)//2): 

k = (i+1.0)*distance 

if self._arcdigraph: 

odd_start = self._polar_hack_for_multidigraph(p1, 

[odd_x(k),odd_y(k)], self._vertex_radius)[0] 

odd_end = self._polar_hack_for_multidigraph([odd_x(k),odd_y(k)], 

p2, self._vertex_radius)[1] 

even_start = self._polar_hack_for_multidigraph(p1, 

[even_x(k),even_y(k)], self._vertex_radius)[0] 

even_end = self._polar_hack_for_multidigraph([even_x(k),even_y(k)], 

p2, self._vertex_radius)[1] 

self._plot_components['edges'].append(arrow(path=[[odd_start, 

[odd_x(k),odd_y(k)],odd_end]], head=local_labels[2*i][2], 

zorder=1, rgbcolor=local_labels[2*i][1], **eoptions)) 

self._plot_components['edges'].append(arrow(path=[[even_start, 

[even_x(k),even_y(k)],even_end]], head=local_labels[2*i+1][2], 

zorder=1, rgbcolor=local_labels[2*i+1][1], **eoptions)) 

else: 

self._plot_components['edges'].append(bezier_path([[p1, 

[odd_x(k),odd_y(k)],p2]],zorder=1, 

rgbcolor=local_labels[2*i][1], **eoptions)) 

self._plot_components['edges'].append(bezier_path([[p1, 

[even_x(k),even_y(k)],p2]],zorder=1, 

rgbcolor=local_labels[2*i+1][1], **eoptions)) 

if labels: 

j = k/2.0 

self._plot_components['edge_labels'].append(text(local_labels[2*i][0], 

[odd_x(j),odd_y(j)], background_color=self._options['edge_labels_background'])) 

self._plot_components['edge_labels'].append(text(local_labels[2*i+1][0], 

[even_x(j),even_y(j)], 

background_color=self._options['edge_labels_background'])) 

if len(local_labels)%2 == 1: 

edges_to_draw[(a,b)] = [local_labels[-1]] # draw line for last odd 

 

dir = self._graph.is_directed() 

for (a,b) in edges_to_draw: 

if self._arcdigraph: 

C,D = self._polar_hack_for_multidigraph(self._pos[a], self._pos[b], self._vertex_radius) 

self._plot_components['edges'].append(arrow(C,D, 

rgbcolor=edges_to_draw[(a,b)][0][1], head=edges_to_draw[(a,b)][0][2], 

**eoptions)) 

if labels: 

self._plot_components['edge_labels'].append(text(str(edges_to_draw[(a,b)][0][0]), 

[(C[0]+D[0])/2., (C[1]+D[1])/2.], 

background_color=self._options['edge_labels_background'])) 

elif dir: 

self._plot_components['edges'].append(arrow(self._pos[a],self._pos[b], 

rgbcolor=edges_to_draw[(a,b)][0][1], arrowshorten=self._arrowshorten, 

head=edges_to_draw[(a,b)][0][2], **eoptions)) 

else: 

self._plot_components['edges'].append(line([self._pos[a],self._pos[b]], 

rgbcolor=edges_to_draw[(a,b)][0][1], **eoptions)) 

if labels and not self._arcdigraph: 

self._plot_components['edge_labels'].append(text(str(edges_to_draw[(a,b)][0][0]), 

[(self._pos[a][0]+self._pos[b][0])/2., 

(self._pos[a][1]+self._pos[b][1])/2.], 

background_color=self._options['edge_labels_background'])) 

 

def _polar_hack_for_multidigraph(self, A, B, VR): 

""" 

Helper function to quickly compute the two points of intersection of a line 

segment from A to B (xy tuples) and circles centered at A and B, both with 

radius VR. Returns a tuple of xy tuples representing the two points. 

 

EXAMPLES:: 

 

sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True) 

sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, 

....: edge_style='dashed') 

sage: GP._polar_hack_for_multidigraph((0,1),(1,1),.1) 

([0.10..., 1.00...], [0.90..., 1.00...]) 

