Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

""" 

Finitely Presented Groups 

 

Finitely presented groups are constructed as quotients of 

:mod:`~sage.groups.free_group`:: 

 

sage: F.<a,b,c> = FreeGroup() 

sage: G = F / [a^2, b^2, c^2, a*b*c*a*b*c] 

sage: G 

Finitely presented group < a, b, c | a^2, b^2, c^2, (a*b*c)^2 > 

 

One can create their elements by multiplying the generators or by 

specifying a Tietze list (see 

:meth:`~sage.groups.finitely_presented.FinitelyPresentedGroupElement.Tietze`) 

as in the case of free groups:: 

 

sage: G.gen(0) * G.gen(1) 

a*b 

sage: G([1,2,-1]) 

a*b*a^-1 

sage: a.parent() 

Free Group on generators {a, b, c} 

sage: G.inject_variables() 

Defining a, b, c 

sage: a.parent() 

Finitely presented group < a, b, c | a^2, b^2, c^2, (a*b*c)^2 > 

 

Notice that, even if they are represented in the same way, the 

elements of a finitely presented group and the elements of the 

corresponding free group are not the same thing. However, they can be 

converted from one parent to the other:: 

 

sage: F.<a,b,c> = FreeGroup() 

sage: G = F / [a^2,b^2,c^2,a*b*c*a*b*c] 

sage: F([1]) 

a 

sage: G([1]) 

a 

sage: F([1]) is G([1]) 

False 

sage: F([1]) == G([1]) 

False 

sage: G(a*b/c) 

a*b*c^-1 

sage: F(G(a*b/c)) 

a*b*c^-1 

 

Finitely presented groups are implemented via GAP. You can use the 

:meth:`~sage.groups.libgap_wrapper.ParentLibGAP.gap` method to access 

the underlying LibGAP object:: 

 

sage: G = FreeGroup(2) 

sage: G.inject_variables() 

Defining x0, x1 

sage: H = G / (x0^2, (x0*x1)^2, x1^2) 

sage: H.gap() 

<fp group on the generators [ x0, x1 ]> 

 

This can be useful, for example, to use GAP functions that are not yet 

wrapped in Sage:: 

 

sage: H.gap().LowerCentralSeries() 

[ Group(<fp, no generators known>), Group(<fp, no generators known>) ] 

 

The same holds for the group elements:: 

 

sage: G = FreeGroup(2) 

sage: H = G / (G([1, 1]), G([2, 2, 2]), G([1, 2, -1, -2])); H 

Finitely presented group < x0, x1 | x0^2, x1^3, x0*x1*x0^-1*x1^-1 > 

sage: a = H([1]) 

sage: a 

x0 

sage: a.gap() 

x0 

sage: a.gap().Order() 

2 

sage: type(_) # note that the above output is not a Sage integer 

<type 'sage.libs.gap.element.GapElement_Integer'> 

 

You can use call syntax to replace the generators with a set of 

arbitrary ring elements. For example, take the free abelian group 

obtained by modding out the commutator subgroup of the free group:: 

 

sage: G = FreeGroup(2) 

sage: G_ab = G / [G([1, 2, -1, -2])]; G_ab 

Finitely presented group < x0, x1 | x0*x1*x0^-1*x1^-1 > 

sage: a,b = G_ab.gens() 

sage: g = a * b 

sage: M1 = matrix([[1,0],[0,2]]) 

sage: M2 = matrix([[0,1],[1,0]]) 

sage: g(3, 5) 

15 

sage: g(M1, M1) 

[1 0] 

[0 4] 

sage: M1*M2 == M2*M1 # matrices do not commute 

False 

sage: g(M1, M2) 

Traceback (most recent call last): 

... 

ValueError: the values do not satisfy all relations of the group 

 

.. WARNING:: 

 

Some methods are not guaranteed to finish since the word problem 

for finitely presented groups is, in general, undecidable. In 

those cases the process may run until the available memory is 

exhausted. 

 

REFERENCES: 

 

- :wikipedia:`Presentation_of_a_group` 

 

- :wikipedia:`Word_problem_for_groups` 

 

AUTHOR: 

 

- Miguel Angel Marco Buzunariz 

""" 

 

#***************************************************************************** 

# Copyright (C) 2012 Miguel Angel Marco Buzunariz <mmarco@unizar.es> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.groups.group import Group 

from sage.groups.libgap_wrapper import ParentLibGAP, ElementLibGAP 

from sage.groups.libgap_mixin import GroupMixinLibGAP 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.libs.gap.libgap import libgap 

from sage.libs.gap.element import GapElement 

from sage.rings.integer import Integer 

from sage.rings.integer_ring import IntegerRing 

from sage.misc.cachefunc import cached_method 

from sage.groups.free_group import FreeGroupElement 

 

from sage.structure.element import Element, MultiplicativeGroupElement 

from sage.interfaces.gap import gap 

from sage.rings.integer import Integer 

from sage.rings.integer_ring import IntegerRing 

from sage.functions.generalized import sign 

from sage.matrix.constructor import matrix 

from sage.categories.morphism import SetMorphism 

 

 

class GroupMorphismWithGensImages(SetMorphism): 

r""" 

Class used for morphisms from finitely presented groups to 

other groups. It just adds the images of the generators at the 

end of the representation. 

 

EXAMPLES:: 

 

sage: F = FreeGroup(3) 

sage: G = F / [F([1, 2, 3, 1, 2, 3]), F([1, 1, 1])] 

sage: H = AlternatingGroup(3) 

sage: HS = G.Hom(H) 

sage: from sage.groups.finitely_presented import GroupMorphismWithGensImages 

sage: GroupMorphismWithGensImages(HS, lambda a: H.one()) 

Generic morphism: 

From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 > 

To: Alternating group of order 3!/2 as a permutation group 

Defn: x0 |--> () 

x1 |--> () 

x2 |--> () 

 

""" 

def _repr_defn(self): 

r""" 

Return the part of the representation that includes the images of the generators. 

 

EXAMPLES:: 

 

sage: F = FreeGroup(3) 

sage: G = F / [F([1,2,3,1,2,3]),F([1,1,1])] 

sage: H = AlternatingGroup(3) 

sage: HS = G.Hom(H) 

sage: from sage.groups.finitely_presented import GroupMorphismWithGensImages 

sage: f = GroupMorphismWithGensImages(HS, lambda a: H.one()) 

sage: f._repr_defn() 

'x0 |--> ()\nx1 |--> ()\nx2 |--> ()' 

 

""" 

D = self.domain() 

return '\n'.join(['%s |--> %s'%(i, self(i)) for\ 

i in D.gens()]) 

 

class FinitelyPresentedGroupElement(FreeGroupElement): 

""" 

A wrapper of GAP's Finitely Presented Group elements. 

 

The elements are created by passing the Tietze list that determines them. 

