Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

r""" 

Affine Groups 

 

AUTHORS: 

 

- Volker Braun: initial version 

""" 

 

############################################################################## 

# Copyright (C) 2013 Volker Braun <vbraun.name@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

############################################################################## 

 

 

from sage.categories.groups import Groups 

from sage.groups.group import Group 

from sage.matrix.all import MatrixSpace 

from sage.modules.all import FreeModule 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.misc.cachefunc import cached_method 

 

from sage.groups.affine_gps.group_element import AffineGroupElement 

 

 

################################################################# 

 

class AffineGroup(UniqueRepresentation, Group): 

r""" 

An affine group. 

 

The affine group `\mathrm{Aff}(A)` (or general affine group) of an affine 

space `A` is the group of all invertible affine transformations from the 

space into itself. 

 

If we let `A_V` be the affine space of a vector space `V` 

(essentially, forgetting what is the origin) then the affine group 

`\mathrm{Aff}(A_V)` is the group generated by the general linear group 

`GL(V)` together with the translations. Recall that the group of 

translations acting on `A_V` is just `V` itself. The general linear and 

translation subgroups do not quite commute, and in fact generate the 

semidirect product 

 

.. MATH:: 

 

\mathrm{Aff}(A_V) = GL(V) \ltimes V. 

 

As such, the group elements can be represented by pairs `(A, b)` of a 

matrix and a vector. This pair then represents the transformation 

 

.. MATH:: 

 

x \mapsto A x + b. 

 

We can also represent affine transformations as linear transformations by 

considering `\dim(V) + 1` dimensonal space. We take the affine 

transformation `(A, b)` to 

 

.. MATH:: 

 

\begin{pmatrix} 

A & b \\ 

0 & 1 

\end{pmatrix} 

 

and lifting `x = (x_1, \ldots, x_n)` to `(x_1, \ldots, x_n, 1)`. Here 

the `(n + 1)`-th component is always 1, so the linear representations 

acts on the affine hyperplane `x_{n+1} = 1` as affine transformations 

which can be seen directly from the matrix multiplication. 

 

INPUT: 

 

Something that defines an affine space. For example 

 

- An affine space itself: 

 

* ``A`` -- affine space 

 

- A vector space: 

 

* ``V`` -- a vector space 

 

- Degree and base ring: 

 

* ``degree`` -- An integer. The degree of the affine group, that 

is, the dimension of the affine space the group is acting on. 

 

* ``ring`` -- A ring or an integer. The base ring of the affine 

space. If an integer is given, it must be a prime power and 

the corresponding finite field is constructed. 

 

* ``var`` -- (default: ``'a'``) Keyword argument to specify the finite 

field generator name in the case where ``ring`` is a prime power. 

 

EXAMPLES:: 

 

sage: F = AffineGroup(3, QQ); F 

Affine Group of degree 3 over Rational Field 

sage: F(matrix(QQ,[[1,2,3],[4,5,6],[7,8,0]]), vector(QQ,[10,11,12])) 

[1 2 3] [10] 

x |-> [4 5 6] x + [11] 

[7 8 0] [12] 

sage: F([[1,2,3],[4,5,6],[7,8,0]], [10,11,12]) 

[1 2 3] [10] 

x |-> [4 5 6] x + [11] 

[7 8 0] [12] 

sage: F([1,2,3,4,5,6,7,8,0], [10,11,12]) 

[1 2 3] [10] 

x |-> [4 5 6] x + [11] 

[7 8 0] [12] 

 

Instead of specifying the complete matrix/vector information, you can 

also create special group elements:: 

 

sage: F.linear([1,2,3,4,5,6,7,8,0]) 

[1 2 3] [0] 

x |-> [4 5 6] x + [0] 

[7 8 0] [0] 

sage: F.translation([1,2,3]) 

[1 0 0] [1] 

x |-> [0 1 0] x + [2] 

[0 0 1] [3] 

 

Some additional ways to create affine groups:: 

 

sage: A = AffineSpace(2, GF(4,'a')); A 

Affine Space of dimension 2 over Finite Field in a of size 2^2 

sage: G = AffineGroup(A); G 

Affine Group of degree 2 over Finite Field in a of size 2^2 

sage: G is AffineGroup(2,4) # shorthand 

True 

 

sage: V = ZZ^3; V 

Ambient free module of rank 3 over the principal ideal domain Integer Ring 

sage: AffineGroup(V) 

Affine Group of degree 3 over Integer Ring 

 