 

TESTS: 

 

Make sure that Python ints are acceptable arguments (:trac:`10124`):: 

 

sage: GP = DiGraph().graphplot() 

sage: GP._polar_hack_for_multidigraph((0, 1), (2, 2), .1) 

([0.08..., 1.04...], [1.91..., 1.95...]) 

sage: GP._polar_hack_for_multidigraph((int(0),int(1)),(int(2),int(2)),.1) 

([0.08..., 1.04...], [1.91..., 1.95...]) 

 

""" 

D = [float(B[i]-A[i]) for i in range(2)] 

R = sqrt(D[0]**2+D[1]**2) 

theta = 3*pi/2 

if D[0] > 0: 

theta = atan(D[1]/D[0]) 

if D[1] < 0: 

theta += 2*pi 

elif D[0] < 0: 

theta = atan(D[1]/D[0]) + pi 

elif D[1] > 0: 

theta = pi/2 

return ([VR*cos(theta)+A[0], VR*sin(theta)+A[1]], [(R-VR)*cos(theta)+A[0], 

(R-VR)*sin(theta)+A[1]]) 

 

def show(self, **kwds): 

""" 

Shows the (Di)Graph associated with this ``GraphPlot`` object. 

 

INPUT: 

 

This method accepts all parameters of 

:meth:`sage.plot.graphics.Graphics.show`. 

 

.. NOTE:: 

 

- See :mod:`the module's documentation <sage.graphs.graph_plot>` for 

information on default values of this method. 

 

- Any options not used by plot will be passed on to the 

:meth:`~sage.plot.graphics.Graphics.show` method. 

 

EXAMPLES:: 

 

sage: C = graphs.CubeGraph(8) 

sage: P = C.graphplot(vertex_labels=False, vertex_size=0, graph_border=True) 

sage: P.show() 

 

.. PLOT:: 

 

C = graphs.CubeGraph(8) 

P = C.graphplot(vertex_labels=False, vertex_size=0, graph_border=True) 

sphinx_plot(P) 

 

""" 

# Setting the default values if needed 

for k, value in iteritems(DEFAULT_SHOW_OPTIONS): 

if k not in kwds: 

kwds[k] = value 

 

self.plot().show(**kwds) 

 

def plot(self, **kwds): 

""" 

Returns a graphics object representing the (di)graph. 

 

INPUT: 

 

The options accepted by this method are to be found in the documentation 

of the :mod:`sage.graphs.graph_plot` module, and the 

:meth:`~sage.plot.graphics.Graphics.show` method. 

 

.. NOTE:: 

 

See :mod:`the module's documentation <sage.graphs.graph_plot>` for 

information on default values of this method. 

 

We can specify some pretty precise plotting of familiar graphs:: 

 

sage: from math import sin, cos, pi 

sage: P = graphs.PetersenGraph() 

sage: d = {'#FF0000':[0,5], '#FF9900':[1,6], '#FFFF00':[2,7], '#00FF00':[3,8], 

....: '#0000FF':[4,9]} 

sage: pos_dict = {} 

sage: for i in range(5): 

....: x = float(cos(pi/2 + ((2*pi)/5)*i)) 

....: y = float(sin(pi/2 + ((2*pi)/5)*i)) 

....: pos_dict[i] = [x,y] 

... 

sage: for i in range(5,10): 

....: x = float(0.5*cos(pi/2 + ((2*pi)/5)*i)) 

....: y = float(0.5*sin(pi/2 + ((2*pi)/5)*i)) 

....: pos_dict[i] = [x,y] 

... 

sage: pl = P.graphplot(pos=pos_dict, vertex_colors=d) 

sage: pl.show() 

 

.. PLOT:: 

 

from math import sin, cos, pi 

P = graphs.PetersenGraph() 

d = {'#FF0000':[0,5], '#FF9900':[1,6], '#FFFF00':[2,7], '#00FF00':[3,8], 

'#0000FF':[4,9]} 

pos_dict = {} 

for i in range(5): 

x = float(cos(pi/2 + ((2*pi)/5)*i)) 

y = float(sin(pi/2 + ((2*pi)/5)*i)) 

pos_dict[i] = [x,y] 

 

for i in range(5,10): 

x = float(0.5*cos(pi/2 + ((2*pi)/5)*i)) 

y = float(0.5*sin(pi/2 + ((2*pi)/5)*i)) 

pos_dict[i] = [x,y] 