 

EXAMPLES:: 

 

sage: G = FreeGroup('a, b') 

sage: H = G / [G([1]), G([2, 2, 2])] 

sage: H([1, 2, 1, -1]) 

a*b 

sage: H([1, 2, 1, -2]) 

a*b*a*b^-1 

sage: x = H([1, 2, -1, -2]) 

sage: x 

a*b*a^-1*b^-1 

sage: y = H([2, 2, 2, 1, -2, -2, -2]) 

sage: y 

b^3*a*b^-3 

sage: x*y 

a*b*a^-1*b^2*a*b^-3 

sage: x^(-1) 

b*a*b^-1*a^-1 

""" 

 

def __init__(self, parent, x, check=True): 

""" 

The Python constructor. 

 

See :class:`FinitelyPresentedGroupElement` for details. 

 

TESTS:: 

 

sage: G = FreeGroup('a, b') 

sage: H = G / [G([1]), G([2, 2, 2])] 

sage: H([1, 2, 1, -1]) 

a*b 

 

sage: TestSuite(G).run() 

sage: TestSuite(H).run() 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / (G([1]), G([2, 2, 2])) 

sage: x = H([1, 2, -1, -2]) 

sage: TestSuite(x).run() 

sage: TestSuite(G.one()).run() 

""" 

if not isinstance(x, GapElement): 

F = parent.free_group() 

free_element = F(x) 

fp_family = parent.gap().Identity().FamilyObj() 

x = libgap.ElementOfFpGroup(fp_family, free_element.gap()) 

ElementLibGAP.__init__(self, parent, x) 

 

def __reduce__(self): 

""" 

Used in pickling. 

 

TESTS:: 

 

sage: F.<a,b> = FreeGroup() 

sage: G = F / [a*b, a^2] 

sage: G.inject_variables() 

Defining a, b 

sage: a.__reduce__() 

(Finitely presented group < a, b | a*b, a^2 >, ((1,),)) 

sage: (a*b*a^-1).__reduce__() 

(Finitely presented group < a, b | a*b, a^2 >, ((1, 2, -1),)) 

 

sage: F.<a,b,c> = FreeGroup('a, b, c') 

sage: G = F.quotient([a*b*c/(b*c*a), a*b*c/(c*a*b)]) 

sage: G.inject_variables() 

Defining a, b, c 

sage: x = a*b*c 

sage: x.__reduce__() 

(Finitely presented group < a, b, c | a*b*c*a^-1*c^-1*b^-1, a*b*c*b^-1*a^-1*c^-1 >, 

((1, 2, 3),)) 

""" 

return (self.parent(), tuple([self.Tietze()])) 

 

def _repr_(self): 

""" 

Return a string representation. 

 

OUTPUT: 

 

String. 

 

EXAMPLES:: 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / [a^2, b^3] 

sage: H.gen(0) 

a 

sage: H.gen(0)._repr_() 

'a' 

sage: H.one() 

1 

""" 

# computing that an element is actually one can be very expensive 

if self.Tietze() == (): 

return '1' 

else: 

return self.gap()._repr_() 

 

@cached_method 

def Tietze(self): 

""" 

Return the Tietze list of the element. 

 

The Tietze list of a word is a list of integers that represent 

the letters in the word. A positive integer `i` represents 

the letter corresponding to the `i`-th generator of the group. 

Negative integers represent the inverses of generators. 

 

OUTPUT: 

 

A tuple of integers. 

 

EXAMPLES:: 

 

sage: G = FreeGroup('a, b') 

sage: H = G / (G([1]), G([2, 2, 2])) 

sage: H.inject_variables() 

Defining a, b 

sage: a.Tietze() 

(1,) 

sage: x = a^2*b^(-3)*a^(-2) 

sage: x.Tietze() 

(1, 1, -2, -2, -2, -1, -1) 

""" 

tl = self.gap().UnderlyingElement().TietzeWordAbstractWord() 

return tuple(tl.sage()) 

 

def __call__(self, *values, **kwds): 

""" 

Replace the generators of the free group with ``values``. 

 

INPUT: 

 

- ``*values`` -- a list/tuple/iterable of the same length as 

the number of generators. 

 

- ``check=True`` -- boolean keyword (default: 

``True``). Whether to verify that ``values`` satisfy the 

relations in the finitely presented group. 

 

OUTPUT: 

 

The product of ``values`` in the order and with exponents 

specified by ``self``. 

 

EXAMPLES:: 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / [a/b]; H 

Finitely presented group < a, b | a*b^-1 > 

sage: H.simplified() 

Finitely presented group < a | > 

 

The generator `b` can be eliminated using the relation `a=b`. Any 

values that you plug into a word must satisfy this relation:: 

 

sage: A, B = H.gens() 

sage: w = A^2 * B 

sage: w(2,2) 

8 

sage: w(3,3) 

27 

sage: w(1,2) 

Traceback (most recent call last): 

... 

ValueError: the values do not satisfy all relations of the group 

sage: w(1, 2, check=False) # result depends on presentation of the group element 

2 

""" 

values = list(values) 

if kwds.get('check', True): 

for rel in self.parent().relations(): 

rel = rel(values) 

if rel != 1: 

raise ValueError('the values do not satisfy all relations of the group') 

return super(FinitelyPresentedGroupElement, self).__call__(values) 

 

 

def wrap_FpGroup(libgap_fpgroup): 

""" 

Wrap a GAP finitely presented group. 

 

This function changes the comparison method of 

``libgap_free_group`` to comparison by Python ``id``. If you want 

to put the LibGAP free group into a container ``(set, dict)`` then you 

should understand the implications of 

:meth:`~sage.libs.gap.element.GapElement._set_compare_by_id`. To 

be safe, it is recommended that you just work with the resulting 

Sage :class:`FinitelyPresentedGroup`. 

 

INPUT: 

 

- ``libgap_fpgroup`` -- a LibGAP finitely presented group 

 

OUTPUT: 

 

A Sage :class:`FinitelyPresentedGroup`. 

 

EXAMPLES: 

 

First construct a LibGAP finitely presented group:: 

 

sage: F = libgap.FreeGroup(['a', 'b']) 

sage: a_cubed = F.GeneratorsOfGroup()[0] ^ 3 

sage: P = F / libgap([ a_cubed ]); P 

<fp group of size infinity on the generators [ a, b ]> 

sage: type(P) 

<type 'sage.libs.gap.element.GapElement'> 

 

Now wrap it:: 

 

sage: from sage.groups.finitely_presented import wrap_FpGroup 

sage: wrap_FpGroup(P) 

Finitely presented group < a, b | a^3 > 

""" 

assert libgap_fpgroup.IsFpGroup() 

libgap_fpgroup._set_compare_by_id() 

from sage.groups.free_group import wrap_FreeGroup 

free_group = wrap_FreeGroup(libgap_fpgroup.FreeGroupOfFpGroup()) 

relations = tuple( free_group(rel.UnderlyingElement()) 

for rel in libgap_fpgroup.RelatorsOfFpGroup() ) 

return FinitelyPresentedGroup(free_group, relations) 

 

 

class RewritingSystem(object): 

""" 

A class that wraps GAP's rewriting systems. 

 

A rewriting system is a set of rules that allow to transform 

one word in the group to an equivalent one. 

 

If the rewriting system is confluent, then the transformed 

word is a unique reduced form of the element of the group. 

 

.. WARNING:: 

 

Note that the process of making a rewriting system confluent 

might not end. 