REFERENCES: 

 

- :wikipedia:`Affine_group` 

""" 

@staticmethod 

def __classcall__(cls, *args, **kwds): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: A = AffineSpace(2, GF(4,'a')) 

sage: AffineGroup(A) is AffineGroup(2,4) 

True 

sage: AffineGroup(A) is AffineGroup(2, GF(4,'a')) 

True 

sage: A = AffineGroup(2, QQ) 

sage: V = QQ^2 

sage: A is AffineGroup(V) 

True 

""" 

if len(args) == 1: 

V = args[0] 

if isinstance(V, AffineGroup): 

return V 

try: 

degree = V.dimension_relative() 

except AttributeError: 

degree = V.dimension() 

ring = V.base_ring() 

if len(args) == 2: 

degree, ring = args 

from sage.rings.integer import is_Integer 

if is_Integer(ring): 

from sage.rings.finite_rings.finite_field_constructor import FiniteField 

var = kwds.get('var', 'a') 

ring = FiniteField(ring, var) 

return super(AffineGroup, cls).__classcall__(cls, degree, ring) 

 

def __init__(self, degree, ring): 

""" 

Initialize ``self``. 

 

INPUT: 

 

- ``degree`` -- integer. The degree of the affine group, that 

is, the dimension of the affine space the group is acting on 

naturally. 

 

- ``ring`` -- a ring. The base ring of the affine space. 

 

EXAMPLES:: 

 

sage: Aff6 = AffineGroup(6, QQ) 

sage: Aff6 == Aff6 

True 

sage: Aff6 != Aff6 

False 

 

TESTS:: 

 

sage: G = AffineGroup(2, GF(5)); G 

Affine Group of degree 2 over Finite Field of size 5 

sage: TestSuite(G).run() 

""" 

self._degree = degree 

Group.__init__(self, base=ring) 

 

Element = AffineGroupElement 

 

def _element_constructor_check(self, A, b): 

""" 

Verify that ``A``, ``b`` define an affine group element and raises a 

``TypeError`` if the input does not define a valid group element. 

 

This is called from the group element constructor and can be 

overridden for subgroups of the affine group. It is guaranteed 

that ``A``, ``b`` are in the correct matrix/vector space. 

 

INPUT: 

 

- ``A`` -- an element of :meth:`matrix_space` 

 

- ``b`` -- an element of :meth:`vector_space` 

 

TESTS:: 

 

sage: Aff3 = AffineGroup(3, QQ) 

sage: A = Aff3.matrix_space()([1,2,3,4,5,6,7,8,0]) 

sage: det(A) 

27 

sage: b = Aff3.vector_space().an_element() 

sage: Aff3._element_constructor_check(A, b) 

 

sage: A = Aff3.matrix_space()([1,2,3,4,5,6,7,8,9]) 

sage: det(A) 

0 

sage: Aff3._element_constructor_check(A, b) 

Traceback (most recent call last): 

... 

TypeError: A must be invertible 

""" 

if not A.is_invertible(): 

raise TypeError('A must be invertible') 

 

def _latex_(self): 

r""" 

Return a LaTeX representation of ``self``. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(6, GF(5)) 

sage: latex(G) 

\mathrm{Aff}_{6}(\Bold{F}_{5}) 

""" 

return "\\mathrm{Aff}_{%s}(%s)"%(self.degree(), self.base_ring()._latex_()) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: AffineGroup(6, GF(5)) 

Affine Group of degree 6 over Finite Field of size 5 

""" 

return "Affine Group of degree %s over %s"%(self.degree(), self.base_ring()) 

 

def degree(self): 

""" 

Return the dimension of the affine space. 

 

OUTPUT: 

 

An integer. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(6, GF(5)) 

sage: g = G.an_element() 

sage: G.degree() 

6 

sage: G.degree() == g.A().nrows() == g.A().ncols() == g.b().degree() 

True 

""" 

return self._degree 

 

@cached_method 

def matrix_space(self): 

""" 

Return the space of matrices representing the general linear 

transformations. 

 

OUTPUT: 

 

The parent of the matrices `A` defining the affine group 

element `Ax+b`. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(3, GF(5)) 

sage: G.matrix_space() 

Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 5 

""" 

d = self.degree() 

return MatrixSpace(self.base_ring(), d, d) 

 

@cached_method 

def vector_space(self): 

""" 

Return the vector space of the underlying affine space. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(3, GF(5)) 

sage: G.vector_space() 

Vector space of dimension 3 over Finite Field of size 5 

""" 

return FreeModule(self.base_ring(), self.degree()) 

 

@cached_method 

def linear_space(self): 

r""" 

Return the space of the affine transformations represented as linear 

transformations. 

