Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

# -*- coding: utf-8 -*- 

""" 

Artin Groups 

 

Artin groups are implemented as a particular case of finitely presented 

groups. For finite-type Artin groups, there is a specific left normal 

form using the Garside structure associated to the lift the long element 

of the corresponding Coxeter group. 

 

AUTHORS: 

 

- Travis Scrimshaw (2018-02-05): Initial version 

""" 

 

#**************************************************************************** 

# Copyright (C) 2018 Travis Scrimshaw <tcscrims at gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import division, absolute_import, print_function 

import six 

 

from sage.misc.cachefunc import cached_method 

from sage.groups.free_group import FreeGroup 

from sage.groups.finitely_presented import FinitelyPresentedGroup, FinitelyPresentedGroupElement 

from sage.combinat.root_system.coxeter_matrix import CoxeterMatrix 

from sage.combinat.root_system.coxeter_group import CoxeterGroup 

from sage.rings.infinity import Infinity 

from sage.structure.richcmp import richcmp, rich_to_bool 

 

 

class ArtinGroupElement(FinitelyPresentedGroupElement): 

""" 

An element of an Artin group. 

 

It is a particular case of element of a finitely presented group. 

 

EXAMPLES:: 

 

sage: A.<s1,s2,s3> = ArtinGroup(['B',3]) 

sage: A 

Artin group of type ['B', 3] 

sage: s1 * s2 / s3 / s2 

s1*s2*s3^-1*s2^-1 

sage: A((1, 2, -3, -2)) 

s1*s2*s3^-1*s2^-1 

""" 

def _latex_(self): 

r""" 

Return a LaTeX representation of ``self``. 

 

OUTPUT: 

 

String. A valid LaTeX math command sequence. 

 

TESTS:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: b = A([1, 2, 3, -1, 2, -3]) 

sage: b._latex_() 

'\\sigma_{1}\\sigma_{2}\\sigma_{3}\\sigma_{1}^{-1}\\sigma_{2}\\sigma_{3}^{-1}' 

 

sage: B = BraidGroup(4) 

sage: b = B([1, 2, 3, -1, 2, -3]) 

sage: b._latex_() 

'\\sigma_{1}\\sigma_{2}\\sigma_{3}\\sigma_{1}^{-1}\\sigma_{2}\\sigma_{3}^{-1}' 

""" 

return ''.join("\sigma_{%s}^{-1}" % (-i) if i < 0 else "\sigma_{%s}" % i 

for i in self.Tietze()) 

 

def exponent_sum(self): 

""" 

Return the exponent sum of ``self``. 

 

OUTPUT: 

 

Integer. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['E',6]) 

sage: b = A([1, 4, -3, 2]) 

sage: b.exponent_sum() 

2 

sage: b = A([]) 

sage: b.exponent_sum() 

0 

 

sage: B = BraidGroup(5) 

sage: b = B([1, 4, -3, 2]) 

sage: b.exponent_sum() 

2 

sage: b = B([]) 

sage: b.exponent_sum() 

0 

""" 

return sum(s.sign() for s in self.Tietze()) 

 

def coxeter_group_element(self): 

""" 

Return the corresponding Coxeter group element under the natural 

projection. 

 

OUTPUT: 

 

A permutation. 

 

EXAMPLES:: 

 

sage: A.<s1,s2,s3> = ArtinGroup(['B',3]) 

sage: b = s1 * s2 / s3 / s2 

sage: b.coxeter_group_element() 

[ 1 -1 0] 

[ 2 -1 0] 

[ a -a 1] 

sage: b.coxeter_group_element().reduced_word() 

[1, 2, 3, 2] 

""" 

W = self.parent().coxeter_group() 

s = W.simple_reflections() 

I = W.index_set() 

return W.prod(s[I[abs(i)-1]] for i in self.Tietze()) 

 

class FiniteTypeArtinGroupElement(ArtinGroupElement): 

""" 

An element of a finite-type Artin group. 

