Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

r""" 

Finitely generated abelian groups with GAP. 

 

This module provides a python wrapper for abelian groups in GAP. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: AbelianGroupGap([3,5]) 

Abelian group with gap, generator orders (3, 5) 

 

For infinite abelian groups we use the GAP package ``Polycyclic``:: 

 

sage: AbelianGroupGap([3,0]) # optional - gap_packages 

Abelian group with gap, generator orders (3, 0) 

 

AUTHORS: 

 

- Simon Brandhorst (2018-01-17): initial version 

""" 

 

# **************************************************************************** 

# Copyright (C) 2018 Simon Brandhorst <sbrandhorst@web.de> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

# **************************************************************************** 

 

from sage.groups.libgap_wrapper import ParentLibGAP, ElementLibGAP 

from sage.groups.libgap_mixin import GroupMixinLibGAP 

from sage.groups.group import AbelianGroup as AbelianGroupBase 

from sage.libs.gap.element import GapElement 

from sage.libs.gap.libgap import libgap 

from sage.misc.cachefunc import cached_method 

from sage.rings.integer_ring import ZZ 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.categories.groups import Groups 

 

class AbelianGroupElement_gap(ElementLibGAP): 

r""" 

An element of an abelian group via libgap. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3,6]) 

sage: G.gens() 

(f1, f2) 

""" 

def __init__(self, parent, x, check=True): 

""" 

The Python constructor. 

 

See :class:`AbelianGroupElement_gap` for details. 

 

INPUT: 

 

- ``parent`` -- an instance of :class:`AbelianGroup_gap` 

- ``x`` -- an instance of :class:`sage.libs.gap.element.GapElement` 

- ``check`` -- boolean (default: ``True``); check 

if ``x`` is an element of the group 

 

TESTS:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3,6]) 

sage: g = G.an_element() 

sage: TestSuite(g).run() 

""" 

if check and x not in parent.gap(): 

raise ValueError("%s is not in the group %s" % (x, parent)) 

ElementLibGAP.__init__(self, parent, x) 

 

def __hash__(self): 

r""" 

Return the hash of this element. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3,2,4]) 

sage: g = G.an_element() 

sage: g.__hash__() # random 

1693277541873681615 

""" 

return hash(self.parent()) ^ hash(self.exponents()) 

 

def __reduce__(self): 

r""" 

Implement pickling. 

 

OUTPUT: 

 

- a tuple ``f`` such that this element is ``f[0](*f[1])`` 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3,2,4]) 

sage: g = G.an_element() 

sage: g == loads(dumps(g)) 

True 

sage: g.__reduce__() 

(Abelian group with gap, generator orders (3, 2, 4), ((1, 1, 1),)) 

""" 

return self.parent(), (self.exponents(),) 

 

def exponents(self): 

r""" 

Return the tuple of exponents of this element. 

 

OUTPUT: 

 

- a tuple of integers 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([4,7,9]) 

sage: gens = G.gens() 

sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8 

sage: g.exponents() 

(2, 4, 8) 

sage: S = G.subgroup(G.gens()[:1]) 

sage: s = S.gens()[0] 

sage: s 

f1 

sage: s.exponents() 

(1,) 

 

It can handle quite large groups too:: 

 

sage: G = AbelianGroupGap([2^10, 5^10]) 

sage: f1, f2 = G.gens() 

sage: g = f1^123*f2^789 

sage: g.exponents() 

(123, 789) 

 

.. WARNING:: 

 

Crashes for very large groups. 

 

.. TODO:: 

 

Make exponents work for very large groups. 

This could be done by using Pcgs in gap. 

""" 

 

P = self.parent() 

# better than Factorization as this does not create the 

# whole group in memory. 

f = P.gap().EpimorphismFromFreeGroup() 

x = f.PreImagesRepresentative(self.gap()) 

L = x.ExtRepOfObj().sage() 

Lgens = L[::2] 

Lexpo = L[1::2] 

exp = [] 

orders = P.gens_orders() 

i = 0 

for k in range(len(P.gens())): 

if not k+1 in Lgens: 

exp.append(0) 

else: 

i = Lgens.index(k+1) 

exp.append(Lexpo[i] % orders[k]) 

return tuple(exp) 

 

def order(self): 

r""" 

Return the order of this element. 