 

INPUT: 

 

- ``G`` -- a group 

 

REFERENCES: 

 

- :wikipedia:`Knuth-Bendix_completion_algorithm` 

 

EXAMPLES:: 

 

sage: F.<a,b> = FreeGroup() 

sage: G = F / [a*b/a/b] 

sage: k = G.rewriting_system() 

sage: k 

Rewriting system of Finitely presented group < a, b | a*b*a^-1*b^-1 > 

with rules: 

a*b*a^-1*b^-1 ---> 1 

 

sage: k.reduce(a*b*a*b) 

(a*b)^2 

sage: k.make_confluent() 

sage: k 

Rewriting system of Finitely presented group < a, b | a*b*a^-1*b^-1 > 

with rules: 

b^-1*a^-1 ---> a^-1*b^-1 

b^-1*a ---> a*b^-1 

b*a^-1 ---> a^-1*b 

b*a ---> a*b 

 

sage: k.reduce(a*b*a*b) 

a^2*b^2 

 

.. TODO:: 

 

- Include support for different orderings (currently only shortlex 

is used). 

 

- Include the GAP package kbmag for more functionalities, including 

automatic structures and faster compiled functions. 

 

AUTHORS: 

 

- Miguel Angel Marco Buzunariz (2013-12-16) 

""" 

def __init__(self, G): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: F.<a,b,c> = FreeGroup() 

sage: G = F / [a^2, b^3, c^5] 

sage: k = G.rewriting_system() 

sage: k 

Rewriting system of Finitely presented group < a, b, c | a^2, b^3, c^5 > 

with rules: 

a^2 ---> 1 

b^3 ---> 1 

c^5 ---> 1 

""" 

self._free_group = G.free_group() 

self._fp_group = G 

self._fp_group_gap = G.gap() 

self._monoid_isomorphism = self._fp_group_gap.IsomorphismFpMonoid() 

self._monoid = self._monoid_isomorphism.Image() 

self._gap = self._monoid.KnuthBendixRewritingSystem() 

 

def __repr__(self): 

""" 

Return a string representation. 

 

EXAMPLES:: 

 

sage: F.<a> = FreeGroup() 

sage: G = F / [a^2] 

sage: k = G.rewriting_system() 

sage: k 

Rewriting system of Finitely presented group < a | a^2 > 

with rules: 

a^2 ---> 1 

""" 

ret = "Rewriting system of {}\nwith rules:".format(self._fp_group) 

for i in sorted(self.rules().items()): # Make sure they are sorted to the repr is unique 

ret += "\n {} ---> {}".format(i[0], i[1]) 

return ret 

 

def free_group(self): 

""" 

The free group after which the rewriting system is defined 

 

EXAMPLES:: 

 

sage: F = FreeGroup(3) 

sage: G = F / [ [1,2,3], [-1,-2,-3] ] 

sage: k = G.rewriting_system() 

sage: k.free_group() 

Free Group on generators {x0, x1, x2} 

""" 

return self._free_group 

 

def finitely_presented_group(self): 

""" 

The finitely presented group where the rewriting system is defined. 

 

EXAMPLES:: 

 

sage: F = FreeGroup(3) 

sage: G = F / [ [1,2,3], [-1,-2,-3], [1,1], [2,2] ] 

sage: k = G.rewriting_system() 

sage: k.make_confluent() 

sage: k 

Rewriting system of Finitely presented group < x0, x1, x2 | x0*x1*x2, x0^-1*x1^-1*x2^-1, x0^2, x1^2 > 

with rules: 

x0^-1 ---> x0 

x1^-1 ---> x1 

x2^-1 ---> x2 

x0^2 ---> 1 

x0*x1 ---> x2 

x0*x2 ---> x1 

x1*x0 ---> x2 

x1^2 ---> 1 

x1*x2 ---> x0 

x2*x0 ---> x1 

x2*x1 ---> x0 

x2^2 ---> 1 

sage: k.finitely_presented_group() 

Finitely presented group < x0, x1, x2 | x0*x1*x2, x0^-1*x1^-1*x2^-1, x0^2, x1^2 > 

""" 

return self._fp_group 

 

def reduce(self, element): 

""" 

Applies the rules in the rewriting system to the element, to obtain 

a reduced form. 

 

If the rewriting system is confluent, this reduced form is unique 

for all words representing the same element. 

 

EXAMPLES:: 

 

sage: F.<a,b> = FreeGroup() 

sage: G = F/[a^2, b^3, (a*b/a)^3, b*a*b*a] 

sage: k = G.rewriting_system() 

sage: k.reduce(b^4) 

b 

sage: k.reduce(a*b*a) 

a*b*a 

""" 

eg = self._fp_group(element).gap() 

egim = self._monoid_isomorphism.Image(eg) 

red = self.gap().ReducedForm(egim.UnderlyingElement()) 

redfpmon = self._monoid.One().FamilyObj().ElementOfFpMonoid(red) 

reducfpgr = self._monoid_isomorphism.PreImagesRepresentative(redfpmon) 

tz = reducfpgr.UnderlyingElement().TietzeWordAbstractWord(self._free_group.gap().GeneratorsOfGroup()) 

return self._fp_group(tz.sage()) 

 

def gap(self): 

""" 

The gap representation of the rewriting system. 

 

EXAMPLES:: 

 

sage: F.<a,b>=FreeGroup() 

sage: G=F/[a*a,b*b] 

sage: k=G.rewriting_system() 

sage: k.gap() 

Knuth Bendix Rewriting System for Monoid( [ a, A, b, B ] ) with rules 

[ [ a^2, <identity ...> ], [ a*A, <identity ...> ], 

[ A*a, <identity ...> ], [ b^2, <identity ...> ], 

[ b*B, <identity ...> ], [ B*b, <identity ...> ] ] 

""" 

return self._gap 

 

def rules(self): 

""" 

Return the rules that form the rewriting system. 

 

OUTPUT: 

 

A dictionary containing the rules of the rewriting system. 

Each key is a word in the free group, and its corresponding 

value is the word to which it is reduced. 

 

EXAMPLES:: 

 

sage: F.<a,b> = FreeGroup() 

sage: G = F / [a*a*a,b*b*a*a] 

sage: k = G.rewriting_system() 

sage: k 

Rewriting system of Finitely presented group < a, b | a^3, b^2*a^2 > 

with rules: 

a^3 ---> 1 

b^2*a^2 ---> 1 

 

sage: k.rules() 

{a^3: 1, b^2*a^2: 1} 

sage: k.make_confluent() 

sage: sorted(k.rules().items()) 

[(a^-2, a), (a^-1*b^-1, a*b), (a^-1*b, b^-1), (a^2, a^-1), 

(a*b^-1, b), (b^-1*a^-1, a*b), (b^-1*a, b), (b^-2, a^-1), 

(b*a^-1, b^-1), (b*a, a*b), (b^2, a)] 

""" 

dic = {} 

grules = self.gap().Rules() 

for i in grules: 

a, b = i 

afpmon = self._monoid.One().FamilyObj().ElementOfFpMonoid(a) 

afg = self._monoid_isomorphism.PreImagesRepresentative(afpmon) 

atz = afg.UnderlyingElement().TietzeWordAbstractWord(self._free_group.gap().GeneratorsOfGroup()) 

af = self._free_group(atz.sage()) 

if len(af.Tietze()) != 0: 

bfpmon = self._monoid.One().FamilyObj().ElementOfFpMonoid(b) 

bfg = self._monoid_isomorphism.PreImagesRepresentative(bfpmon) 

btz = bfg.UnderlyingElement().TietzeWordAbstractWord(self._free_group.gap().GeneratorsOfGroup()) 

bf = self._free_group(btz.sage()) 

dic[af]=bf 

return dic 

 

def is_confluent(self): 

""" 

Return ``True`` if the system is confluent and ``False`` otherwise. 

