Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

r""" 

Generation of trees 

  

This is an implementation of the algorithm for generating trees with `n` vertices 

(up to isomorphism) in constant time per tree described in [WRIGHT-ETAL]_. 

  

AUTHORS: 

  

- Ryan Dingman (2009-04-16): initial version 

  

REFERENCES: 

  

.. [WRIGHT-ETAL] Wright, Robert Alan; Richmond, Bruce; Odlyzko, Andrew; McKay, Brendan D. 

Constant time generation of free trees. SIAM J. Comput. 15 (1986), no. 2, 

540--548. 

""" 

from __future__ import print_function 

  

from libc.limits cimport INT_MAX 

from cysignals.memory cimport check_allocarray, sig_free 

  

# from networkx import MultiGraph 

  

from sage.graphs.graph import Graph 

from sage.graphs.base.sparse_graph cimport SparseGraph 

from sage.graphs.base.sparse_graph cimport SparseGraphBackend 

  

cdef class TreeIterator: 

r""" 

This class iterates over all trees with n vertices (up to isomorphism). 

  

EXAMPLES:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: def check_trees(n): 

....: trees = [] 

....: for t in TreeIterator(n): 

....: if not t.is_tree(): 

....: return False 

....: if t.num_verts() != n: 

....: return False 

....: if t.num_edges() != n - 1: 

....: return False 

....: for tree in trees: 

....: if tree.is_isomorphic(t): 

....: return False 

....: trees.append(t) 

....: return True 

sage: check_trees(10) 

True 

  

:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: count = 0 

sage: for t in TreeIterator(15): 

....: count += 1 

sage: count 

7741 

""" 

  

def __init__(self, int vertices): 

r""" 

Initializes an iterator over all trees with `n` vertices. 

  

EXAMPLES:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: t = TreeIterator(100) # indirect doctest 

sage: print(t) 

Iterator over all trees with 100 vertices 

""" 

self.vertices = vertices 

self.l = NULL 

self.current_level_sequence = NULL 

self.first_time = 1 

  

def __dealloc__(self): 

r""" 

EXAMPLES:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: t = TreeIterator(100) 

sage: t = None # indirect doctest 

""" 

sig_free(self.l) 

sig_free(self.current_level_sequence) 

  

def __str__(self): 

r""" 

EXAMPLES:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: t = TreeIterator(100) 

sage: print(t) # indirect doctest 

Iterator over all trees with 100 vertices 

""" 

return "Iterator over all trees with %s vertices"%(self.vertices) 

  

def __iter__(self): 

r""" 

Returns an iterator over all the trees with `n` vertices. 

  

EXAMPLES:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: t = TreeIterator(4) 

sage: list(iter(t)) 

[Graph on 4 vertices, Graph on 4 vertices] 

""" 

return self 

  

def __next__(self): 

r""" 

Returns the next tree with `n` vertices 

  

EXAMPLES:: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: T = TreeIterator(5) 

sage: [t for t in T] # indirect doctest 

[Graph on 5 vertices, Graph on 5 vertices, Graph on 5 vertices] 

  

  

TESTS: 

  

This used to be broken for trees with no vertices 

and was fixed in :trac:`13719` :: 

  

sage: from sage.graphs.trees import TreeIterator 

sage: T = TreeIterator(0) 

sage: [t for t in T] # indirect doctest 

[Graph on 0 vertices] 

""" 

  

if not self.first_time and self.q == 0: 

raise StopIteration 

  

if self.first_time == 1: 

if self.vertices == 0: 

self.first_time = 0 

self.q = 0 

else: 

self.l = <int *>check_allocarray(self.vertices, sizeof(int)) 

self.current_level_sequence = <int *>check_allocarray(self.vertices, sizeof(int)) 

  

self.generate_first_level_sequence() 

self.first_time = 0 

else: 

self.generate_next_level_sequence() 

  

cdef int i 

cdef int vertex1 

cdef int vertex2 

cdef object G 

  

# from networkx import MultiGraph 

# G = Graph(self.vertices) 

# cdef object XG = G._backend._nxg 

# 

# for i from 2 <= i <= self.vertices: 

# vertex1 = i - 1 

# vertex2 = self.current_level_sequence[i - 1] - 1 

# XG.add_edge(vertex1, vertex2) 

# 

# return G 

  

# Currently, c_graph does not have all the same functionality as networkx. 

# Until it does, we can't generate graphs using the c_graph backend even 

# though it is twice as fast (for our purposes) as networkx. 

  