 

OUTPUT: 

 

- an integer or infinity 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([4]) 

sage: g = G.gens()[0] 

sage: g.order() 

4 

sage: G = AbelianGroupGap([0]) # optional - gap_packages 

sage: g = G.gens()[0] # optional - gap_packages 

sage: g.order() # optional - gap_packages 

+Infinity 

""" 

return self.gap().Order().sage() 

 

class AbelianGroupElement_polycyclic(AbelianGroupElement_gap): 

r""" 

An element of an abelian group using the GAP package ``Polycyclic``. 

 

TESTS:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([4,7,0]) # optional - gap_packages 

sage: TestSuite(G.an_element()).run() # optional - gap_packages 

""" 

def exponents(self): 

r""" 

Return the tuple of exponents of ``self``. 

 

OUTPUT: 

 

- a tuple of integers 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([4,7,0]) # optional - gap_packages 

sage: gens = G.gens() # optional - gap_packages 

sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8 # optional - gap_packages 

sage: g.exponents() # optional - gap_packages 

(2, 4, 8) 

 

Efficiently handles very large groups:: 

 

sage: G = AbelianGroupGap([2^30,5^30,0]) # optional - gap_packages 

sage: f1, f2, f3 = G.gens() # optional - gap_packages 

sage: (f1^12345*f2^123456789).exponents() # optional - gap_packages 

(12345, 123456789, 0) 

""" 

return tuple(self.gap().Exponents().sage()) 

 

class AbelianGroup_gap(UniqueRepresentation, GroupMixinLibGAP, ParentLibGAP, AbelianGroupBase): 

r""" 

Finitely generated abelian groups implemented in GAP. 

 

Needs the gap package ``Polycyclic`` in case the group is infinite. 

 

INPUT: 

 

- ``G`` -- a GAP group 

- ``category`` -- a category 

- ``ambient`` -- (optional) an :class:`AbelianGroupGap` 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3, 2, 5]) 

sage: G 

Abelian group with gap, generator orders (3, 2, 5) 

""" 

def __init__(self, G, category, ambient=None): 

r""" 

Create an instance of this class. 

 

See :class:`AbelianGroup_gap` for details 

 

TESTS:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3,2,5]) 

sage: TestSuite(G).run() 

""" 

AbelianGroupBase.__init__(self, category=category) 

ParentLibGAP.__init__(self, G, ambient=ambient) 

 

Element = AbelianGroupElement_gap 

 

def _coerce_map_from_(self, S): 

r""" 

Return whether ``S`` canonically coerces to ``self``. 

 

INPUT: 

 

- ``S`` -- anything 

 

OUTPUT: 

 

Boolean. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: gen = G.gens()[:2] 

sage: S = G.subgroup(gen) 

sage: G._coerce_map_from_(S) 

True 

sage: S._coerce_map_from_(G) 

False 

""" 

if isinstance(S, AbelianGroup_gap): 

return S.is_subgroup_of(self) 

return super(AbelianGroup_gap, self)._coerce_map_from_(S) 

 

def _element_constructor_(self, x, check=True): 

r""" 

Defines coercions and conversions. 

 

INPUT: 

 

- ``x`` -- an element of this group, a GAP element 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3]) 

sage: A = AbelianGroup([2,3]) 

sage: a = A.an_element() 

sage: a 

f0*f1 

sage: G(a) 

f1*f2 

sage: A = AdditiveAbelianGroup([2,3]) 

sage: a = A.an_element() 

sage: a 

(1, 0) 

sage: G(a) 

f1 

 

For general ``fgp_modules`` conversion is implemented if our 

group is in Smith form:: 

