Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

r""" 

Morphisms of simplicial complexes 

 

AUTHORS: 

 

- Benjamin Antieau <d.ben.antieau@gmail.com> (2009.06) 

 

- Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to 

work with the homset cache. 

 

This module implements morphisms of simplicial complexes. The input is given 

by a dictionary on the vertex set of a simplicial complex. The initialization 

checks that faces are sent to faces. 

 

There is also the capability to create the fiber product of two morphisms with 

the same codomain. 

 

EXAMPLES:: 

 

sage: S = SimplicialComplex([[0,2],[1,5],[3,4]], is_mutable=False) 

sage: H = Hom(S,S.product(S, is_mutable=False)) 

sage: H.diagonal_morphism() 

Simplicial complex morphism: 

From: Simplicial complex with vertex set (0, 1, 2, 3, 4, 5) and facets {(3, 4), (1, 5), (0, 2)} 

To: Simplicial complex with 36 vertices and 18 facets 

Defn: [0, 1, 2, 3, 4, 5] --> ['L0R0', 'L1R1', 'L2R2', 'L3R3', 'L4R4', 'L5R5'] 

 

sage: S = SimplicialComplex([[0,2],[1,5],[3,4]], is_mutable=False) 

sage: T = SimplicialComplex([[0,2],[1,3]], is_mutable=False) 

sage: f = {0:0,1:1,2:2,3:1,4:3,5:3} 

sage: H = Hom(S,T) 

sage: x = H(f) 

sage: x.image() 

Simplicial complex with vertex set (0, 1, 2, 3) and facets {(1, 3), (0, 2)} 

sage: x.is_surjective() 

True 

sage: x.is_injective() 

False 

sage: x.is_identity() 

False 

 

sage: S = simplicial_complexes.Sphere(2) 

sage: H = Hom(S,S) 

sage: i = H.identity() 

sage: i.image() 

Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2, 3), (0, 1, 2), (1, 2, 3), (0, 1, 3)} 

sage: i.is_surjective() 

True 

sage: i.is_injective() 

True 

sage: i.is_identity() 

True 

 

sage: S = simplicial_complexes.Sphere(2) 

sage: H = Hom(S,S) 

sage: i = H.identity() 

sage: j = i.fiber_product(i) 

sage: j 

Simplicial complex morphism: 

From: Simplicial complex with 4 vertices and 4 facets 

To: Minimal triangulation of the 2-sphere 

Defn: L1R1 |--> 1 

L3R3 |--> 3 

L2R2 |--> 2 

L0R0 |--> 0 

sage: S = simplicial_complexes.Sphere(2) 

sage: T = S.product(SimplicialComplex([[0,1]]), rename_vertices = False, is_mutable=False) 

sage: H = Hom(T,S) 

sage: T 

Simplicial complex with 8 vertices and 12 facets 

sage: T.vertices() 

((0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)) 

sage: f = {(0, 0): 0, (0, 1): 0, (1, 0): 1, (1, 1): 1, (2, 0): 2, (2, 1): 2, (3, 0): 3, (3, 1): 3} 

sage: x = H(f) 

sage: U = simplicial_complexes.Sphere(1) 

sage: G = Hom(U,S) 

sage: U 

Minimal triangulation of the 1-sphere 

sage: g = {0:0,1:1,2:2} 

sage: y = G(g) 

sage: z = y.fiber_product(x) 

sage: z # this is the mapping path space 

Simplicial complex morphism: 

From: Simplicial complex with 6 vertices and 6 facets 

To: Minimal triangulation of the 2-sphere 

Defn: ['L2R(2, 0)', 'L2R(2, 1)', 'L0R(0, 0)', 'L0R(0, 1)', 'L1R(1, 0)', 'L1R(1, 1)'] --> [2, 2, 0, 0, 1, 1] 

""" 

 

#***************************************************************************** 

# Copyright (C) 2009 D. Benjamin Antieau <d.ben.antieau@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty 

# of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 

# 

# See the GNU General Public License for more details; the full text 

# is available at: 

# 

# http://www.gnu.org/licenses/ 

# 

#***************************************************************************** 

from __future__ import print_function 

from __future__ import absolute_import 

 

from sage.homology.simplicial_complex import Simplex, SimplicialComplex 

from sage.matrix.constructor import matrix, zero_matrix 

from sage.rings.integer_ring import ZZ 

from sage.homology.chain_complex_morphism import ChainComplexMorphism 

from sage.combinat.permutation import Permutation 

from sage.algebras.steenrod.steenrod_algebra_misc import convert_perm 

from sage.categories.morphism import Morphism 

from sage.categories.homset import Hom 

from sage.categories.simplicial_complexes import SimplicialComplexes 

 

def is_SimplicialComplexMorphism(x): 

""" 

Returns ``True`` if and only if ``x`` is a morphism of simplicial complexes. 