""" 

def _richcmp_(self, other, op): 

""" 

Compare ``self`` and ``other``. 

 

TESTS:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: x = A([1, 2, 1]) 

sage: y = A([2, 1, 2]) 

sage: x == y 

True 

sage: x < y^(-1) 

True 

sage: A([]) == A.one() 

True 

sage: x = A([2, 3, 2, 3]) 

sage: y = A([3, 2, 3, 2]) 

sage: x == y 

True 

sage: x < y^(-1) 

True 

""" 

if self.Tietze() == other.Tietze(): 

return rich_to_bool(op, 0) 

nfself = [i.Tietze() for i in self.left_normal_form()] 

nfother = [i.Tietze() for i in other.left_normal_form()] 

return richcmp(nfself, nfother, op) 

 

def __hash__(self): 

r""" 

Return a hash value for ``self``. 

 

EXAMPLES:: 

 

sage: B.<s1,s2,s3> = ArtinGroup(['B',3]) 

sage: hash(s1*s3) == hash(s3*s1) 

True 

sage: hash(s1*s2) == hash(s2*s1) 

False 

sage: hash(s1*s2*s1) == hash(s2*s1*s2) 

True 

sage: hash(s2*s3*s2) == hash(s3*s2*s3) 

False 

sage: hash(s2*s3*s2*s3) == hash(s3*s2*s3*s2) 

True 

""" 

return hash(tuple(i.Tietze() for i in self.left_normal_form())) 

 

@cached_method 

def left_normal_form(self): 

""" 

Return the left normal form of ``self``. 

 

OUTPUT: 

 

A tuple of simple generators in the left normal form. The first 

element is a power of `\Delta`, and the rest are elements of the 

natural section lift from the corresponding Coxeter group. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A([1]).left_normal_form() 

(1, s1) 

sage: A([-1]).left_normal_form() 

(s1^-1*(s2^-1*s1^-1*s3^-1)^2*s2^-1*s3^-1, s3*(s2*s3*s1)^2*s2) 

sage: A([1, 2, 2, 1, 2]).left_normal_form() 

(1, s1*s2*s1, s2*s1) 

sage: A([3, 3, -2]).left_normal_form() 

(s1^-1*(s2^-1*s1^-1*s3^-1)^2*s2^-1*s3^-1, 

s3*s1*s2*s3*s2*s1, s3, s3*s2*s3) 

sage: A([1, 2, 3, -1, 2, -3]).left_normal_form() 

(s1^-1*(s2^-1*s1^-1*s3^-1)^2*s2^-1*s3^-1, 

(s3*s1*s2)^2*s1, s1*s2*s3*s2) 

sage: A([1,2,1,3,2,1,3,2,3,3,2,3,1,2,3,1,2,3,1,2]).left_normal_form() 

((s3*(s2*s3*s1)^2*s2*s1)^2, s3*s2) 

 

sage: B = BraidGroup(4) 

sage: b = B([1, 2, 3, -1, 2, -3]) 

sage: b.left_normal_form() 

(s0^-1*s1^-1*s2^-1*s0^-1*s1^-1*s0^-1, s0*s1*s2*s1*s0, s0*s2*s1) 

sage: c = B([1]) 

sage: c.left_normal_form() 

(1, s0) 

""" 

lnfp = self._left_normal_form_coxeter() 

P = self.parent() 

return tuple([P.delta() ** lnfp[0]] + 

[P._standard_lift(w) for w in lnfp[1:]]) 

 

def _left_normal_form_coxeter(self): 

""" 

Return the left normal form of the element, in the `\Delta` 

exponent and Coxeter group element form. 