 

EXAMPLES:: 

 

sage: F = FreeGroup(3) 

sage: G = F / [F([1,2,1,2,1,3,-1]),F([2,2,2,1,1,2]),F([1,2,3])] 

sage: k = G.rewriting_system() 

sage: k.is_confluent() 

False 

sage: k 

Rewriting system of Finitely presented group < x0, x1, x2 | (x0*x1)^2*x0*x2*x0^-1, x1^3*x0^2*x1, x0*x1*x2 > 

with rules: 

x0*x1*x2 ---> 1 

x1^3*x0^2*x1 ---> 1 

(x0*x1)^2*x0*x2*x0^-1 ---> 1 

 

sage: k.make_confluent() 

sage: k.is_confluent() 

True 

sage: k 

Rewriting system of Finitely presented group < x0, x1, x2 | (x0*x1)^2*x0*x2*x0^-1, x1^3*x0^2*x1, x0*x1*x2 > 

with rules: 

x0^-1 ---> x0 

x1^-1 ---> x1 

x0^2 ---> 1 

x0*x1 ---> x2^-1 

x0*x2^-1 ---> x1 

x1*x0 ---> x2 

x1^2 ---> 1 

x1*x2^-1 ---> x0*x2 

x1*x2 ---> x0 

x2^-1*x0 ---> x0*x2 

x2^-1*x1 ---> x0 

x2^-2 ---> x2 

x2*x0 ---> x1 

x2*x1 ---> x0*x2 

x2^2 ---> x2^-1 

""" 

return self._gap.IsConfluent().sage() 

 

def make_confluent(self): 

""" 

Applies Knuth-Bendix algorithm to try to transform the rewriting 

system into a confluent one. 

 

Note that this method does not return any object, just changes the 

rewriting system internally. 

 

.. WARNING:: 

 

This algorithm is not granted to finish. Although it may be useful 

in some occasions to run it, interrupt it manually after some time 

and use then the transformed rewriting system. Even if it is not 

confluent, it could be used to reduce some words. 

 

ALGORITHM: 

 

Uses GAP's ``MakeConfluent``. 

 

EXAMPLES:: 

 

sage: F.<a,b> = FreeGroup() 

sage: G = F / [a^2,b^3,(a*b/a)^3,b*a*b*a] 

sage: k = G.rewriting_system() 

sage: k 

Rewriting system of Finitely presented group < a, b | a^2, b^3, a*b^3*a^-1, (b*a)^2 > 

with rules: 

a^2 ---> 1 

b^3 ---> 1 

(b*a)^2 ---> 1 

a*b^3*a^-1 ---> 1 

 

sage: k.make_confluent() 

sage: k 

Rewriting system of Finitely presented group < a, b | a^2, b^3, a*b^3*a^-1, (b*a)^2 > 

with rules: 

a^-1 ---> a 

a^2 ---> 1 

b^-1*a ---> a*b 

b^-2 ---> b 

b*a ---> a*b^-1 

b^2 ---> b^-1 

""" 

try: 

self._gap.MakeConfluent() 

except ValueError: 

raise ValueError('could not make the system confluent') 

 

class FinitelyPresentedGroup(GroupMixinLibGAP, UniqueRepresentation, 

Group, ParentLibGAP): 

""" 

A class that wraps GAP's Finitely Presented Groups. 

 

.. WARNING:: 

 

You should use 

:meth:`~sage.groups.free_group.FreeGroup_class.quotient` to 

construct finitely presented groups as quotients of free 

groups. 

 

EXAMPLES:: 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / [a, b^3] 

sage: H 

Finitely presented group < a, b | a, b^3 > 

sage: H.gens() 

(a, b) 

 

sage: F.<a,b> = FreeGroup('a, b') 

sage: J = F / (F([1]), F([2, 2, 2])) 

sage: J is H 

True 

 

sage: G = FreeGroup(2) 

sage: H = G / (G([1, 1]), G([2, 2, 2])) 

sage: H.gens() 

(x0, x1) 

sage: H.gen(0) 

x0 

sage: H.ngens() 

2 

sage: H.gap() 

<fp group on the generators [ x0, x1 ]> 

sage: type(_) 

<type 'sage.libs.gap.element.GapElement'> 

""" 

Element = FinitelyPresentedGroupElement 

 

def __init__(self, free_group, relations): 

""" 

The Python constructor. 

 

TESTS:: 

 

sage: G = FreeGroup('a, b') 

sage: H = G / (G([1]), G([2])^3) 

sage: H 

Finitely presented group < a, b | a, b^3 > 

 

sage: F = FreeGroup('a, b') 

sage: J = F / (F([1]), F([2, 2, 2])) 

sage: J is H 

True 

 

sage: TestSuite(H).run() 

sage: TestSuite(J).run() 

""" 

from sage.groups.free_group import is_FreeGroup 

assert is_FreeGroup(free_group) 

assert isinstance(relations, tuple) 

self._free_group = free_group 

self._relations = relations 

self._assign_names(free_group.variable_names()) 

parent_gap = free_group.gap() / libgap([ rel.gap() for rel in relations]) 

ParentLibGAP.__init__(self, parent_gap) 

Group.__init__(self) 

 

def _repr_(self): 

""" 

Return a string representation. 

 

OUTPUT: 

 

String. 

 

TESTS:: 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / (G([1]), G([2])^3) 

sage: H # indirect doctest 

Finitely presented group < a, b | a, b^3 > 

sage: H._repr_() 

'Finitely presented group < a, b | a, b^3 >' 

""" 

gens = ', '.join(self.variable_names()) 

rels = ', '.join([ str(r) for r in self.relations() ]) 

return 'Finitely presented group ' + '< '+ gens + ' | ' + rels + ' >' 

 

def _latex_(self): 

""" 

Return a LaTeX representation 

 

OUTPUT: 

 

String. A valid LaTeX math command sequence. 

 

TESTS:: 

 

sage: F=FreeGroup(4) 

sage: F.inject_variables() 

Defining x0, x1, x2, x3 

sage: G=F.quotient([x0*x2, x3*x1*x3, x2*x1*x2]) 

sage: G._latex_() 

'\\langle x_{0}, x_{1}, x_{2}, x_{3} \\mid x_{0}\\cdot x_{2} , x_{3}\\cdot x_{1}\\cdot x_{3} , x_{2}\\cdot x_{1}\\cdot x_{2}\\rangle' 

""" 

r = '\\langle ' 

for i in range(self.ngens()): 

r = r+self.gen(i)._latex_() 

if i < self.ngens()-1: 

r = r+', ' 

r = r+' \\mid ' 

for i in range(len(self._relations)): 

r = r+(self._relations)[i]._latex_() 

if i < len(self.relations())-1: 

r = r+' , ' 

r = r+'\\rangle' 

return r 

 

def free_group(self): 

""" 

Return the free group (without relations). 