 

sage: G = AbelianGroupGap([6]) 

sage: A = ZZ^2 

sage: e0,e1 = A.gens() 

sage: A = A / A.submodule([2*e0, 3*e1]) 

sage: a = 2 * A.an_element() 

sage: a 

(2) 

sage: G(a) 

f2 

""" 

if isinstance(x, AbelianGroupElement_gap): 

x = x.gap() 

elif x == 1 or x == (): 

x = self.gap().Identity() 

elif not isinstance(x, GapElement): 

from sage.groups.abelian_gps.abelian_group_element import AbelianGroupElement 

from sage.groups.additive_abelian.additive_abelian_group import AdditiveAbelianGroupElement 

from sage.modules.fg_pid.fgp_element import FGP_Element 

if isinstance(x, AbelianGroupElement): 

exp = x.exponents() 

elif isinstance(x, AdditiveAbelianGroupElement): 

exp = x._hermite_lift() 

elif isinstance(x, FGP_Element): 

exp = x.vector() 

else: 

from sage.modules.free_module_element import vector 

exp = vector(ZZ, x) 

# turn the exponents into a gap element 

gens_gap = self.gens() 

if len(exp) != len(gens_gap): 

raise ValueError("input does not match the number of generators") 

x = gens_gap[0]**0 

for i in range(len(exp)): 

x *= gens_gap[i]**exp[i] 

x = x.gap() 

return self.element_class(self, x, check=check) 

 

def all_subgroups(self): 

r""" 

Return the list of all subgroups of this group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2, 3]) 

sage: G.all_subgroups() 

[Subgroup of Abelian group with gap, generator orders (2, 3) generated by (1,), 

Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1,), 

Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2,), 

Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1, f2)] 

""" 

subgroups_gap = self.gap().AllSubgroups() 

subgroups_sage = [] 

for G in subgroups_gap: 

S = self.subgroup(G.GeneratorsOfGroup()) 

subgroups_sage.append(S) 

return subgroups_sage 

 

def automorphism_group(self): 

r""" 

Return the group of automorphisms of ``self``. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2, 3]) 

sage: G.aut() 

Full group of automorphisms of Abelian group with gap, generator orders (2, 3) 

""" 

from sage.groups.abelian_gps.abelian_aut import AbelianGroupAutomorphismGroup 

return AbelianGroupAutomorphismGroup(self) 

 

aut = automorphism_group 

 

def is_trivial(self): 

r""" 

Return ``True`` if this group is the trivial group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([]) 

sage: G 

Abelian group with gap, generator orders () 

sage: G.is_trivial() 

True 

sage: AbelianGroupGap([1]).is_trivial() 

True 

sage: AbelianGroupGap([1,1,1]).is_trivial() 

True 

sage: AbelianGroupGap([2]).is_trivial() 

False 

sage: AbelianGroupGap([2,1]).is_trivial() 

False 

""" 

return 1 == self.order() 

 

def identity(self): 

r""" 

Return the identity element of this group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([4,10]) 

sage: G.identity() 

1 

""" 

return self.one() 

 

@cached_method 

def elementary_divisors(self): 

r""" 

Return the elementary divisors of this group. 

 

See :meth:`sage.groups.abelian_gps.abelian_group_gap.elementary_divisors`. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: G.elementary_divisors() 

(2, 60) 

""" 

ediv = self.gap().AbelianInvariants().sage() 

from sage.matrix.constructor import diagonal_matrix 

ed = diagonal_matrix(ZZ, ediv).elementary_divisors() 

return tuple(d for d in ed if d != 1) 

 

@cached_method 

def exponent(self): 

r""" 

Return the exponent of this abelian group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,7]) 

sage: G 

Abelian group with gap, generator orders (2, 3, 7) 

sage: G = AbelianGroupGap([2,4,6]) 

sage: G 

Abelian group with gap, generator orders (2, 4, 6) 

sage: G.exponent() 

12 

""" 

return self.gap().Exponent().sage() 

 

@cached_method 

def gens_orders(self): 

r""" 

Return the orders of the generators. 

 

Use :meth:`elementary_divisors` if you are looking for an 

invariant of the group. 