 

OUTPUT: 

 

A tuple whose first element is the power of `\Delta`, and the rest 

are the Coxeter elements corresponding to the simple factors. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['E',6]) 

sage: A([2, -4, 2, 3, 1, 3, 2, 1, -2])._left_normal_form_coxeter() 

( 

[ 0 0 0 0 0 -1] [ 0 0 -1 1 0 0] [-1 0 1 0 0 0] 

[ 0 1 0 -1 0 0] [ 0 -1 0 1 0 0] [ 0 -1 0 1 0 0] 

[ 0 0 0 0 -1 0] [-1 0 0 1 0 0] [ 0 0 1 0 0 0] 

[ 0 1 -1 0 -1 0] [-1 -1 0 1 1 0] [ 0 0 0 1 0 0] 

[ 0 0 -1 0 0 0] [ 0 0 0 0 1 0] [ 0 0 0 0 1 0] 

-1, [-1 0 0 0 0 0], [ 0 0 0 0 0 1], [ 0 0 0 0 0 1] 

) 

sage: A = ArtinGroup(['F',4]) 

sage: A([2, 3, -4, 2, 3, -2, 1, -2, 3, 4, 1, -2])._left_normal_form_coxeter() 

( 

[-1 0 0 0] [ -1 1 0 0] [-1 0 0 0] 

[-1 -1 a -a] [ -2 3 -a 0] [-1 1 -a 0] 

[-a 0 1 -2] [ -a 2*a -1 -1] [ 0 0 -1 0] 

-3, [-a 0 1 -1], [ -a a 0 -1], [ 0 0 0 -1], 

<BLANKLINE> 

[ -1 1 0 -a] [ -1 0 a -a] 

[ 0 1 0 -2*a] [ -1 1 a -2*a] 

[ 0 a -1 -2] [ 0 0 2 -3] 

[ 0 a -1 -1], [ 0 0 1 -1] 

) 

""" 

delta = 0 

Delta = self.parent().coxeter_group().long_element() 

sr = self.parent().coxeter_group().simple_reflections() 

l = self.Tietze() 

if l == (): 

return (0,) 

form = [] 

for i in l: 

if i > 0: 

form.append(sr[i]) 

else: 

delta += 1 

form = [Delta * a * Delta for a in form] 

form.append(Delta * sr[-i]) 

i = j = 0 

while j < len(form): 

while i < len(form) - j - 1: 

e = form[i].descents(side='right') 

s = form[i + 1].descents(side='left') 

S = set(s).difference(set(e)) 

while S: 

a = list(S)[0] 

form[i] = form[i] * sr[a] 

form[i + 1] = sr[a] * form[i+1] 

e = form[i].descents(side='right') 

s = form[i + 1].descents(side='left') 

S = set(s).difference(set(e)) 

if form[i+1].length() == 0: 

form.pop(i+1) 

i = 0 

else: 

i += 1 

j += 1 

i = 0 

form = [elt for elt in form if elt.length()] 

while form and form[0] == Delta: 

form.pop(0) 

delta -= 1 

return tuple([-delta] + form) 

 

class ArtinGroup(FinitelyPresentedGroup): 

r""" 

An Artin group. 

 

Fix an index set `I`. Let `M = (m_{ij})_{i,j \in I}` be a 

:class:`Coxeter matrix 

<sage.combinat.root_system.coxeter_matrix.CoxeterMatrix>`. 

An *Artin group* is a group `A_M` that has a presentation 

given by generators `\{ s_i \mid i \in I \}` and relations 

 

.. MATH:: 

 

\underbrace{s_i s_j s_i \cdots}_{m_{ij}} 

= \underbrace{s_j s_i s_j \cdots}_{\text{$m_{ji}$ factors}} 

 

for all `i,j \in I` with the usual convention that `m_{ij} = \infty` 

implies no relation between `s_i` and `s_j`. There is a natural 

corresponding Coxeter group `W_M` by imposing the additional 

relations `s_i^2 = 1` for all `i \in I`. Furthermore, there is 

a natural section of `W_M` by sending a reduced word 

`s_{i_1} \cdots s_{i_{\ell}} \mapsto s_{i_1} \cdots s_{i_{\ell}}`. 

