Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

""" 

Matrix Group Elements 

  

EXAMPLES:: 

  

sage: F = GF(3); MS = MatrixSpace(F,2,2) 

sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])] 

sage: G = MatrixGroup(gens); G 

Matrix group over Finite Field of size 3 with 2 generators ( 

[1 0] [1 1] 

[0 1], [0 1] 

) 

sage: g = G([[1,1],[0,1]]) 

sage: h = G([[1,2],[0,1]]) 

sage: g*h 

[1 0] 

[0 1] 

  

You cannot add two matrices, since this is not a group operation. 

You can coerce matrices back to the matrix space and add them 

there:: 

  

sage: g + h 

Traceback (most recent call last): 

... 

TypeError: unsupported operand parent(s) for +: 

'Matrix group over Finite Field of size 3 with 2 generators ( 

[1 0] [1 1] 

[0 1], [0 1] 

)' and 

'Matrix group over Finite Field of size 3 with 2 generators ( 

[1 0] [1 1] 

[0 1], [0 1] 

)' 

  

sage: g.matrix() + h.matrix() 

[2 0] 

[0 2] 

  

Similarly, you cannot multiply group elements by scalars but you can 

do it with the underlying matrices:: 

  

sage: 2*g 

Traceback (most recent call last): 

... 

TypeError: unsupported operand parent(s) for *: 'Integer Ring' and 'Matrix group over Finite Field of size 3 with 2 generators ( 

[1 0] [1 1] 

[0 1], [0 1] 

)' 

  

AUTHORS: 

  

- David Joyner (2006-05): initial version David Joyner 

  

- David Joyner (2006-05): various modifications to address William 

Stein's TODO's. 

  

- William Stein (2006-12-09): many revisions. 

  

- Volker Braun (2013-1) port to new Parent, libGAP. 

  

- Travis Scrimshaw (2016-01): reworks class hierarchy in order 

to cythonize 

""" 

  

#***************************************************************************** 

# Copyright (C) 2006 David Joyner and William Stein <wstein@gmail.com> 

# Copyright (C) 2013 Volker Braun <vbraun.name@gmail.com> 

# Copyright (C) 2016 Travis Scrimshaw <tscrimsh at umn.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

  

from sage.structure.element cimport MultiplicativeGroupElement, Element, MonoidElement, Matrix 

from sage.structure.parent cimport Parent 

from sage.structure.richcmp cimport richcmp 

from sage.libs.gap.element cimport GapElement, GapElement_List 

from sage.groups.libgap_wrapper cimport ElementLibGAP 

  

from sage.structure.element import is_Matrix 

from sage.structure.factorization import Factorization 

from sage.misc.cachefunc import cached_method 

from sage.rings.all import ZZ 

  

  

cpdef is_MatrixGroupElement(x): 

""" 

Test whether ``x`` is a matrix group element 

  

INPUT: 

  

- ``x`` -- anything. 

  

OUTPUT: 

  

Boolean. 

  

EXAMPLES:: 

  

sage: from sage.groups.matrix_gps.group_element import is_MatrixGroupElement 

sage: is_MatrixGroupElement('helloooo') 

False 

  

sage: G = GL(2,3) 

sage: is_MatrixGroupElement(G.an_element()) 

True 

""" 

return isinstance(x, (MatrixGroupElement_generic, MatrixGroupElement_gap)) 

  

################################################################### 

# 

# Matrix group elements implemented in Sage 

# 

################################################################### 

  

cdef class MatrixGroupElement_generic(MultiplicativeGroupElement): 

""" 

Element of a matrix group over a generic ring. 

  

The group elements are implemented as Sage matrices. 

  

INPUT: 

  

- ``M`` -- a matrix 

  

- ``parent`` -- the parent 

  

- ``check`` -- bool (default: ``True``); if ``True``, then 

does some type checking 

  

- ``convert`` -- bool (default: ``True``); if ``True``, then 

convert ``M`` to the right matrix space 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: g 

[ 0 0 -1] 

[ 1 0 -1] 

[ 0 1 -1] 

""" 

def __init__(self, parent, M, check=True, convert=True): 

r""" 

Initialize ``self``. 