 

OUTPUT: 

 

- a tuple of integers 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: Z2xZ3 = AbelianGroupGap([2,3]) 

sage: Z2xZ3.gens_orders() 

(2, 3) 

sage: Z2xZ3.elementary_divisors() 

(6,) 

sage: Z6 = AbelianGroupGap([6]) 

sage: Z6.gens_orders() 

(6,) 

sage: Z6.elementary_divisors() 

(6,) 

sage: Z2xZ3.is_isomorphic(Z6) 

True 

sage: Z2xZ3 is Z6 

False 

""" 

from sage.rings.infinity import Infinity 

orders = [] 

for g in self.gens(): 

order = g.order() 

if order == Infinity: 

order = 0 

orders.append(order) 

return tuple(orders) 

 

def is_subgroup_of(self, G): 

r""" 

Return if ``self`` is a subgroup of ``G`` considered in 

the same ambient group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: gen = G.gens()[:2] 

sage: S1 = G.subgroup(gen) 

sage: S1.is_subgroup_of(G) 

True 

sage: S2 = G.subgroup(G.gens()[1:]) 

sage: S2.is_subgroup_of(S1) 

False 

""" 

if not isinstance(G, AbelianGroup_gap): 

raise ValueError("input must be an instance of AbelianGroup_gap") 

if not self.ambient() is G.ambient(): 

return False 

return G.gap().IsSubsemigroup(self).sage() 

 

def subgroup(self, gens): 

r""" 

Return the subgroup of this group generated by ``gens``. 

 

INPUT: 

 

- ``gens`` -- a list of elements coercible into this group 

 

OUTPUT: 

 

- a subgroup 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: gen = G.gens()[:2] 

sage: S = G.subgroup(gen) 

sage: S 

Subgroup of Abelian group with gap, generator orders (2, 3, 4, 5) 

generated by (f1, f2) 

sage: g = G.an_element() 

sage: s = S.an_element() 

sage: g * s 

f2^2*f3*f5 

sage: G = AbelianGroupGap([3,4,0,2]) # optional - gap_packages 

sage: gen = G.gens()[:2] # optional - gap_packages 

sage: S = G.subgroup(gen) # optional - gap_packages 

sage: g = G.an_element() # optional - gap_packages 

sage: s = S.an_element() # optional - gap_packages 

sage: g * s # optional - gap_packages 

g1^2*g2^2*g3*g4 

 

TESTS:: 

 

sage: h = G.gens()[3] 

sage: h in S 

False 

""" 

gens = tuple([self(g) for g in gens]) 

return AbelianGroupSubgroup_gap(self.ambient(), gens) 

 

class AbelianGroupGap(AbelianGroup_gap): 

r""" 

Abelian groups implemented using GAP. 

 

INPUT: 

 

- ``generator_orders`` -- a list of nonnegative integers where `0` 

gives a factor isomorphic to `\ZZ` 

 

OUTPUT: 

 

- an abelian group 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: AbelianGroupGap([3,6]) 

Abelian group with gap, generator orders (3, 6) 

sage: AbelianGroupGap([3,6,5]) 

Abelian group with gap, generator orders (3, 6, 5) 

sage: AbelianGroupGap([3,6,0]) # optional - gap_packages 

Abelian group with gap, generator orders (3, 6, 0) 

 

.. WARNING:: 

 

Needs the GAP package ``Polycyclic`` in case the group is infinite. 

""" 

@staticmethod 

def __classcall_private__(cls, generator_orders): 

r""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: A1 = AbelianGroupGap((2,3,4)) 

sage: A2 = AbelianGroupGap([4/2,3,4]) 

sage: A1 is A2 

True 

""" 

generator_orders = tuple([ZZ(e) for e in generator_orders]) 

if any(e < 0 for e in generator_orders): 

return ValueError("generator orders must be nonnegative") 

return super(AbelianGroupGap, cls).__classcall__(cls, generator_orders) 

 

def __init__(self, generator_orders): 

r""" 

Constructor. 