 

pl = P.graphplot(pos=pos_dict, vertex_colors=d) 

sphinx_plot(pl) 

 

Here are some more common graphs with typical options:: 

 

sage: C = graphs.CubeGraph(8) 

sage: P = C.graphplot(vertex_labels=False, vertex_size=0, graph_border=True) 

sage: P.show() 

 

.. PLOT:: 

 

C = graphs.CubeGraph(8) 

P = C.graphplot(vertex_labels=False, vertex_size=0, graph_border=True) 

sphinx_plot(P) 

 

:: 

 

sage: G = graphs.HeawoodGraph().copy(sparse=True) 

sage: for u,v,l in G.edges(): 

....: G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')') 

sage: G.graphplot(edge_labels=True).show() 

 

.. PLOT:: 

 

G = graphs.HeawoodGraph().copy(sparse=True) 

for u,v,l in G.edges(): 

G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')') 

sphinx_plot(G.graphplot(edge_labels=True)) 

 

The options for plotting also work with directed graphs:: 

 

sage: D = DiGraph( { 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4], 

....: 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13], 

....: 10: [11], 11: [12, 18], 12: [16, 13], 13: [14], 14: [15], 15: [16], 

....: 16: [17], 17: [18], 18: [19], 19: []}) 

sage: for u,v,l in D.edges(): 

....: D.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')') 

sage: D.graphplot(edge_labels=True, layout='circular').show() 

 

.. PLOT:: 

 

D = DiGraph( { 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4], 4: [17, 5], 

5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13], 10: [11], 

11: [12, 18],12: [16, 13], 13: [14], 14: [15], 15: [16], 16: [17], 

17: [18], 18: [19], 19: []}) 

for u,v,l in D.edges(): 

D.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')') 

sphinx_plot(D.graphplot(edge_labels=True, layout='circular')) 

 

This example shows off the coloring of edges:: 

 

sage: from sage.plot.colors import rainbow 

sage: C = graphs.CubeGraph(5) 

sage: R = rainbow(5) 

sage: edge_colors = {} 

sage: for i in range(5): 

....: edge_colors[R[i]] = [] 

sage: for u,v,l in C.edges(): 

....: for i in range(5): 

....: if u[i] != v[i]: 

....: edge_colors[R[i]].append((u,v,l)) 

sage: C.graphplot(vertex_labels=False, vertex_size=0, edge_colors=edge_colors).show() 

 

.. PLOT:: 

 

from sage.plot.colors import rainbow 

C = graphs.CubeGraph(5) 

R = rainbow(5) 

edge_colors = {} 

for i in range(5): 

edge_colors[R[i]] = [] 

for u,v,l in C.edges(): 

for i in range(5): 

if u[i] != v[i]: 

edge_colors[R[i]].append((u,v,l)) 

sphinx_plot(C.graphplot(vertex_labels=False, vertex_size=0, 

edge_colors=edge_colors)) 

 

With the ``partition`` option, we can separate out same-color groups 

of vertices:: 

 

sage: D = graphs.DodecahedralGraph() 

sage: Pi = [[6,5,15,14,7],[16,13,8,2,4],[12,17,9,3,1],[0,19,18,10,11]] 

sage: D.show(partition=Pi) 

 

.. PLOT:: 

 

D = graphs.DodecahedralGraph() 

Pi = [[6,5,15,14,7],[16,13,8,2,4],[12,17,9,3,1],[0,19,18,10,11]] 

sphinx_plot(D.plot(partition=Pi)) 

 

Loops are also plotted correctly:: 

 

sage: G = graphs.PetersenGraph() 

sage: G.allow_loops(True) 

sage: G.add_edge(0,0) 

sage: G.show() 

 

.. PLOT:: 

 

G = graphs.PetersenGraph() 

G.allow_loops(True) 

G.add_edge(0,0) 

sphinx_plot(G) 

 

:: 

 

sage: D = DiGraph({0:[0,1], 1:[2], 2:[3]}, loops=True) 

sage: D.show() 

sage: D.show(edge_colors={(0,1,0):[(0,1,None),(1,2,None)],(0,0,0):[(2,3,None)]}) 

 

.. PLOT:: 

 