  

TESTS:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: TestSuite(g).run() 

""" 

if convert: 

M = parent.matrix_space()(M) 

if check: 

if not is_Matrix(M): 

raise TypeError('M must be a matrix') 

if M.parent() is not parent.matrix_space(): 

raise TypeError('M must be a in the matrix space of the group') 

parent._check_matrix(M) 

super(MatrixGroupElement_generic, self).__init__(parent) 

if M.is_immutable(): 

self._matrix = M 

else: 

self._matrix = M.__copy__() 

self._matrix.set_immutable() 

  

def __hash__(self): 

r""" 

TESTS:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: hash(g) 

660522311176098153 # 64-bit 

-606138007 # 32-bit 

""" 

return hash(self._matrix) 

  

def __reduce__(self): 

""" 

Implement pickling. 

  

TESTS:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: loads(g.dumps()) == g 

True 

""" 

return (_unpickle_generic_element, (self.parent(), self._matrix,)) 

  

def _repr_(self): 

""" 

Return string representation of this matrix. 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: W.an_element() 

[ 0 0 -1] 

[ 1 0 -1] 

[ 0 1 -1] 

""" 

return str(self._matrix) 

  

def _latex_(self): 

r""" 

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: latex(g) 

\left(\begin{array}{rrr} 

0 & 0 & -1 \\ 

1 & 0 & -1 \\ 

0 & 1 & -1 

\end{array}\right) 

""" 

return self._matrix._latex_() 

  

cpdef _act_on_(self, x, bint self_on_left): 

""" 

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',4], base_ring=ZZ) 

sage: g = W.gen(0) 

sage: g * vector([1,1,1,1]) 

(0, 1, 1, 1) 

sage: v = vector([3,2,1,-1]) 

sage: g = W.gen(1) 

sage: v * g == v * g.matrix() # indirect doctest 

True 

""" 

if not is_MatrixGroupElement(x) and x not in self.parent().base_ring(): 

try: 

if self_on_left: 

return self._matrix * x 

else: 

return x * self._matrix 

except TypeError: 

return None 

  

cpdef _richcmp_(self, other, int op): 

""" 

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: TestSuite(g).run() 

sage: h = W.gen(0) * W.gen(1) * W.gen(2) 

sage: g == h 

True 

sage: a = W.gen(0) 

sage: a == g 

False 

sage: a != g 

True 

""" 

cdef MatrixGroupElement_generic x = <MatrixGroupElement_generic>self 

cdef MatrixGroupElement_generic y = <MatrixGroupElement_generic>other 

return richcmp(x._matrix, y._matrix, op) 

  

cpdef list list(self): 

""" 

Return list representation of this matrix. 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.gen(0) 

sage: g 

[-1 1 0] 

[ 0 1 0] 

[ 0 0 1] 

sage: g.list() 

[[-1, 1, 0], [0, 1, 0], [0, 0, 1]] 

""" 

return [r.list() for r in self._matrix.rows()] 

  

def matrix(self): 

""" 

Obtain the usual matrix (as an element of a matrix space) 

associated to this matrix group element. 

  

One reason to compute the associated matrix is that matrices 

support a huge range of functionality. 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.gen(0) 

sage: g.matrix() 

[-1 1 0] 

[ 0 1 0] 

[ 0 0 1] 

sage: parent(g.matrix()) 

Full MatrixSpace of 3 by 3 dense matrices over Integer Ring 

  

Matrices have extra functionality that matrix group elements 

do not have:: 

  

sage: g.matrix().charpoly('t') 

t^3 - t^2 - t + 1 

""" 

return self._matrix 

  

cpdef _mul_(self, other): 

""" 

Return the product of ``self`` and`` other``, which must 

have identical parents. 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.gen(0) 

sage: h = W.an_element() 

sage: g * h 

[ 1 0 0] 

[ 1 0 -1] 

[ 0 1 -1] 

""" 

cdef Parent parent = self.parent() 

cdef MatrixGroupElement_generic y = <MatrixGroupElement_generic>other 

cdef Matrix M = self._matrix * y._matrix 

# Make it immutable so the constructor doesn't make a copy 

M.set_immutable() 

return parent.element_class(parent, M, check=False, convert=False) 

  

def is_one(self): 

""" 

Return whether ``self`` is the identity of the group. 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3]) 

sage: g = W.gen(0) 

sage: g.is_one() 

False 

  

sage: W.an_element().is_one() 

False 

sage: W.one().is_one() 

True 

""" 

return self._matrix.is_one() 

  

def __invert__(self): 

""" 

Return the inverse group element 

  

OUTPUT: 

  

A matrix group element. 