 

EXAMPLES:: 

 

sage: from sage.homology.simplicial_complex_morphism import is_SimplicialComplexMorphism 

sage: S = SimplicialComplex([[0,1],[3,4]], is_mutable=False) 

sage: H = Hom(S,S) 

sage: f = {0:0,1:1,3:3,4:4} 

sage: x = H(f) 

sage: is_SimplicialComplexMorphism(x) 

True 

 

""" 

return isinstance(x,SimplicialComplexMorphism) 

 

class SimplicialComplexMorphism(Morphism): 

""" 

An element of this class is a morphism of simplicial complexes. 

""" 

def __init__(self,f,X,Y): 

""" 

Input is a dictionary ``f``, the domain ``X``, and the codomain ``Y``. 

 

One can define the dictionary on the vertices of `X`. 

 

EXAMPLES:: 

 

sage: S = SimplicialComplex([[0,1],[2],[3,4],[5]], is_mutable=False) 

sage: H = Hom(S,S) 

sage: f = {0:0,1:1,2:2,3:3,4:4,5:5} 

sage: g = {0:0,1:1,2:0,3:3,4:4,5:0} 

sage: x = H(f) 

sage: y = H(g) 

sage: x == y 

False 

sage: x.image() 

Simplicial complex with vertex set (0, 1, 2, 3, 4, 5) and facets {(3, 4), (5,), (2,), (0, 1)} 

sage: y.image() 

Simplicial complex with vertex set (0, 1, 3, 4) and facets {(3, 4), (0, 1)} 

sage: x.image() == y.image() 

False 

""" 

if not isinstance(X,SimplicialComplex) or not isinstance(Y,SimplicialComplex): 

raise ValueError("X and Y must be SimplicialComplexes") 

if not set(f.keys()) == set(X._vertex_set): 

raise ValueError("f must be a dictionary from the vertex set of X to single values in the vertex set of Y") 

dim = X.dimension() 

Y_faces = Y.faces() 

for k in range(dim+1): 

for i in X.faces()[k]: 

tup = i.tuple() 

fi = [] 

for j in tup: 

fi.append(f[j]) 

v = Simplex(set(fi)) 

if not v in Y_faces[v.dimension()]: 

raise ValueError("f must be a dictionary from the vertices of X to the vertices of Y") 

self._vertex_dictionary = f 

Morphism.__init__(self, Hom(X,Y,SimplicialComplexes())) 

 

def __eq__(self,x): 

""" 

Returns ``True`` if and only if ``self == x``. 

 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Sphere(2) 

sage: H = Hom(S,S) 

sage: i = H.identity() 

sage: i 

Simplicial complex endomorphism of Minimal triangulation of the 2-sphere 

Defn: 0 |--> 0 

1 |--> 1 

2 |--> 2 

3 |--> 3 

sage: f = {0:0,1:1,2:2,3:2} 

sage: j = H(f) 

sage: i==j 

False 

 

sage: T = SimplicialComplex([[1,2]], is_mutable=False) 

sage: T 

Simplicial complex with vertex set (1, 2) and facets {(1, 2)} 

sage: G = Hom(T,T) 

sage: k = G.identity() 

sage: g = {1:1,2:2} 

sage: l = G(g) 

sage: k == l 

True 

""" 

if not isinstance(x,SimplicialComplexMorphism) or self.codomain() != x.codomain() or self.domain() != x.domain() or self._vertex_dictionary != x._vertex_dictionary: 

return False 

else: 

return True 

 

def __call__(self,x,orientation=False): 

""" 

Input is a simplex of the domain. Output is the image simplex. 