D = DiGraph({0:[0,1], 1:[2], 2:[3]}, loops=True) 

P = D.plot(edge_colors={(0,1,0):[(0,1,None),(1,2,None)],(0,0,0):[(2,3,None)]}) 

sphinx_plot(P) 

 

More options:: 

 

sage: pos = {0:[0.0, 1.5], 1:[-0.8, 0.3], 2:[-0.6, -0.8], 

....: 3:[0.6, -0.8], 4:[0.8, 0.3]} 

sage: g = Graph({0:[1], 1:[2], 2:[3], 3:[4], 4:[0]}) 

sage: g.graphplot(pos=pos, layout='spring', iterations=0).plot() 

Graphics object consisting of 11 graphics primitives 

 

.. PLOT:: 

 

pos = {0:[0.0, 1.5], 1:[-0.8, 0.3], 2:[-0.6, -0.8], 

3:[0.6, -0.8], 4:[0.8, 0.3]} 

g = Graph({0:[1], 1:[2], 2:[3], 3:[4], 4:[0]}) 

P = g.graphplot(pos=pos, layout='spring', iterations=0).plot() 

sphinx_plot(P) 

 

:: 

 

sage: G = Graph() 

sage: P = G.graphplot().plot() 

sage: P.axes() 

False 

sage: G = DiGraph() 

sage: P = G.graphplot().plot() 

sage: P.axes() 

False 

 

We can plot multiple graphs:: 

 

sage: T = list(graphs.trees(7)) 

sage: t = T[3] 

sage: t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}).plot() 

Graphics object consisting of 14 graphics primitives 

 

.. PLOT:: 

 

T = list(graphs.trees(7)) 

t = T[3] 

sphinx_plot(t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})) 

 

:: 

 

sage: T = list(graphs.trees(7)) 

sage: t = T[3] 

sage: t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}).plot() 

Graphics object consisting of 14 graphics primitives 

 

.. PLOT:: 

 

T = list(graphs.trees(7)) 

t = T[3] 

sphinx_plot(t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})) 

 

:: 

 

sage: t.set_edge_label(0,1,-7) 

sage: t.set_edge_label(0,5,3) 

sage: t.set_edge_label(0,5,99) 

sage: t.set_edge_label(1,2,1000) 

sage: t.set_edge_label(3,2,'spam') 

sage: t.set_edge_label(2,6,3/2) 

sage: t.set_edge_label(0,4,66) 

sage: t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}, edge_labels=True).plot() 

Graphics object consisting of 20 graphics primitives 

 

.. PLOT:: 

 

T = list(graphs.trees(7)) 

t = T[3] 

t.set_edge_label(0,1,-7) 

t.set_edge_label(0,5,3) 

t.set_edge_label(0,5,99) 

t.set_edge_label(1,2,1000) 

t.set_edge_label(3,2,'spam') 

t.set_edge_label(2,6,3/2) 

t.set_edge_label(0,4,66) 

sphinx_plot(t.graphplot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}, edge_labels=True)) 

 

:: 

 

sage: T = list(graphs.trees(7)) 

sage: t = T[3] 

sage: t.graphplot(layout='tree').show() 

 

.. PLOT:: 

 

T = list(graphs.trees(7)) 

t = T[3] 

sphinx_plot(t.graphplot(layout='tree')) 

 

The tree layout is also useful:: 

 

sage: t = DiGraph('JCC???@A??GO??CO??GO??') 

sage: t.graphplot(layout='tree', tree_root=0, tree_orientation="up").show() 

 

.. PLOT:: 

 

t = DiGraph('JCC???@A??GO??CO??GO??') 

sphinx_plot(t.graphplot(layout='tree', tree_root=0, tree_orientation="up")) 

 

More examples:: 

 

sage: D = DiGraph({0:[1,2,3], 2:[1,4], 3:[0]}) 

sage: D.graphplot().show() 

 

.. PLOT:: 

 

D = DiGraph({0:[1,2,3], 2:[1,4], 3:[0]}) 

sphinx_plot(D.graphplot()) 

 

:: 

 

sage: D = DiGraph(multiedges=True, sparse=True) 

sage: for i in range(5): 

....: D.add_edge((i,i+1,'a')) 