 

Artin groups `A_M` are classified based on the Coxeter data: 

 

- `A_M` is of *finite type* or *spherical* if `W_M` is finite; 

- `A_M` is of *affine type* if `W_M` is of affine type; 

- `A_M` is of *large type* if `m_{ij} \geq 4` for all `i,j \in I`; 

- `A_M` is of *extra-large type* if `m_{ij} \geq 5` for all `i,j \in I`; 

- `A_M` is *right-angled* if `m_{ij} \in \{2,\infty\}` for all `i,j \in I`. 

 

Artin groups are conjectured to have many nice properties: 

 

- Artin groups are torsion free. 

- Finite type Artin groups have `Z(A_M) = \ZZ` and infinite type 

Artin groups have trivial center. 

- Artin groups have solvable word problems. 

- `H_{W_M} / W_M` is a `K(A_M, 1)`-space, where `H_W` is the 

hyperplane complement of the Coxeter group `W` acting on `\CC^n`. 

 

These conjectures are known when the Artin group is finite type and a 

number of other cases. See, e.g., [GP2012]_ and references therein. 

 

INPUT: 

 

- ``coxeter_data`` -- data defining a Coxeter matrix 

 

- ``names`` -- string or list/tuple/iterable of strings 

(default: ``'s'``); the generator names or name prefix 

 

EXAMPLES:: 

 

sage: A.<a,b,c> = ArtinGroup(['B',3]); A 

Artin group of type ['B', 3] 

sage: ArtinGroup(['B',3]) 

Artin group of type ['B', 3] 

 

The input must always include the Coxeter data, but the ``names`` 

can either be a string representing the prefix of the names or 

the explicit names of the generators. Otherwise the default prefix 

of ``'s'`` is used:: 

 

sage: ArtinGroup(['B',2]).generators() 

(s1, s2) 

sage: ArtinGroup(['B',2], 'g').generators() 

(g1, g2) 

sage: ArtinGroup(['B',2], 'x,y').generators() 

(x, y) 

 

REFERENCES: 

 

- :wikipedia:`Artin_group` 

 

.. SEEALSO:: 

 

:class:`~sage.groups.raag.RightAngledArtinGroup` 

""" 

@staticmethod 

def __classcall_private__(cls, coxeter_data, names=None): 

""" 

Normalize input to ensure a unique representation. 

 

TESTS:: 

 

sage: A1 = ArtinGroup(['B',3]) 

sage: A2 = ArtinGroup(['B',3], 's') 

sage: A3 = ArtinGroup(['B',3], ['s1','s2','s3']) 

sage: A1 is A2 and A2 is A3 

True 

 

sage: A1 = ArtinGroup(['B',2], 'a,b') 

sage: A2 = ArtinGroup([[1,4],[4,1]], 'a,b') 

sage: A3.<a,b> = ArtinGroup('B2') 

sage: A1 is A2 and A2 is A3 

True 

 

sage: ArtinGroup(['A',3]) is BraidGroup(4, 's1,s2,s3') 

True 

 

sage: G = graphs.PathGraph(3) 

sage: CM = CoxeterMatrix([[1,-1,2],[-1,1,-1],[2,-1,1]], index_set=G.vertices()) 

sage: A = groups.misc.Artin(CM) 

sage: Ap = groups.misc.RightAngledArtin(G, 's') 

sage: A is Ap 

True 

""" 

coxeter_data = CoxeterMatrix(coxeter_data) 

if names is None: 

names = 's' 

if isinstance(names, six.string_types): 

if ',' in names: 

names = [x.strip() for x in names.split(',')] 

else: 

names = [names + str(i) for i in coxeter_data.index_set()] 

names = tuple(names) 

if len(names) != coxeter_data.rank(): 

raise ValueError("the number of generators must match" 

" the rank of the Coxeter type") 

if all(m == Infinity for m in coxeter_data.coxeter_graph().edge_labels()): 

from sage.groups.raag import RightAngledArtinGroup 

return RightAngledArtinGroup(coxeter_data.coxeter_graph(), names) 

if not coxeter_data.is_finite(): 

raise NotImplementedError 

if coxeter_data.coxeter_type().cartan_type().type() == 'A': 

from sage.groups.braid import BraidGroup 

return BraidGroup(coxeter_data.rank()+1, names) 

return FiniteTypeArtinGroup(coxeter_data, names) 

 

def __init__(self, coxeter_matrix, names): 

""" 

Initialize ``self``. 