 

We can represent affine transformations `Ax + b` as linear 

transformations by 

 

.. MATH:: 

 

\begin{pmatrix} 

A & b \\ 

0 & 1 

\end{pmatrix} 

 

and lifting `x = (x_1, \ldots, x_n)` to `(x_1, \ldots, x_n, 1)`. 

 

.. SEEALSO:: 

 

- :meth:`sage.groups.affine_gps.group_element.AffineGroupElement.matrix()` 

 

EXAMPLES:: 

 

sage: G = AffineGroup(3, GF(5)) 

sage: G.linear_space() 

Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 5 

""" 

dp = self.degree() + 1 

return MatrixSpace(self.base_ring(), dp, dp) 

 

def linear(self, A): 

""" 

Construct the general linear transformation by ``A``. 

 

INPUT: 

 

- ``A`` -- anything that determines a matrix 

 

OUTPUT: 

 

The affine group element `x \mapsto A x`. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(3, GF(5)) 

sage: G.linear([1,2,3,4,5,6,7,8,0]) 

[1 2 3] [0] 

x |-> [4 0 1] x + [0] 

[2 3 0] [0] 

""" 

A = self.matrix_space()(A) 

return self.element_class(self, A, self.vector_space().zero(), check=True, convert=False) 

 

def translation(self, b): 

""" 

Construct the translation by ``b``. 

 

INPUT: 

 

- ``b`` -- anything that determines a vector 

 

OUTPUT: 

 

The affine group element `x \mapsto x + b`. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(3, GF(5)) 

sage: G.translation([1,4,8]) 

[1 0 0] [1] 

x |-> [0 1 0] x + [4] 

[0 0 1] [3] 

""" 

b = self.vector_space()(b) 

return self.element_class(self, self.matrix_space().one(), b, check=False, convert=False) 

 

def reflection(self, v): 

""" 

Construct the Householder reflection. 

 

A Householder reflection (transformation) is the affine transformation 

corresponding to an elementary reflection at the hyperplane 

perpendicular to `v`. 

 

INPUT: 

 

- ``v`` -- a vector, or something that determines a vector. 

 

OUTPUT: 

 

The affine group element that is just the Householder 

transformation (a.k.a. Householder reflection, elementary 

reflection) at the hyperplane perpendicular to `v`. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(3, QQ) 

sage: G.reflection([1,0,0]) 

[-1 0 0] [0] 

x |-> [ 0 1 0] x + [0] 

[ 0 0 1] [0] 

sage: G.reflection([3,4,-5]) 

[ 16/25 -12/25 3/5] [0] 

x |-> [-12/25 9/25 4/5] x + [0] 

[ 3/5 4/5 0] [0] 

""" 

v = self.vector_space()(v) 

try: 

two_norm2inv = self.base_ring()(2) / sum([ vi**2 for vi in v ]) 

except ZeroDivisionError: 

raise ValueError('v has norm zero') 

from sage.matrix.constructor import identity_matrix 

A = self.matrix_space().one() - v.column() * (v.row() * two_norm2inv) 

return self.element_class(self, A, self.vector_space().zero(), check=True, convert=False) 

 

def random_element(self): 

""" 

Return a random element of this group. 

 

EXAMPLES:: 

 

sage: G = AffineGroup(4, GF(3)) 

sage: G.random_element() # random 

[2 0 1 2] [1] 

[2 1 1 2] [2] 

x |-> [1 0 2 2] x + [2] 

[1 1 1 1] [2] 

sage: G.random_element() in G 

True 

""" 

A = self.matrix_space().random_element() 

while not A.is_invertible(): # a generic matrix is invertible 

A.randomize() 

b = self.vector_space().random_element() 

return self.element_class(self, A, b, check=False, convert=False) 

 

@cached_method 

def _an_element_(self): 

""" 

Return an element. 

 

TESTS:: 

 

sage: G = AffineGroup(4,5) 

sage: G.an_element() in G 

True 

""" 

A = self.matrix_space().an_element() 

while not A.is_invertible(): # a generic matrix is not always invertible 

A.randomize() 

b = self.vector_space().an_element() 

return self.element_class(self, A, b, check=False, convert=False)