 

If the optional argument ``orientation`` is ``True``, then this 

returns a pair ``(image simplex, oriented)`` where ``oriented`` 

is 1 or `-1` depending on whether the map preserves or reverses 

the orientation of the image simplex. 

 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Sphere(2) 

sage: T = simplicial_complexes.Sphere(3) 

sage: S 

Minimal triangulation of the 2-sphere 

sage: T 

Minimal triangulation of the 3-sphere 

sage: f = {0:0,1:1,2:2,3:3} 

sage: H = Hom(S,T) 

sage: x = H(f) 

sage: from sage.homology.simplicial_complex import Simplex 

sage: x(Simplex([0,2,3])) 

(0, 2, 3) 

 

An orientation-reversing example:: 

 

sage: X = SimplicialComplex([[0,1]], is_mutable=False) 

sage: g = Hom(X,X)({0:1, 1:0}) 

sage: g(Simplex([0,1])) 

(0, 1) 

sage: g(Simplex([0,1]), orientation=True) 

((0, 1), -1) 

""" 

dim = self.domain().dimension() 

if not isinstance(x,Simplex) or x.dimension() > dim or not x in self.domain().faces()[x.dimension()]: 

raise ValueError("x must be a simplex of the source of f") 

tup=x.tuple() 

fx=[] 

for j in tup: 

fx.append(self._vertex_dictionary[j]) 

if orientation: 

if len(set(fx)) == len(tup): 

oriented = Permutation(convert_perm(fx)).signature() 

else: 

oriented = 1 

return (Simplex(set(fx)), oriented) 

else: 

return Simplex(set(fx)) 

 

def _repr_type(self): 

""" 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Sphere(1) 

sage: T = simplicial_complexes.Sphere(2) 

sage: H = Hom(S,T) 

sage: f = {0:0,1:1,2:2} 

sage: H(f)._repr_type() 

'Simplicial complex' 

""" 

return "Simplicial complex" 

 

def _repr_defn(self): 

""" 

If there are fewer than 5 vertices, print the image of each vertex 

on a separate line. Otherwise, print the map as a single line. 

 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Simplex(1) 

sage: print(Hom(S,S).identity()._repr_defn()) 

0 |--> 0 

1 |--> 1 

sage: T = simplicial_complexes.Torus() 

sage: print(Hom(T,T).identity()._repr_defn()) 

[0, 1, 2, 3, 4, 5, 6] --> [0, 1, 2, 3, 4, 5, 6] 

""" 

vd = self._vertex_dictionary 

if len(vd) < 5: 

return '\n'.join("{} |--> {}".format(v, vd[v]) for v in vd) 

return "{} --> {}".format(vd.keys(), vd.values()) 

 

def associated_chain_complex_morphism(self,base_ring=ZZ,augmented=False,cochain=False): 

""" 

Returns the associated chain complex morphism of ``self``. 

 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Sphere(1) 

sage: T = simplicial_complexes.Sphere(2) 

sage: H = Hom(S,T) 

sage: f = {0:0,1:1,2:2} 

sage: x = H(f) 

sage: x 

Simplicial complex morphism: 

From: Minimal triangulation of the 1-sphere 

To: Minimal triangulation of the 2-sphere 

Defn: 0 |--> 0 

1 |--> 1 

2 |--> 2 

sage: a = x.associated_chain_complex_morphism() 

sage: a 

Chain complex morphism: 

From: Chain complex with at most 2 nonzero terms over Integer Ring 

To: Chain complex with at most 3 nonzero terms over Integer Ring 

sage: a._matrix_dictionary 

{0: [1 0 0] 

[0 1 0] 

[0 0 1] 

[0 0 0], 1: [1 0 0] 

[0 1 0] 

[0 0 0] 

[0 0 1] 

[0 0 0] 

[0 0 0], 2: []} 

sage: x.associated_chain_complex_morphism(augmented=True) 

Chain complex morphism: 

From: Chain complex with at most 3 nonzero terms over Integer Ring 

To: Chain complex with at most 4 nonzero terms over Integer Ring 

sage: x.associated_chain_complex_morphism(cochain=True) 

Chain complex morphism: 

From: Chain complex with at most 3 nonzero terms over Integer Ring 

To: Chain complex with at most 2 nonzero terms over Integer Ring 

sage: x.associated_chain_complex_morphism(augmented=True,cochain=True) 

Chain complex morphism: 