 

TESTS:: 

 

sage: A = ArtinGroup(['D',4]) 

sage: TestSuite(A).run() 

sage: A = ArtinGroup(['B',3], ['x','y','z']) 

sage: TestSuite(A).run() 

""" 

self._coxeter_group = CoxeterGroup(coxeter_matrix) 

free_group = FreeGroup(names) 

rels = [] 

# Generate the relations based on the Coxeter graph 

I = coxeter_matrix.index_set() 

for ii,i in enumerate(I): 

for j in I[ii+1:]: 

m = coxeter_matrix[i,j] 

if m == Infinity: # no relation 

continue 

elt = [i,j]*m 

for ind in range(m, 2*m): 

elt[ind] = -elt[ind] 

rels.append(free_group(elt)) 

FinitelyPresentedGroup.__init__(self, free_group, tuple(rels)) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

TESTS:: 

 

sage: ArtinGroup(['B',3]) 

Artin group of type ['B', 3] 

sage: ArtinGroup(['D',4], 'g') 

Artin group of type ['D', 4] 

""" 

try: 

data = self.coxeter_type().cartan_type() 

return "Artin group of type {}".format(data) 

except AttributeError: 

pass 

return "Artin group with Coxeter matrix:\n{}".format(self.coxeter_matrix()) 

 

def cardinality(self): 

""" 

Return the number of elements of ``self``. 

 

OUTPUT: 

 

Infinity. 

 

EXAMPLES:: 

 

sage: Gamma = graphs.CycleGraph(5) 

sage: G = RightAngledArtinGroup(Gamma) 

sage: G.cardinality() 

+Infinity 

 

sage: A = ArtinGroup(['A',1]) 

sage: A.cardinality() 

+Infinity 

""" 

from sage.rings.infinity import Infinity 

return Infinity 

 

order = cardinality 

 

def as_permutation_group(self): 

""" 

Return an isomorphic permutation group. 

 

Raises a ``ValueError`` error since Artin groups are infinite 

and have no corresponding permutation group. 

 

EXAMPLES:: 

 

sage: Gamma = graphs.CycleGraph(5) 

sage: G = RightAngledArtinGroup(Gamma) 

sage: G.as_permutation_group() 

Traceback (most recent call last): 

... 

ValueError: the group is infinite 

 

sage: A = ArtinGroup(['D',4], 'g') 

sage: A.as_permutation_group() 

Traceback (most recent call last): 

... 

ValueError: the group is infinite 

""" 

raise ValueError("the group is infinite") 

 

def coxeter_type(self): 

""" 

Return the Coxeter type of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['D',4]) 

sage: A.coxeter_type() 

Coxeter type of ['D', 4] 

""" 

return self._coxeter_group.coxeter_type() 

 

def coxeter_matrix(self): 

""" 

Return the Coxeter matrix of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A.coxeter_matrix() 

[1 3 2] 

[3 1 4] 

[2 4 1] 

""" 

return self._coxeter_group.coxeter_matrix() 

 

def coxeter_group(self): 

""" 

Return the Coxeter group of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['D',4]) 

sage: A.coxeter_group() 

Finite Coxeter group over Integer Ring with Coxeter matrix: 

[1 3 2 2] 

[3 1 3 3] 

[2 3 1 2] 

[2 3 2 1] 

""" 

return self._coxeter_group 

 

def index_set(self): 

""" 

Return the index set of ``self``. 