....: D.add_edge((i,i-1,'b')) 

sage: D.graphplot(edge_labels=True,edge_colors=D._color_by_label()).plot() 

Graphics object consisting of 34 graphics primitives 

 

.. PLOT:: 

 

D = DiGraph(multiedges=True, sparse=True) 

for i in range(5): 

D.add_edge((i,i+1,'a')) 

D.add_edge((i,i-1,'b')) 

sphinx_plot(D.graphplot(edge_labels=True,edge_colors=D._color_by_label())) 

 

:: 

 

sage: g = Graph({}, loops=True, multiedges=True, sparse=True) 

sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

....: (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

sage: g.graphplot(edge_labels=True, color_by_label=True, edge_style='dashed').plot() 

Graphics object consisting of 26 graphics primitives 

 

.. PLOT:: 

 

g = Graph({}, loops=True, multiedges=True, sparse=True) 

g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'), 

(0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')]) 

sphinx_plot(g.graphplot(edge_labels=True, color_by_label=True, edge_style='dashed')) 

 

The ``edge_style`` option may be provided in the short format too:: 

 

sage: g.graphplot(edge_labels=True, color_by_label=True, edge_style='--').plot() 

Graphics object consisting of 26 graphics primitives 

 

TESTS: 

 

Make sure that show options work with plot also:: 

 

sage: g = Graph({}) 

sage: g.plot(title='empty graph', axes=True) 

Graphics object consisting of 0 graphics primitives 

 

Check for invalid inputs:: 

 

sage: p = graphs.PetersenGraph().plot(egabrag='garbage') 

Traceback (most recent call last): 

... 

ValueError: Invalid input 'egabrag=garbage' 

 

Make sure that no graphics primitive is clipped:: 

 

sage: tadpole = Graph({0:[0,1]}).plot() 

sage: bbox = tadpole.get_minmax_data() 

sage: for part in tadpole: 

....: part_bbox = part.get_minmax_data() 

....: assert bbox['xmin'] <= part_bbox['xmin'] <= part_bbox['xmax'] <= bbox['xmax'] 

....: assert bbox['ymin'] <= part_bbox['ymin'] <= part_bbox['ymax'] <= bbox['ymax'] 

""" 

G = Graphics() 

options = self._options.copy() 

options.update(kwds) 

G._set_extra_kwds(Graphics._extract_kwds_for_show(options)) 

 

# Check the arguments 

for o in options: 

if o not in graphplot_options and o not in G._extra_kwds: 

raise ValueError("Invalid input '{}={}'".format(o, options[o])) 

 

for comp in self._plot_components.values(): 

if not isinstance(comp, list): 

G += comp 

else: 

for item in comp: 

G += item 

 

if self._options['graph_border']: 

xmin = G.xmin() 

xmax = G.xmax() 

ymin = G.ymin() 

ymax = G.ymax() 

dx = (xmax-xmin)/10.0 

dy = (ymax-ymin)/10.0 

border = (line([( xmin - dx, ymin - dy), ( xmin - dx, ymax + dy ), 

( xmax + dx, ymax + dy ), ( xmax + dx, ymin - dy ), ( xmin - dx, ymin - dy )], 

thickness=1.3)) 

border.axes_range(xmin = (xmin - dx), xmax = (xmax + dx), ymin = (ymin - dy), 

ymax = (ymax + dy)) 

G += border 

G.set_aspect_ratio(1) 

G.axes(False) 

return G 

 

def layout_tree(self,root,orientation): 

""" 

Compute a nice layout of a tree. 

 

INPUT: 

 

- ``root`` -- the root vertex. 

 

- ``orientation`` -- Whether to place the root 

at the top or at the bottom : 

 

- ``orientation="down"`` -- children are placed below 

their parent 

- ``orientation="top"`` -- children are placed above 

their parent 

 

EXAMPLES:: 

 

sage: T = graphs.RandomLobster(25,0.3,0.3) 

sage: T.show(layout='tree',tree_orientation='up') # indirect doctest 

 

sage: from sage.graphs.graph_plot import GraphPlot 

sage: G = graphs.HoffmanSingletonGraph() 

sage: T = Graph() 

sage: T.add_edges(G.min_spanning_tree(starting_vertex=0)) 

sage: T.show(layout='tree',tree_root=0) # indirect doctest 

 

""" 

 

T = self._graph 

 

if not self._graph.is_tree(): 

raise RuntimeError("Cannot use tree layout on this graph: self.is_tree() returns False.") 