 

TESTS:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: A = AbelianGroup((2,3,4)) 

sage: TestSuite(A).run() 

""" 

category = Groups().Commutative() 

if 0 in generator_orders: 

if not libgap.LoadPackage("Polycyclic"): 

raise ImportError("unable to import polycyclic package") 

G = libgap.eval("AbelianPcpGroup(%s)" % list(generator_orders)) 

category = category.Infinite() 

self.Element = AbelianGroupElement_polycyclic 

else: 

G = libgap.AbelianGroup(generator_orders) 

category = category.Finite().Enumerated() 

AbelianGroup_gap.__init__(self, G, category=category) 

 

def _latex_(self): 

""" 

Return a latex representation of this group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,6]) 

sage: G._latex_() 

'Abelian group with gap, generator orders $(2, 6)$' 

""" 

return "Abelian group with gap, generator orders ${}$".format(self.gens_orders()) 

 

def _repr_(self): 

r""" 

Return a string representation of this group. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,6]) 

sage: G._repr_() 

'Abelian group with gap, generator orders (2, 6)' 

""" 

return "Abelian group with gap, generator orders " + str(self.gens_orders()) 

 

def __reduce__(self): 

r""" 

Implements pickling. 

 

We have to work around the fact that gap does not provide pickling. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([3,2,5]) 

sage: G == loads(dumps(G)) 

True 

sage: G is loads(dumps(G)) 

True 

""" 

return AbelianGroupGap, (self.gens_orders(),) 

 

class AbelianGroupSubgroup_gap(AbelianGroup_gap): 

r""" 

Subgroups of abelian groups with GAP. 

 

INPUT: 

 

- ``ambient`` -- the ambient group 

- ``gens`` -- generators of the subgroup 

 

.. NOTE:: 

 

Do not construct this class directly. Instead use 

:meth:`~sage.groups.abelian_groups.AbelianGroupGap.subgroup`. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: gen = G.gens()[:2] 

sage: S = G.subgroup(gen) 

""" 

def __init__(self, ambient, gens): 

r""" 

Initialize this subgroup. 

 

TESTS:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap, AbelianGroupSubgroup_gap 

sage: G = AbelianGroupGap([]) 

sage: gen = G.gens() 

sage: A = AbelianGroupSubgroup_gap(G, gen) 

sage: TestSuite(A).run() 

 

Check that we are in the correct category:: 

 

sage: G = AbelianGroupGap([2,3,0]) # optional - gap_packages 

sage: g = G.gens() # optional - gap_packages 

sage: H1 = G.subgroup([g[0],g[1]]) # optional - gap_packages 

sage: H1 in Groups().Finite() # optional - gap_packages 

True 

sage: H2 = G.subgroup([g[0],g[2]]) # optional - gap_packages 

sage: H2 in Groups().Infinite() # optional - gap_packages 

True 

""" 

gens_gap = tuple([g.gap() for g in gens]) 

G = ambient.gap().Subgroup(gens_gap) 

from sage.rings.infinity import Infinity 

category = Groups().Commutative() 

if G.Size().sage() < Infinity: 

category = category.Finite() 

else: 

category = category.Infinite() 

# FIXME: Tell the category that it is a Subobjects() category 

# category = category.Subobjects() 

AbelianGroup_gap.__init__(self, G, ambient=ambient, category=category) 

 

def _repr_(self): 

r""" 

Return a string representation of this subgroup. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: gen = G.gens()[:2] 

sage: S = G.subgroup(gen) 

sage: S 

Subgroup of Abelian group with gap, generator orders (2, 3, 4, 5) 

generated by (f1, f2) 

""" 

return "Subgroup of %s generated by %s"%(self.ambient(),self.gens()) 

 

def __reduce__(self): 

r""" 

Implements pickling. 

 

We have to work around the fact that gap does not provide pickling. 

 

EXAMPLES:: 

 

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap 

sage: G = AbelianGroupGap([2,3,4,5]) 

sage: gen = G.gens()[:2] 

sage: S = G.subgroup(gen) 

sage: S == loads(dumps(S)) 

True 

sage: S is loads(dumps(S)) 

True 

""" 

amb = self.ambient() 

# avoid infinite loop 

gens = tuple([amb(g) for g in self.gens()]) 

return amb.subgroup, (gens,)