 

OUTPUT: 

 

A :func:`~sage.groups.free_group.FreeGroup`. 

 

EXAMPLES:: 

 

sage: G.<a,b,c> = FreeGroup() 

sage: H = G / (a^2, b^3, a*b*~a*~b) 

sage: H.free_group() 

Free Group on generators {a, b, c} 

sage: H.free_group() is G 

True 

""" 

return self._free_group 

 

def relations(self): 

""" 

Return the relations of the group. 

 

OUTPUT: 

 

The relations as a tuple of elements of :meth:`free_group`. 

 

EXAMPLES:: 

 

sage: F = FreeGroup(5, 'x') 

sage: F.inject_variables() 

Defining x0, x1, x2, x3, x4 

sage: G = F.quotient([x0*x2, x3*x1*x3, x2*x1*x2]) 

sage: G.relations() 

(x0*x2, x3*x1*x3, x2*x1*x2) 

sage: all(rel in F for rel in G.relations()) 

True 

""" 

return self._relations 

 

@cached_method 

def cardinality(self, limit=4096000): 

""" 

Compute the cardinality of ``self``. 

 

INPUT: 

 

- ``limit`` -- integer (default: 4096000). The maximal number 

of cosets before the computation is aborted. 

 

OUTPUT: 

 

Integer or ``Infinity``. The number of elements in the group. 

 

EXAMPLES:: 

 

sage: G.<a,b> = FreeGroup('a, b') 

sage: H = G / (a^2, b^3, a*b*~a*~b) 

sage: H.cardinality() 

6 

 

sage: F.<a,b,c> = FreeGroup() 

sage: J = F / (F([1]), F([2, 2, 2])) 

sage: J.cardinality() 

+Infinity 

 

ALGORITHM: 

 

Uses GAP. 

 

.. WARNING:: 

 

This is in general not a decidable problem, so it is not 

guaranteed to give an answer. If the group is infinite, or 

too big, you should be prepared for a long computation 

that consumes all the memory without finishing if you do 

not set a sensible ``limit``. 

""" 

with libgap.global_context('CosetTableDefaultMaxLimit', limit): 

if not libgap.IsFinite(self.gap()): 

from sage.rings.infinity import Infinity 

return Infinity 

try: 

size = self.gap().Size() 

except ValueError: 

raise ValueError('Coset enumeration ran out of memory, is the group finite?') 

return size.sage() 

 

order = cardinality 

 

def as_permutation_group(self, limit=4096000): 

""" 

Return an isomorphic permutation group. 

 

The generators of the resulting group correspond to the images 

by the isomorphism of the generators of the given group. 

 

INPUT: 

 

- ``limit`` -- integer (default: 4096000). The maximal number 

of cosets before the computation is aborted. 

 

OUTPUT: 

 

A Sage 

:func:`~sage.groups.perm_gps.permgroup.PermutationGroup`. If 

the number of cosets exceeds the given ``limit``, a 

``ValueError`` is returned. 

 

EXAMPLES:: 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / (a^2, b^3, a*b*~a*~b) 

sage: H.as_permutation_group() 

Permutation Group with generators [(1,2)(3,5)(4,6), (1,3,4)(2,5,6)] 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / [a^3*b] 

sage: H.as_permutation_group(limit=1000) 

Traceback (most recent call last): 

... 

ValueError: Coset enumeration exceeded limit, is the group finite? 

 

ALGORITHM: 

 

Uses GAP's coset enumeration on the trivial subgroup. 

 

.. WARNING:: 

 

This is in general not a decidable problem (in fact, it is 

not even possible to check if the group is finite or 

not). If the group is infinite, or too big, you should be 

prepared for a long computation that consumes all the 

memory without finishing if you do not set a sensible 

``limit``. 

""" 

with libgap.global_context('CosetTableDefaultMaxLimit', limit): 

try: 

trivial_subgroup = self.gap().TrivialSubgroup() 

coset_table = self.gap().CosetTable(trivial_subgroup).sage() 

except ValueError: 

raise ValueError('Coset enumeration exceeded limit, is the group finite?') 

from sage.combinat.permutation import Permutation 

from sage.groups.perm_gps.permgroup import PermutationGroup 

return PermutationGroup([ 

Permutation(coset_table[2*i]) for i in range(len(coset_table)//2)]) 

 

def direct_product(self, H, reduced=False, new_names=True): 

r""" 

Return the direct product of ``self`` with finitely presented 

group ``H``. 

 

Calls GAP function ``DirectProduct``, which returns the direct 

product of a list of groups of any representation. 

 

From [Joh1990]_ (pg 45, proposition 4): If `G`, `H` are groups 

presented by `\langle X \mid R \rangle` and `\langle Y \mid S \rangle` 

respectively, then their direct product has the presentation 

`\langle X, Y \mid R, S, [X, Y] \rangle` where `[X, Y]` denotes the 

set of commutators `\{ x^{-1} y^{-1} x y \mid x \in X, y \in Y \}`. 

 

INPUT: 

 

- ``H`` -- a finitely presented group 

 

- ``reduced`` -- (default: ``False``) boolean; if ``True``, then 

attempt to reduce the presentation of the product group 

 

- ``new_names`` -- (default: ``True``) boolean; If ``True``, then 

lexicographical variable names are assigned to the generators of 

the group to be returned. If ``False``, the group to be returned 

keeps the generator names of the two groups forming the direct 

product. Note that one cannot ask to reduce the output and ask 

to keep the old variable names, as they may change meaning 

in the output group if its presentation is reduced. 

 

OUTPUT: 

 

The direct product of ``self`` with ``H`` as a finitely 

presented group. 

 

EXAMPLES:: 

 

sage: G = FreeGroup() 

sage: C12 = ( G / [G([1,1,1,1])] ).direct_product( G / [G([1,1,1])]); C12 

Finitely presented group < a, b | a^4, b^3, a^-1*b^-1*a*b > 

sage: C12.order(), C12.as_permutation_group().is_cyclic() 

(12, True) 

sage: klein = ( G / [G([1,1])] ).direct_product( G / [G([1,1])]); klein 

Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b > 

sage: klein.order(), klein.as_permutation_group().is_cyclic() 

(4, False) 

 

We can keep the variable names from ``self`` and ``H`` to examine how 

new relations are formed:: 

 

sage: F = FreeGroup("a"); G = FreeGroup("g") 

sage: X = G / [G.0^12]; A = F / [F.0^6] 

sage: X.direct_product(A, new_names=False) 

Finitely presented group < g, a | g^12, a^6, g^-1*a^-1*g*a > 

sage: A.direct_product(X, new_names=False) 

Finitely presented group < a, g | a^6, g^12, a^-1*g^-1*a*g > 

 

Or we can attempt to reduce the output group presentation:: 

 

sage: F = FreeGroup("a"); G = FreeGroup("g") 

sage: X = G / [G.0]; A = F / [F.0] 

sage: X.direct_product(A, new_names=True) 

Finitely presented group < a, b | a, b, a^-1*b^-1*a*b > 

sage: X.direct_product(A, reduced=True, new_names=True) 

Finitely presented group < | > 

 

But we cannot do both:: 

 

sage: K = FreeGroup(['a','b']) 

sage: D = K / [K.0^5, K.1^8] 

sage: D.direct_product(D, reduced=True, new_names=False) 

Traceback (most recent call last): 

... 