  

EXAMPLES:: 

  

sage: W = CoxeterGroup(['A',3], base_ring=ZZ) 

sage: g = W.an_element() 

sage: ~g 

[-1 1 0] 

[-1 0 1] 

[-1 0 0] 

sage: g * ~g == W.one() 

True 

sage: ~g * g == W.one() 

True 

  

sage: W = CoxeterGroup(['B',3]) 

sage: W.base_ring() 

Number Field in a with defining polynomial x^2 - 2 

sage: g = W.an_element() 

sage: ~g 

[-1 1 0] 

[-1 0 a] 

[-a 0 1] 

""" 

cdef Parent parent = self.parent() 

cdef Matrix M = self._matrix 

# We have a special method for dense matrices over ZZ 

if M.base_ring() is ZZ and M.is_dense(): 

M = M._invert_unit() 

else: 

M = ~M 

if M.base_ring() is not parent.base_ring(): 

M = M.change_ring(parent.base_ring()) 

# Make it immutable so the constructor doesn't make a copy 

M.set_immutable() 

return parent.element_class(parent, M, check=False, convert=False) 

  

inverse = __invert__ 

  

################################################################### 

# 

# Matrix group elements implemented in GAP 

# 

################################################################### 

  

cdef class MatrixGroupElement_gap(ElementLibGAP): 

""" 

Element of a matrix group over a generic ring. 

  

The group elements are implemented as wrappers around libGAP matrices. 

  

INPUT: 

  

- ``M`` -- a matrix 

  

- ``parent`` -- the parent 

  

- ``check`` -- bool (default: ``True``); if ``True`` does some 

type checking 

  

- ``convert`` -- bool (default: ``True``); if ``True`` convert 

``M`` to the right matrix space 

""" 

def __init__(self, parent, M, check=True, convert=True): 

r""" 

Initialize ``self``. 

  

TESTS:: 

  

sage: MS = MatrixSpace(GF(3),2,2) 

sage: G = MatrixGroup(MS([[1,0],[0,1]]), MS([[1,1],[0,1]])) 

sage: G.gen(0) 

[1 0] 

[0 1] 

sage: g = G.random_element() 

sage: TestSuite(g).run() 

""" 

if isinstance(M, GapElement): 

ElementLibGAP.__init__(self, parent, M) 

return 

if convert: 

M = parent.matrix_space()(M) 

from sage.libs.gap.libgap import libgap 

M_gap = libgap(M) 

if check: 

if not is_Matrix(M): 

raise TypeError('M must be a matrix') 

if M.parent() is not parent.matrix_space(): 

raise TypeError('M must be a in the matrix space of the group') 

parent._check_matrix(M, M_gap) 

ElementLibGAP.__init__(self, parent, M_gap) 

  

def __reduce__(self): 

""" 

Implement pickling. 

  

TESTS:: 

  

sage: MS = MatrixSpace(GF(3), 2, 2) 

sage: G = MatrixGroup(MS([[1,0],[0,1]]), MS([[1,1],[0,1]])) 

sage: loads(G.gen(0).dumps()) 

[1 0] 

[0 1] 

""" 

return (self.parent(), (self.matrix(),)) 

  

def __hash__(self): 

r""" 

TESTS:: 

  

sage: MS = MatrixSpace(GF(3), 2) 

sage: G = MatrixGroup([MS([1,1,0,1]), MS([1,0,1,1])]) 

sage: g = G.an_element() 

sage: hash(g) 

-5306160029685893860 # 64-bit 

-181258980 # 32-bit 

""" 

return hash(self.matrix()) 

  

def _repr_(self): 

r""" 

Return string representation of this matrix. 

  

EXAMPLES:: 

  

sage: F = GF(3); MS = MatrixSpace(F,2,2) 

sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])] 

sage: G = MatrixGroup(gens) 

sage: g = G([[1, 1], [0, 1]]) 

sage: g # indirect doctest 

[1 1] 

[0 1] 

sage: g._repr_() 

'[1 1]\n[0 1]' 

""" 

return str(self.matrix()) 

  

def _latex_(self): 

r""" 

EXAMPLES:: 

  

sage: F = GF(3); MS = MatrixSpace(F,2,2) 

sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])] 

sage: G = MatrixGroup(gens) 

sage: g = G([[1, 1], [0, 1]]) 

sage: print(g._latex_()) 

\left(\begin{array}{rr} 

1 & 1 \\ 

0 & 1 

\end{array}\right) 

  

Type ``view(g._latex_())`` to see the object in an 

xdvi window (assuming you have latex and xdvi installed). 