 

children = {root:T.neighbors(root)} 

 

#always make a copy of the children because they get eaten 

stack = [[u for u in children[root]]] 

stick = [root] 

parent = dict([(u,root) for u in children[root]]) 

pos = {} 

obstruction = [0.0]*T.num_verts() 

if orientation == 'down': 

o = -1 

else: 

o = 1 

 

def slide(v,dx): 

""" 

 

shift the vertex v and its descendants to the right by dx 

 

Precondition: v and its descendents have already had their 

positions computed. 

 

""" 

 

level = [v] 

while level: 

nextlevel = [] 

for u in level: 

x,y = pos[u] 

x+= dx 

obstruction[y] = max(x+1, obstruction[y]) 

pos[u] = x,y 

nextlevel += children[u] 

 

level = nextlevel 

 

while stack: 

C = stack[-1] 

if len(C) == 0: 

p = stick.pop() 

stack.pop() 

cp = children[p] 

y = o*len(stack) 

if len(cp) == 0: 

x = obstruction[y] 

pos[p] = x,y 

else: 

x = sum([pos[c][0] for c in cp])/(float(len(cp))) 

pos[p] = x,y 

ox = obstruction[y] 

if x < ox: 

slide(p,ox-x) 

x = ox 

obstruction[y] = x+1 

continue 

 

t = C.pop() 

pt = parent[t] 

 

ct = [u for u in T.neighbors(t) if u != pt] 

for c in ct: 

parent[c] = t 

children[t] = ct 

 

stack.append([c for c in ct]) 

stick.append(t) 

 

return pos 

 

#################### 

# Helper functions # 

#################### 

 

def _circle_embedding(g, vertices, center=(0, 0), radius=1, shift=0): 

r""" 

Sets some vertices on a circle in the embedding of a graph G. 

 

This method modifies the graph's embedding so that the vertices 

listed in ``vertices`` appear in this ordering on a circle of given 

radius and center. The ``shift`` parameter is actually a rotation of 

the circle. A value of ``shift=1`` will replace in the drawing the 

`i`-th element of the list by the `(i-1)`-th. Non-integer values are 

admissible, and a value of `\alpha` corresponds to a rotation of the 

circle by an angle of `\alpha 2\pi/n` (where `n` is the number of 

vertices set on the circle). 

 

EXAMPLES:: 

 

sage: from sage.graphs.graph_plot import _circle_embedding 

sage: g = graphs.CycleGraph(5) 

sage: _circle_embedding(g, [0, 2, 4, 1, 3], radius=2, shift=.5) 

sage: g.show() 

""" 

c_x, c_y = center 

n = len(vertices) 

d = g.get_pos() 

if d is None: 

d = {} 

 

for i,v in enumerate(vertices): 

i += shift 

v_x = c_x + radius * cos(2*i*pi / n) 

v_y = c_y + radius * sin(2*i*pi / n) 

d[v] = (v_x, v_y) 

 

g.set_pos(d) 

 

def _line_embedding(g, vertices, first=(0, 0), last=(0, 1)): 

r""" 

Sets some vertices on a line in the embedding of a graph G. 

 

This method modifies the graph's embedding so that the vertices of 

``vertices`` appear on a line, where the position of ``vertices[0]`` 

is the pair ``first`` and the position of ``vertices[-1]`` is 

``last``. The vertices are evenly spaced. 

 

EXAMPLES:: 

 

sage: from sage.graphs.graph_plot import _line_embedding 

sage: g = graphs.PathGraph(5) 

sage: _line_embedding(g, [0, 2, 4, 1, 3], first=(-1, -1), last=(1, 1)) 

sage: g.show() 

""" 

n = len(vertices) - 1. 

 

fx, fy = first 

dx = (last[0] - first[0])/n 

dy = (last[1] - first[1])/n 

 

d = g.get_pos() 

if d is None: 

d = {} 

 

for v in vertices: 

d[v] = (fx, fy) 

fx += dx 

fy += dy