ValueError: cannot reduce output and keep old variable names 

 

TESTS:: 

 

sage: G = FreeGroup() 

sage: Dp = (G / [G([1,1])]).direct_product( G / [G([1,1,1,1,1,1])] ) 

sage: Dp.as_permutation_group().is_isomorphic(PermutationGroup(['(1,2)','(3,4,5,6,7,8)'])) 

True 

sage: C7 = G / [G.0**7]; C6 = G / [G.0**6] 

sage: C14 = G / [G.0**14]; C3 = G / [G.0**3] 

sage: C7.direct_product(C6).is_isomorphic(C14.direct_product(C3)) 

True 

sage: F = FreeGroup(2); D = F / [F([1,1,1,1,1]),F([2,2]),F([1,2])**2] 

sage: D.direct_product(D).as_permutation_group().is_isomorphic( 

....: direct_product_permgroups([DihedralGroup(5),DihedralGroup(5)])) 

True 

 

AUTHORS: 

 

- Davis Shurbert (2013-07-20): initial version 

""" 

from sage.groups.free_group import FreeGroup, _lexi_gen 

 

if not isinstance(H, FinitelyPresentedGroup): 

raise TypeError("input must be a finitely presented group") 

if reduced and not new_names: 

raise ValueError("cannot reduce output and keep old variable names") 

 

fp_product = libgap.DirectProduct([self.gap(), H.gap()]) 

GAP_gens = fp_product.FreeGeneratorsOfFpGroup() 

if new_names: 

name_itr = _lexi_gen() # Python generator for lexicographical variable names 

gen_names = [next(name_itr) for i in GAP_gens] 

else: 

gen_names= [str(g) for g in self.gens()] + [str(g) for g in H.gens()] 

# Build the direct product in Sage for better variable names 

ret_F = FreeGroup(gen_names) 

ret_rls = tuple([ret_F(rel_word.TietzeWordAbstractWord(GAP_gens).sage()) 

for rel_word in fp_product.RelatorsOfFpGroup()]) 

ret_fpg = FinitelyPresentedGroup(ret_F, ret_rls) 

if reduced: 

ret_fpg = ret_fpg.simplified() 

return ret_fpg 

 

def semidirect_product(self, H, hom, check=True, reduced=False): 

""" 

The semidirect product of ``self`` with ``H`` via ``hom``. 

 

If there exists a homomorphism `\phi` from a group `G` to the 

automorphism group of a group `H`, then we can define the semidirect 

product of `G` with `H` via `\phi` as the Cartesian product of `G` 

and `H` with the operation 

 

.. MATH:: 

 

(g_1, h_1)(g_2, h_2) = (g_1 g_2, \phi(g_2)(h_1) h_2). 

 

INPUT: 

 

- ``H`` -- Finitely presented group which is implicitly acted on 

by ``self`` and can be naturally embedded as a normal subgroup 

of the semidirect product. 

 

- ``hom`` -- Homomorphism from ``self`` to the automorphism group 

of ``H``. Given as a pair, with generators of ``self`` in the 

first slot and the images of the corresponding generators in the 

second. These images must be automorphisms of ``H``, given again 

as a pair of generators and images. 

 

- ``check`` -- Boolean (default ``True``). If ``False`` the defining 

homomorphism and automorphism images are not tested for validity. 

This test can be costly with large groups, so it can be bypassed 

if the user is confident that his morphisms are valid. 

 

- ``reduced`` -- Boolean (default ``False``). If ``True`` then the 

method attempts to reduce the presentation of the output group. 

 

OUTPUT: 

 

The semidirect product of ``self`` with ``H`` via ``hom`` as a 

finitely presented group. See 

:meth:`PermutationGroup_generic.semidirect_product 

<sage.groups.perm_gps.permgroup.PermutationGroup_generic.semidirect_product>` 

for a more in depth explanation of a semidirect product. 

 

AUTHORS: 

 

- Davis Shurbert (8-1-2013) 

 

EXAMPLES: 

 

Group of order 12 as two isomorphic semidirect products:: 

 

sage: D4 = groups.presentation.Dihedral(4) 

sage: C3 = groups.presentation.Cyclic(3) 

sage: alpha1 = ([C3.gen(0)],[C3.gen(0)]) 

sage: alpha2 = ([C3.gen(0)],[C3([1,1])]) 

sage: S1 = D4.semidirect_product(C3, ([D4.gen(1), D4.gen(0)],[alpha1,alpha2])) 

sage: C2 = groups.presentation.Cyclic(2) 

sage: Q = groups.presentation.DiCyclic(3) 

sage: a = Q([1]); b = Q([-2]) 

sage: alpha = (Q.gens(), [a,b]) 

sage: S2 = C2.semidirect_product(Q, ([C2.0],[alpha])) 

sage: S1.is_isomorphic(S2) 

True 

 

Dihedral groups can be constructed as semidirect products 

of cyclic groups:: 

 

sage: C2 = groups.presentation.Cyclic(2) 

sage: C8 = groups.presentation.Cyclic(8) 

sage: hom = (C2.gens(), [ ([C8([1])], [C8([-1])]) ]) 

sage: D = C2.semidirect_product(C8, hom) 

sage: D.as_permutation_group().is_isomorphic(DihedralGroup(8)) 

True 

 

You can attempt to reduce the presentation of the output group:: 

 

sage: D = C2.semidirect_product(C8, hom); D 

Finitely presented group < a, b | a^2, b^8, a^-1*b*a*b > 

sage: D = C2.semidirect_product(C8, hom, reduced=True); D 

Finitely presented group < a, b | a^2, (a*b)^2, b^8 > 

 

sage: C3 = groups.presentation.Cyclic(3) 

sage: C4 = groups.presentation.Cyclic(4) 

sage: hom = (C3.gens(), [(C4.gens(), C4.gens())]) 

sage: C3.semidirect_product(C4, hom) 

Finitely presented group < a, b | a^3, b^4, a^-1*b*a*b^-1 > 

sage: D = C3.semidirect_product(C4, hom, reduced=True); D 

Finitely presented group < a, b | a^3, b^4, a^-1*b*a*b^-1 > 

sage: D.as_permutation_group().is_cyclic() 

True 

 

You can turn off the checks for the validity of the input morphisms. 