From: Chain complex with at most 4 nonzero terms over Integer Ring 

To: Chain complex with at most 3 nonzero terms over Integer Ring 

sage: x.associated_chain_complex_morphism(base_ring=GF(11)) 

Chain complex morphism: 

From: Chain complex with at most 2 nonzero terms over Finite Field of size 11 

To: Chain complex with at most 3 nonzero terms over Finite Field of size 11 

 

Some simplicial maps which reverse the orientation of a few simplices:: 

 

sage: g = {0:1, 1:2, 2:0} 

sage: H(g).associated_chain_complex_morphism()._matrix_dictionary 

{0: [0 0 1] 

[1 0 0] 

[0 1 0] 

[0 0 0], 1: [ 0 -1 0] 

[ 0 0 -1] 

[ 0 0 0] 

[ 1 0 0] 

[ 0 0 0] 

[ 0 0 0], 2: []} 

sage: X = SimplicialComplex([[0, 1]], is_mutable=False) 

sage: Hom(X,X)({0:1, 1:0}).associated_chain_complex_morphism()._matrix_dictionary 

{0: [0 1] 

[1 0], 1: [-1]} 

""" 

max_dim = max(self.domain().dimension(),self.codomain().dimension()) 

min_dim = min(self.domain().dimension(),self.codomain().dimension()) 

matrices = {} 

if augmented is True: 

m = matrix(base_ring,1,1,1) 

if not cochain: 

matrices[-1] = m 

else: 

matrices[-1] = m.transpose() 

for dim in range(min_dim+1): 

X_faces = list(self.domain().n_cells(dim)) 

Y_faces = list(self.codomain().n_cells(dim)) 

num_faces_X = len(X_faces) 

num_faces_Y = len(Y_faces) 

mval = [0 for i in range(num_faces_X*num_faces_Y)] 

for i in X_faces: 

y, oriented = self(i, orientation=True) 

if y.dimension() < dim: 

pass 

else: 

mval[X_faces.index(i)+(Y_faces.index(y)*num_faces_X)] = oriented 

m = matrix(base_ring,num_faces_Y,num_faces_X,mval,sparse=True) 

if not cochain: 

matrices[dim] = m 

else: 

matrices[dim] = m.transpose() 

for dim in range(min_dim+1,max_dim+1): 

try: 

l1 = len(self.codomain().n_cells(dim)) 

except KeyError: 

l1 = 0 

try: 

l2 = len(self.domain().n_cells(dim)) 

except KeyError: 

l2 = 0 

m = zero_matrix(base_ring,l1,l2,sparse=True) 

if not cochain: 

matrices[dim] = m 

else: 

matrices[dim] = m.transpose() 

if not cochain: 

return ChainComplexMorphism(matrices,\ 

self.domain().chain_complex(base_ring=base_ring,augmented=augmented,cochain=cochain),\ 

self.codomain().chain_complex(base_ring=base_ring,augmented=augmented,cochain=cochain)) 

else: 

return ChainComplexMorphism(matrices,\ 

self.codomain().chain_complex(base_ring=base_ring,augmented=augmented,cochain=cochain),\ 

self.domain().chain_complex(base_ring=base_ring,augmented=augmented,cochain=cochain)) 

 

def image(self): 

""" 

Computes the image simplicial complex of `f`. 

 

EXAMPLES:: 

 

sage: S = SimplicialComplex([[0,1],[2,3]], is_mutable=False) 

sage: T = SimplicialComplex([[0,1]], is_mutable=False) 

sage: f = {0:0,1:1,2:0,3:1} 

sage: H = Hom(S,T) 

sage: x = H(f) 

sage: x.image() 

Simplicial complex with vertex set (0, 1) and facets {(0, 1)} 

 

sage: S = SimplicialComplex(is_mutable=False) 

sage: H = Hom(S,S) 

sage: i = H.identity() 

sage: i.image() 

Simplicial complex with vertex set () and facets {()} 

sage: i.is_surjective() 

True 

sage: S = SimplicialComplex([[0,1]], is_mutable=False) 

sage: T = SimplicialComplex([[0,1], [0,2]], is_mutable=False) 

sage: f = {0:0,1:1} 

sage: g = {0:0,1:1} 

sage: k = {0:0,1:2} 

sage: H = Hom(S,T) 

sage: x = H(f) 

sage: y = H(g) 

sage: z = H(k) 

sage: x == y 

True 

sage: x == z 

False 

sage: x.image() 