""" 

return self.matrix()._latex_() 

  

cpdef _act_on_(self, x, bint self_on_left): 

""" 

EXAMPLES:: 

  

sage: G = GL(4,7) 

sage: G.0 * vector([1,2,3,4]) 

(3, 2, 3, 4) 

sage: v = vector(GF(7), [3,2,1,-1]) 

sage: g = G.1 

sage: v * g == v * g.matrix() # indirect doctest 

True 

""" 

if not is_MatrixGroupElement(x) and x not in self.parent().base_ring(): 

try: 

if self_on_left: 

return self.matrix() * x 

else: 

return x * self.matrix() 

except TypeError: 

return None 

  

cpdef _richcmp_(self, other, int op): 

""" 

EXAMPLES:: 

  

sage: F = GF(3); MS = MatrixSpace(F,2) 

sage: gens = [MS([1,0, 0,1]), MS([1,1, 0,1])] 

sage: G = MatrixGroup(gens) 

sage: g = G([1,1, 0,1]) 

sage: h = G([1,1, 0,1]) 

sage: g == h 

True 

sage: g == G.one() 

False 

""" 

return richcmp(self.matrix(), other.matrix(), op) 

  

@cached_method 

def matrix(self): 

""" 

Obtain the usual matrix (as an element of a matrix space) 

associated to this matrix group element. 

  

EXAMPLES:: 

  

sage: F = GF(3); MS = MatrixSpace(F,2,2) 

sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])] 

sage: G = MatrixGroup(gens) 

sage: m = G.gen(0).matrix(); m 

[1 0] 

[0 1] 

sage: m.parent() 

Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 3 

  

sage: k = GF(7); G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])]) 

sage: g = G.0 

sage: g.matrix() 

[1 1] 

[0 1] 

sage: parent(g.matrix()) 

Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7 

  

Matrices have extra functionality that matrix group elements 

do not have:: 

  

sage: g.matrix().charpoly('t') 

t^2 + 5*t + 1 

""" 

# We do a slightly specialized version of sage.libs.gap.element.GapElement.matrix() 

# in order to use our current matrix space directly and avoid 

# some overhead safety checks. 

entries = self.gap().Flat() 

MS = self.parent().matrix_space() 

ring = MS.base_ring() 

m = MS([x.sage(ring=ring) for x in entries]) 

m.set_immutable() 

return m 

  

cpdef list list(self): 

""" 

Return list representation of this matrix. 

  

EXAMPLES:: 

  

sage: F = GF(3); MS = MatrixSpace(F,2,2) 

sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])] 

sage: G = MatrixGroup(gens) 

sage: g = G.0 

sage: g 

[1 0] 

[0 1] 

sage: g.list() 

[[1, 0], [0, 1]] 

""" 

return [r.list() for r in self.matrix().rows()] 

  

@cached_method 

def multiplicative_order(self): 

""" 

Return the order of this group element, which is the smallest 

positive integer `n` such that `g^n = 1`, or 

+Infinity if no such integer exists. 

  

EXAMPLES:: 

  

sage: k = GF(7) 

sage: G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])]); G 

Matrix group over Finite Field of size 7 with 2 generators ( 

[1 1] [1 0] 

[0 1], [0 2] 

) 

sage: G.order() 

21 

sage: G.gen(0).multiplicative_order(), G.gen(1).multiplicative_order() 

(7, 3) 

  

``order`` is just an alias for ``multiplicative_order``:: 

  

sage: G.gen(0).order(), G.gen(1).order() 

(7, 3) 

  

sage: k = QQ; 

sage: G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])]); G 

Matrix group over Rational Field with 2 generators ( 

[1 1] [1 0] 

[0 1], [0 2] 

) 

sage: G.order() 

+Infinity 

sage: G.gen(0).order(), G.gen(1).order() 

(+Infinity, +Infinity) 

  

sage: gl = GL(2, ZZ); gl 

General Linear Group of degree 2 over Integer Ring 

sage: g = gl.gen(2); g 

[1 1] 

[0 1] 

sage: g.order() 

+Infinity 

""" 

order = self.gap().Order() 

if order.IsInt(): 

return order.sage() 

else: 

assert order.IsInfinity() 

from sage.rings.all import Infinity 

return Infinity 

  

def word_problem(self, gens=None): 

r""" 

Solve the word problem. 