This check is expensive but behavior is unpredictable if inputs are 

invalid and are not caught by these tests:: 

 

sage: C5 = groups.presentation.Cyclic(5) 

sage: C12 = groups.presentation.Cyclic(12) 

sage: hom = (C5.gens(), [(C12.gens(), C12.gens())]) 

sage: sp = C5.semidirect_product(C12, hom, check=False); sp 

Finitely presented group < a, b | a^5, b^12, a^-1*b*a*b^-1 > 

sage: sp.as_permutation_group().is_cyclic(), sp.order() 

(True, 60) 

 

TESTS: 

 

The following was fixed in Gap-4.7.2:: 

 

sage: C5.semidirect_product(C12, hom) == sp 

True 

 

A more complicated semidirect product:: 

 

sage: C = groups.presentation.Cyclic(7) 

sage: D = groups.presentation.Dihedral(5) 

sage: id1 = ([C.0], [(D.gens(),D.gens())]) 

sage: Se1 = C.semidirect_product(D, id1) 

sage: id2 = (D.gens(), [(C.gens(),C.gens()),(C.gens(),C.gens())]) 

sage: Se2 = D.semidirect_product(C ,id2) 

sage: Dp1 = C.direct_product(D); 

sage: Dp1.is_isomorphic(Se1), Dp1.is_isomorphic(Se2) 

(True, True) 

 

Most checks for validity of input are left to GAP to handle:: 

 

sage: bad_aut = ([C.0], [(D.gens(),[D.0, D.0])]) 

sage: C.semidirect_product(D, bad_aut) 

Traceback (most recent call last): 

... 

ValueError: images of input homomorphism must be automorphisms 

sage: bad_hom = ([D.0, D.1], [(C.gens(),C.gens())]) 

sage: D.semidirect_product(C, bad_hom) 

Traceback (most recent call last): 

... 

ValueError: libGAP: Error, <gens> and <imgs> must be lists of same length 

""" 

from sage.groups.free_group import FreeGroup, _lexi_gen 

 

if not isinstance(H, FinitelyPresentedGroup): 

raise TypeError("input must be a finitely presented group") 

 

GAP_self = self.gap(); GAP_H = H.gap() 

auto_grp = libgap.AutomorphismGroup(H.gap()) 

self_gens = [h.gap() for h in hom[0]] 

# construct image automorphisms in GAP 

GAP_aut_imgs = [ libgap.GroupHomomorphismByImages(GAP_H, GAP_H, [g.gap() for g in gns], 

[i.gap() for i in img]) for (gns, img) in hom[1] ] 

 

# check for automorphism validity in images of operation defining homomorphism, 

# and construct the defining homomorphism. 

if check: 

if not all([a in libgap.List(libgap.AutomorphismGroup(GAP_H)) for a in GAP_aut_imgs]): 

raise ValueError("images of input homomorphism must be automorphisms") 

GAP_def_hom = libgap.GroupHomomorphismByImages(GAP_self, auto_grp, self_gens, GAP_aut_imgs) 

else: 

GAP_def_hom = GAP_self.GroupHomomorphismByImagesNC( auto_grp, self_gens, GAP_aut_imgs) 

 

prod = libgap.SemidirectProduct(GAP_self, GAP_def_hom, GAP_H) 

# Convert pc group to fp group 

if prod.IsPcGroup(): 

prod = libgap.Image(libgap.IsomorphismFpGroupByPcgs(prod.FamilyPcgs() , 'x')) 

if not prod.IsFpGroup(): 

raise NotImplementedError("unable to convert GAP output to equivalent Sage fp group") 

 

# Convert GAP group object to Sage via Tietze 

# lists for readability of variable names 

GAP_gens = prod.FreeGeneratorsOfFpGroup() 

name_itr = _lexi_gen() # Python generator for lexicographical variable names 

ret_F = FreeGroup([next(name_itr) for i in GAP_gens]) 

ret_rls = tuple([ret_F(rel_word.TietzeWordAbstractWord(GAP_gens).sage()) 

for rel_word in prod.RelatorsOfFpGroup()]) 

ret_fpg = FinitelyPresentedGroup(ret_F, ret_rls) 

if reduced: 

ret_fpg = ret_fpg.simplified() 

return ret_fpg 

 

def _element_constructor_(self, *args, **kwds): 

""" 

Construct an element of ``self``. 

 

TESTS:: 

 

sage: G.<a,b> = FreeGroup() 

sage: H = G / (G([1]), G([2, 2, 2])) 

sage: H([1, 2, 1, -1]) # indirect doctest 

a*b 

sage: H([1, 2, 1, -2]) # indirect doctest 

a*b*a*b^-1 

""" 

if len(args)!=1: 

return self.element_class(self, *args, **kwds) 

x = args[0] 

if x==1: 

return self.one() 

try: 

P = x.parent() 

except AttributeError: 

return self.element_class(self, x, **kwds) 

if P is self._free_group: 

return self.element_class(self, x.Tietze(), **kwds) 

return self.element_class(self, x, **kwds) 

 

@cached_method 

def abelian_invariants(self): 

r""" 

Return the abelian invariants of ``self``. 

 

The abelian invariants are given by a list of integers 

`(i_1, \ldots, i_j)`, such that the abelianization of the group is 

isomorphic to `\ZZ / (i_1) \times \cdots \times \ZZ / (i_j)`. 

 

EXAMPLES:: 

 

sage: G = FreeGroup(4, 'g') 

sage: G.inject_variables() 

Defining g0, g1, g2, g3 

sage: H = G.quotient([g1^2, g2*g1*g2^(-1)*g1^(-1), g1*g3^(-2), g0^4]) 

sage: H.abelian_invariants() 

(0, 4, 4) 

 

ALGORITHM: 

 

Uses GAP. 

""" 

invariants = self.gap().AbelianInvariants() 

return tuple( i.sage() for i in invariants ) 

 

def simplification_isomorphism(self): 

""" 

Return an isomorphism from ``self`` to a finitely presented group with 

a (hopefully) simpler presentation. 

 

EXAMPLES:: 

 

sage: G.<a,b,c> = FreeGroup() 

sage: H = G / [a*b*c, a*b^2, c*b/c^2] 

sage: I = H.simplification_isomorphism() 

sage: I 

Generic morphism: 

From: Finitely presented group < a, b, c | a*b*c, a*b^2, c*b*c^-2 > 

To: Finitely presented group < b | > 

Defn: a |--> b^-2 

b |--> b 

c |--> b 

sage: I(a) 

b^-2 

sage: I(b) 

b 

sage: I(c) 

b 

 

TESTS:: 

 

sage: F = FreeGroup(1) 

sage: G = F.quotient([F.0]) 

sage: G.simplification_isomorphism() 

Generic morphism: 

From: Finitely presented group < x | x > 

To: Finitely presented group < | > 

Defn: x |--> 1 

 

ALGORITHM: 

 

Uses GAP. 

""" 

I = self.gap().IsomorphismSimplifiedFpGroup() 

domain = self 

codomain = wrap_FpGroup(I.Range()) 

phi = lambda x: codomain(I.ImageElm(x.gap())) 

HS = self.Hom(codomain) 

return GroupMorphismWithGensImages(HS, phi) 

 

def simplified(self): 

""" 

Return an isomorphic group with a (hopefully) simpler presentation. 

 

OUTPUT: 

 

A new finitely presented group. Use 

:meth:`simplification_isomorphism` if you want to know the 

isomorphism. 