G = Graph(self.vertices, implementation='c_graph', sparse=True) 

cdef SparseGraph SG = (<SparseGraphBackend?> G._backend)._cg 

  

for i from 2 <= i <= self.vertices: 

vertex1 = i - 1 

vertex2 = self.current_level_sequence[i - 1] - 1 

SG.add_arc_unsafe(vertex1, vertex2) 

SG.add_arc_unsafe(vertex2, vertex1) 

  

return G 

  

cdef int generate_first_level_sequence(self): 

r""" 

Generates the level sequence representing the first tree with `n` vertices 

""" 

cdef int i 

cdef int k 

  

k = (self.vertices / 2) + 1 

  

if self.vertices == 4: 

self.p = 3 

else: 

self.p = self.vertices 

self.q = self.vertices - 1 

self.h1 = k 

self.h2 = self.vertices 

if self.vertices % 2 == 0: 

self.c = self.vertices + 1 

else: 

self.c = INT_MAX # oo 

  

self.r = k 

  

for i from 1 <= i <= k: 

self.l[i - 1] = i 

for i from k < i <= self.vertices: 

self.l[i - 1] = i - k + 1 

for i from 0 <= i < self.vertices: 

self.current_level_sequence[i] = i 

if self.vertices > 2: 

self.current_level_sequence[k] = 1 

if self.vertices <= 3: 

self.q = 0 

  

return 0 

  

cdef int generate_next_level_sequence(self): 

r""" 

Generates the level sequence representing the next tree with `n` vertices 

""" 

cdef int i 

cdef int fixit = 0 

  

cdef int needr = 0 

cdef int needc = 0 

cdef int needh2 = 0 

  

cdef int n = self.vertices 

cdef int p = self.p 

cdef int q = self.q 

cdef int h1 = self.h1 

cdef int h2 = self.h2 

cdef int c = self.c 

cdef int r = self.r 

cdef int *l = self.l 

cdef int *w = self.current_level_sequence 

  

if c == n + 1 or p == h2 and (l[h1 - 1] == l[h2 - 1] + 1 and n - h2 > r - h1 or l[h1 - 1] == l[h2 - 1] and n - h2 + 1 < r - h1): 

if (l[r - 1] > 3): 

p = r 

q = w[r - 1] 

if h1 == r: 

h1 = h1 - 1 

fixit = 1 

else: 

p = r 

r = r - 1 

q = 2 

  

if p <= h1: 

h1 = p - 1 

if p <= r: 

needr = 1 

elif p <= h2: 

needh2 = 1 

elif l[h2 - 1] == l[h1 - 1] - 1 and n - h2 == r - h1: 

if p <= c: 

needc = 1 

else: 

c = INT_MAX 

  

cdef int oldp = p 

cdef int delta = q - p 

cdef int oldlq = l[q - 1] 

cdef int oldwq = w[q - 1] 

p = INT_MAX 

  

for i from oldp <= i <= n: 

l[i - 1] = l[i - 1 + delta] 

if l[i - 1] == 2: 

w[i - 1] = 1 

else: 

p = i 

if l[i - 1] == oldlq: 

q = oldwq 

else: 

q = w[i - 1 + delta] - delta 

w[i - 1] = q 

if needr == 1 and l[i - 1] == 2: 

needr = 0 

needh2 = 1 

r = i - 1 

if needh2 == 1 and l[i - 1] <= l[i - 2] and i > r + 1: 

needh2 = 0 

h2 = i - 1 

if l[h2 - 1] == l[h1 - 1] - 1 and n - h2 == r - h1: 

needc = 1 

else: 

c = INT_MAX 

if needc == 1: 

if l[i - 1] != l[h1 - h2 + i - 1] - 1: 

needc = 0 

c = i 

else: 

c = i + 1 

  

if fixit == 1: 

r = n - h1 + 1 

for i from r < i <= n: 

l[i - 1] = i - r + 1 

w[i - 1] = i - 1 

w[r] = 1 

h2 = n 

p = n 

q = p - 1 

c = INT_MAX 

else: 

if p == INT_MAX: 

if l[oldp - 2] != 2: 

p = oldp - 1 

else: 

p = oldp - 2 

q = w[p - 1] 

if needh2 == 1: 

h2 = n 

if l[h2 - 1] == l[h1 - 1] - 1 and h1 == r: 

c = n + 1 

else: 

c = INT_MAX 

  

self.p = p 

self.q = q 

self.h1 = h1 

self.h2 = h2 

self.c = c 

self.r = r 

self.l = l 

self.current_level_sequence = w 

  

return 0