Simplicial complex with vertex set (0, 1) and facets {(0, 1)} 

sage: y.image() 

Simplicial complex with vertex set (0, 1) and facets {(0, 1)} 

sage: z.image() 

Simplicial complex with vertex set (0, 2) and facets {(0, 2)} 

 

""" 

fa = [self(i) for i in self.domain().facets()] 

return SimplicialComplex(fa, maximality_check=True) 

 

def is_surjective(self): 

""" 

Returns ``True`` if and only if ``self`` is surjective. 

 

EXAMPLES:: 

 

sage: S = SimplicialComplex([(0,1,2)], is_mutable=False) 

sage: S 

Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)} 

sage: T = SimplicialComplex([(0,1)], is_mutable=False) 

sage: T 

Simplicial complex with vertex set (0, 1) and facets {(0, 1)} 

sage: H = Hom(S,T) 

sage: x = H({0:0,1:1,2:1}) 

sage: x.is_surjective() 

True 

 

sage: S = SimplicialComplex([[0,1],[2,3]], is_mutable=False) 

sage: T = SimplicialComplex([[0,1]], is_mutable=False) 

sage: f = {0:0,1:1,2:0,3:1} 

sage: H = Hom(S,T) 

sage: x = H(f) 

sage: x.is_surjective() 

True 

""" 

return self.codomain() == self.image() 

 

def is_injective(self): 

""" 

Returns ``True`` if and only if ``self`` is injective. 

 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Sphere(1) 

sage: T = simplicial_complexes.Sphere(2) 

sage: U = simplicial_complexes.Sphere(3) 

sage: H = Hom(T,S) 

sage: G = Hom(T,U) 

sage: f = {0:0,1:1,2:0,3:1} 

sage: x = H(f) 

sage: g = {0:0,1:1,2:2,3:3} 

sage: y = G(g) 

sage: x.is_injective() 

False 

sage: y.is_injective() 

True 

 

""" 

v = [self._vertex_dictionary[i[0]] for i in self.domain().faces()[0]] 

for i in v: 

if v.count(i) > 1: 

return False 

return True 

 

def is_identity(self): 

""" 

If ``self`` is an identity morphism, returns ``True``. 

Otherwise, ``False``. 

 

EXAMPLES:: 

 

sage: T = simplicial_complexes.Sphere(1) 

sage: G = Hom(T,T) 

sage: T 

Minimal triangulation of the 1-sphere 

sage: j = G({0:0,1:1,2:2}) 

sage: j.is_identity() 

True 

 

sage: S = simplicial_complexes.Sphere(2) 

sage: T = simplicial_complexes.Sphere(3) 

sage: H = Hom(S,T) 

sage: f = {0:0,1:1,2:2,3:3} 

sage: x = H(f) 

sage: x 

Simplicial complex morphism: 

From: Minimal triangulation of the 2-sphere 

To: Minimal triangulation of the 3-sphere 

Defn: 0 |--> 0 

1 |--> 1 

2 |--> 2 

3 |--> 3 

sage: x.is_identity() 

False 

""" 

if self.domain() != self.codomain(): 

return False 

else: 

f = dict() 

for i in self.domain()._vertex_set: 

f[i] = i 

if self._vertex_dictionary != f: 

return False 

else: 

return True 

 

def fiber_product(self, other, rename_vertices = True): 

""" 

Fiber product of ``self`` and ``other``. Both morphisms should have 

the same codomain. The method returns a morphism of simplicial 

complexes, which is the morphism from the space of the fiber product 

to the codomain. 

 

EXAMPLES:: 

 

sage: S = SimplicialComplex([[0,1],[1,2]], is_mutable=False) 

sage: T = SimplicialComplex([[0,2],[1]], is_mutable=False) 

sage: U = SimplicialComplex([[0,1],[2]], is_mutable=False) 

sage: H = Hom(S,U) 

sage: G = Hom(T,U) 

sage: f = {0:0,1:1,2:0} 

sage: g = {0:0,1:1,2:1} 

sage: x = H(f) 

sage: y = G(g) 

sage: z = x.fiber_product(y) 

sage: z 

Simplicial complex morphism: 

From: Simplicial complex with 4 vertices and facets {('L2R0',), ('L1R1',), ('L0R0', 'L1R2')} 

To: Simplicial complex with vertex set (0, 1, 2) and facets {(2,), (0, 1)} 

Defn: L1R2 |--> 1 

L1R1 |--> 1 

L2R0 |--> 0 

L0R0 |--> 0 

""" 

if self.codomain() != other.codomain(): 

raise ValueError("self and other must have the same codomain.") 