 

EXAMPLES:: 

 

sage: G.<x,y> = FreeGroup() 

sage: H = G / [x ^5, y ^4, y*x*y^3*x ^3] 

sage: H 

Finitely presented group < x, y | x^5, y^4, y*x*y^3*x^3 > 

sage: H.simplified() 

Finitely presented group < x, y | y^4, y*x*y^-1*x^-2, x^5 > 

 

A more complicate example:: 

 

sage: G.<e0, e1, e2, e3, e4, e5, e6, e7, e8, e9> = FreeGroup() 

sage: rels = [e6, e5, e3, e9, e4*e7^-1*e6, e9*e7^-1*e0, 

....: e0*e1^-1*e2, e5*e1^-1*e8, e4*e3^-1*e8, e2] 

sage: H = G.quotient(rels); H 

Finitely presented group < e0, e1, e2, e3, e4, e5, e6, e7, e8, e9 | 

e6, e5, e3, e9, e4*e7^-1*e6, e9*e7^-1*e0, e0*e1^-1*e2, e5*e1^-1*e8, e4*e3^-1*e8, e2 > 

sage: H.simplified() 

Finitely presented group < e0 | e0^2 > 

""" 

return self.simplification_isomorphism().codomain() 

 

def epimorphisms(self, H): 

r""" 

Return the epimorphisms from `self` to `H`, up to automorphism of `H`. 

 

INPUT: 

 

- `H` -- Another group 

 

EXAMPLES:: 

 

sage: F = FreeGroup(3) 

sage: G = F / [F([1, 2, 3, 1, 2, 3]), F([1, 1, 1])] 

sage: H = AlternatingGroup(3) 

sage: G.epimorphisms(H) 

[Generic morphism: 

From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 > 

To: Alternating group of order 3!/2 as a permutation group 

Defn: x0 |--> () 

x1 |--> (1,2,3) 

x2 |--> (1,3,2), Generic morphism: 

From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 > 

To: Alternating group of order 3!/2 as a permutation group 

Defn: x0 |--> (1,2,3) 

x1 |--> () 

x2 |--> (1,3,2), Generic morphism: 

From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 > 

To: Alternating group of order 3!/2 as a permutation group 

Defn: x0 |--> (1,2,3) 

x1 |--> (1,2,3) 

x2 |--> (1,2,3), Generic morphism: 

From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 > 

To: Alternating group of order 3!/2 as a permutation group 

Defn: x0 |--> (1,2,3) 

x1 |--> (1,3,2) 

x2 |--> ()] 

 

ALGORITHM: 

 

Uses libgap's GQuotients function. 

""" 

from sage.misc.misc_c import prod 

from sage.functions.generalized import sign 

HomSpace = self.Hom(H) 

Gg = libgap(self) 

Hg = libgap(H) 

gquotients = Gg.GQuotients(Hg) 

res = [] 

# the following closure is needed to attach a specific value of quo to 

# each function in the different morphisms 

fmap = lambda tup: (lambda a: H(prod(tup[abs(i)-1]**sign(i) for i in a.Tietze()))) 

for quo in gquotients: 

tup = tuple(H(quo.ImageElm(i.gap()).sage()) for i in self.gens()) 

fhom = GroupMorphismWithGensImages(HomSpace, fmap(tup)) 

res.append(fhom) 

return res 

 

def alexander_matrix(self, im_gens = None): 

""" 

Return the Alexander matrix of the group. 

 

This matrix is given by the fox derivatives of the relations 

with respect to the generators. 

 

- ``im_gens`` -- (optional) the images of the generators 

 

OUTPUT: 

 

A matrix with coefficients in the group algebra. If ``im_gens`` is 

given, the coefficients will live in the same algebra as the given 

values. The result depends on the (fixed) choice of presentation. 

 

EXAMPLES:: 

 

sage: G.<a,b,c> = FreeGroup() 

sage: H = G.quotient([a*b/a/b, a*c/a/c, c*b/c/b]) 

sage: H.alexander_matrix() 

[ 1 - a*b*a^-1 a - a*b*a^-1*b^-1 0] 

[ 1 - a*c*a^-1 0 a - a*c*a^-1*c^-1] 

[ 0 c - c*b*c^-1*b^-1 1 - c*b*c^-1] 

 

If we introduce the images of the generators, we obtain the 

result in the corresponding algebra. 

 

:: 

 

sage: G.<a,b,c,d,e> = FreeGroup() 

sage: H = G.quotient([a*b/a/b, a*c/a/c, a*d/a/d, b*c*d/(c*d*b), b*c*d/(d*b*c)]) 

sage: H.alexander_matrix() 

[ 1 - a*b*a^-1 a - a*b*a^-1*b^-1 0 0 0] 

[ 1 - a*c*a^-1 0 a - a*c*a^-1*c^-1 0 0] 

[ 1 - a*d*a^-1 0 0 a - a*d*a^-1*d^-1 0] 

[ 0 1 - b*c*d*b^-1 b - b*c*d*b^-1*d^-1*c^-1 b*c - b*c*d*b^-1*d^-1 0] 

[ 0 1 - b*c*d*c^-1*b^-1 b - b*c*d*c^-1 b*c - b*c*d*c^-1*b^-1*d^-1 0] 

sage: R.<t1,t2,t3,t4> = LaurentPolynomialRing(ZZ) 

sage: H.alexander_matrix([t1,t2,t3,t4]) 

[ -t2 + 1 t1 - 1 0 0 0] 

[ -t3 + 1 0 t1 - 1 0 0] 

[ -t4 + 1 0 0 t1 - 1 0] 

[ 0 -t3*t4 + 1 t2 - 1 t2*t3 - t3 0] 

[ 0 -t4 + 1 -t2*t4 + t2 t2*t3 - 1 0] 

""" 

rel = self.relations() 

gen = self._free_group.gens() 

return matrix(len(rel), len(gen), 

lambda i,j: rel[i].fox_derivative(gen[j], im_gens)) 

 

def rewriting_system(self): 

""" 

Return the rewriting system corresponding to the finitely presented 

group. This rewriting system can be used to reduce words with respect 

to the relations. 

 

If the rewriting system is transformed into a confluent one, the 

reduction process will give as a result the (unique) reduced form 

of an element. 

 

EXAMPLES:: 

 

sage: F.<a,b> = FreeGroup() 

sage: G = F / [a^2,b^3,(a*b/a)^3,b*a*b*a] 

sage: k = G.rewriting_system() 

sage: k 

Rewriting system of Finitely presented group < a, b | a^2, b^3, a*b^3*a^-1, (b*a)^2 > 

with rules: 

a^2 ---> 1 

b^3 ---> 1 

(b*a)^2 ---> 1 

a*b^3*a^-1 ---> 1 

 

sage: G([1,1,2,2,2]) 

a^2*b^3 

sage: k.reduce(G([1,1,2,2,2])) 

1 

sage: k.reduce(G([2,2,1])) 

b^2*a 

sage: k.make_confluent() 

sage: k.reduce(G([2,2,1])) 

a*b 

""" 

return RewritingSystem(self) 

 

from sage.groups.generic import structure_description