 

OUTPUT: 

 

A tuple. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['E',7]) 

sage: A.index_set() 

(1, 2, 3, 4, 5, 6, 7) 

""" 

return self._coxeter_group.index_set() 

 

def _element_constructor_(self, x): 

""" 

TESTS:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A([2,1,-2,3,3,3,1]) 

s2*s1*s2^-1*s3^3*s1 

""" 

if x in self._coxeter_group: 

return self._standard_lift(x) 

return self.element_class(self, x) 

 

@cached_method 

def an_element(self): 

""" 

Return an element of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',2]) 

sage: A.an_element() 

s1 

""" 

return self.gen(0) 

 

def some_elements(self): 

""" 

Return a list of some elements of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A.some_elements() 

[s1, s1*s2*s3, (s1*s2*s3)^3] 

""" 

rank = self.coxeter_matrix().rank() 

elements_list = [self.gen(0)] 

elements_list.append(self.prod(self.gens())) 

elements_list.append(elements_list[-1] ** min(rank,3)) 

return elements_list 

 

def _standard_lift_Tietze(self, w): 

""" 

Return a Tietze word representing the Coxeter element ``w`` 

under the natural section. 

 

INPUT: 

 

- ``w`` -- an element of the Coxeter group of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A._standard_lift_Tietze(A.coxeter_group().long_element()) 

[3, 2, 3, 1, 2, 3, 1, 2, 1] 

""" 

return w.reduced_word() 

 

@cached_method 

def _standard_lift(self, w): 

""" 

Return the element of ``self`` that corresponds to the given 

Coxeter element ``w`` under the natural section. 

 

INPUT: 

 

- ``w`` -- an element of the Coxeter group of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A._standard_lift(A.coxeter_group().long_element()) 

s3*(s2*s3*s1)^2*s2*s1 

 

sage: B = BraidGroup(5) 

sage: P = Permutation([5, 3, 1, 2, 4]) 

sage: B._standard_lift(P) 

s0*s1*s0*s2*s1*s3 

""" 

return self(self._standard_lift_Tietze(w)) 

 

Element = ArtinGroupElement 

 

class FiniteTypeArtinGroup(ArtinGroup): 

""" 

A finite-type Artin group. 

 

An Artin group is *finite-type* or *spherical* if the corresponding 

Coxeter group is finite. Finite type Artin groups are known to be 

torsion free, have a Garside structure given by `\Delta` (see 

:meth:`delta`) and have a center generated by `\Delta`. 

 

.. SEEALSO:: 

 

:class:`ArtinGroup` 

 

EXAMPLES:: 

 

sage: ArtinGroup(['E',7]) 

Artin group of type ['E', 7] 

 

Since the word problem for finite-type Artin groups is solvable, their 

Cayley graph can be locally obtained as follows (see :trac:`16059`):: 

 

sage: def ball(group, radius): 

....: ret = set() 

....: ret.add(group.one()) 

....: for length in range(1, radius): 

....: for w in Words(alphabet=group.gens(), length=length): 

....: ret.add(prod(w)) 

....: return ret 

sage: A = ArtinGroup(['B',3]) 

sage: GA = A.cayley_graph(elements=ball(A, 4), generators=A.gens()); GA 

Digraph on 32 vertices 

 

Since the Artin group has nontrivial relations, this graph contains less 

vertices than the one associated to the free group (which is a tree):: 

 

sage: F = FreeGroup(3) 

sage: GF = F.cayley_graph(elements=ball(F, 4), generators=F.gens()); GF 

Digraph on 40 vertices 

""" 

def delta(self): 

r""" 

Return the `\Delta` element of ``self``. 

 

EXAMPLES:: 

 

sage: A = ArtinGroup(['B',3]) 

sage: A.delta() 

s3*(s2*s3*s1)^2*s2*s1 

 

sage: A = ArtinGroup(['G',2]) 

sage: A.delta() 

(s2*s1)^3 

 

sage: B = BraidGroup(5) 

sage: B.delta() 

s0*s1*s0*s2*s1*s0*s3*s2*s1*s0 

""" 

return self._standard_lift(self._coxeter_group.long_element()) 

 

Element = FiniteTypeArtinGroupElement