  

This method writes the group element as a product of the 

elements of the list ``gens``, or the standard generators of 

the parent of self if ``gens`` is None. 

  

INPUT: 

  

- ``gens`` -- a list/tuple/iterable of elements (or objects 

that can be converted to group elements), or ``None`` 

(default). By default, the generators of the parent group 

are used. 

  

OUTPUT: 

  

A factorization object that contains information about the 

order of factors and the exponents. A ``ValueError`` is raised 

if the group element cannot be written as a word in ``gens``. 

  

ALGORITHM: 

  

Use GAP, which has optimized algorithms for solving the word 

problem (the GAP functions ``EpimorphismFromFreeGroup`` and 

``PreImagesRepresentative``). 

  

EXAMPLES:: 

  

sage: G = GL(2,5); G 

General Linear Group of degree 2 over Finite Field of size 5 

sage: G.gens() 

( 

[2 0] [4 1] 

[0 1], [4 0] 

) 

sage: G(1).word_problem([G.gen(0)]) 

1 

sage: type(_) 

<class 'sage.structure.factorization.Factorization'> 

  

sage: g = G([0,4,1,4]) 

sage: g.word_problem() 

([4 1] 

[4 0])^-1 

  

Next we construct a more complicated element of the group from the 

generators:: 

  

sage: s,t = G.0, G.1 

sage: a = (s * t * s); b = a.word_problem(); b 

([2 0] 

[0 1]) * 

([4 1] 

[4 0]) * 

([2 0] 

[0 1]) 

sage: flatten(b) 

[ 

[2 0] [4 1] [2 0] 

[0 1], 1, [4 0], 1, [0 1], 1 

] 

sage: b.prod() == a 

True 

  

We solve the word problem using some different generators:: 

  

sage: s = G([2,0,0,1]); t = G([1,1,0,1]); u = G([0,-1,1,0]) 

sage: a.word_problem([s,t,u]) 

([2 0] 

[0 1])^-1 * 

([1 1] 

[0 1])^-1 * 

([0 4] 

[1 0]) * 

([2 0] 

[0 1])^-1 

  

We try some elements that don't actually generate the group:: 

  

sage: a.word_problem([t,u]) 

Traceback (most recent call last): 

... 

ValueError: word problem has no solution 

  

AUTHORS: 

  

- David Joyner and William Stein 

- David Loeffler (2010): fixed some bugs 

- Volker Braun (2013): LibGAP 

""" 

from sage.libs.gap.libgap import libgap 

G = self.parent() 

if gens: 

gen = lambda i:gens[i] 

H = libgap.Group([G(x).gap() for x in gens]) 

else: 

gen = G.gen 

H = G.gap() 

hom = H.EpimorphismFromFreeGroup() 

preimg = hom.PreImagesRepresentative(self.gap()) 

  

if preimg.is_bool(): 

assert preimg == libgap.eval('fail') 

raise ValueError('word problem has no solution') 

  

result = [] 

n = preimg.NumberSyllables().sage() 

exponent_syllable = libgap.eval('ExponentSyllable') 

generator_syllable = libgap.eval('GeneratorSyllable') 

for i in range(n): 

exponent = exponent_syllable(preimg, i+1).sage() 

generator = gen(generator_syllable(preimg, i+1).sage() - 1) 

result.append( (generator, exponent) ) 

result = Factorization(result) 

result._set_cr(True) 

return result 

  

def _unpickle_generic_element(G, mat): 

""" 

Unpickle the element in ``G`` given by ``mat``. 

  

EXAMPLES:: 

  

sage: m1 = matrix(SR, [[1,2],[3,4]]) 

sage: m2 = matrix(SR, [[1,3],[-1,0]]) 

sage: G = MatrixGroup(m1, m2) 

sage: m = G.an_element() 

sage: from sage.groups.matrix_gps.group_element import _unpickle_generic_element 

sage: _unpickle_generic_element(G, m.matrix()) == m 

True 

""" 

return G.element_class(G, mat, False, False)