X = self.domain().product(other.domain(),rename_vertices = rename_vertices) 

v = [] 

f = dict() 

eff1 = self.domain()._vertex_set 

eff2 = other.domain()._vertex_set 

for i in eff1: 

for j in eff2: 

if self(Simplex([i])) == other(Simplex([j])): 

if rename_vertices: 

v.append("L"+str(i)+"R"+str(j)) 

f["L"+str(i)+"R"+str(j)] = self._vertex_dictionary[i] 

else: 

v.append((i,j)) 

f[(i,j)] = self._vertex_dictionary[i] 

return SimplicialComplexMorphism(f, X.generated_subcomplex(v), self.codomain()) 

 

def mapping_torus(self): 

r""" 

The mapping torus of a simplicial complex endomorphism 

 

The mapping torus is the simplicial complex formed by taking 

the product of the domain of ``self`` with a `4` point 

interval `[I_0, I_1, I_2, I_3]` and identifying vertices of 

the form `(I_0, v)` with `(I_3, w)` where `w` is the image of 

`v` under the given morphism. 

 

See :wikipedia:`Mapping torus` 

 

EXAMPLES:: 

 

sage: C = simplicial_complexes.Sphere(1) # Circle 

sage: T = Hom(C,C).identity().mapping_torus() ; T # Torus 

Simplicial complex with 9 vertices and 18 facets 

sage: T.homology() == simplicial_complexes.Torus().homology() 

True 

 

sage: f = Hom(C,C)({0:0,1:2,2:1}) 

sage: K = f.mapping_torus() ; K # Klein Bottle 

Simplicial complex with 9 vertices and 18 facets 

sage: K.homology() == simplicial_complexes.KleinBottle().homology() 

True 

 

TESTS:: 

 

sage: g = Hom(simplicial_complexes.Simplex([1]),C)({1:0}) 

sage: g.mapping_torus() 

Traceback (most recent call last): 

... 

ValueError: self must have the same domain and codomain. 

""" 

if self.domain() != self.codomain(): 

raise ValueError("self must have the same domain and codomain.") 

map_dict = self._vertex_dictionary 

interval = SimplicialComplex([["I0","I1"],["I1","I2"]]) 

product = interval.product(self.domain(),False) 

facets = list(product.maximal_faces()) 

for facet in self.domain()._facets: 

left = [ ("I0",v) for v in facet ] 

right = [ ("I2",map_dict[v]) for v in facet ] 

for i in range(facet.dimension()+1): 

facets.append(tuple(left[:i+1]+right[i:])) 

return SimplicialComplex(facets) 

 

def induced_homology_morphism(self, base_ring=None, cohomology=False): 

""" 

The map in (co)homology induced by this map 

 

INPUT: 

 

- ``base_ring`` -- must be a field (optional, default ``QQ``) 

 

- ``cohomology`` -- boolean (optional, default ``False``). If 

``True``, the map induced in cohomology rather than homology. 

 

EXAMPLES:: 

 

sage: S = simplicial_complexes.Sphere(1) 

sage: T = S.product(S, is_mutable=False) 

sage: H = Hom(S,T) 

sage: diag = H.diagonal_morphism() 

sage: h = diag.induced_homology_morphism(QQ) 

sage: h 

Graded vector space morphism: 

From: Homology module of Minimal triangulation of the 1-sphere over Rational Field 

To: Homology module of Simplicial complex with 9 vertices and 18 facets over Rational Field 

Defn: induced by: 

Simplicial complex morphism: 

From: Minimal triangulation of the 1-sphere 

To: Simplicial complex with 9 vertices and 18 facets 

Defn: 0 |--> L0R0 

1 |--> L1R1 

2 |--> L2R2 

 

We can view the matrix form for the homomorphism:: 

 

sage: h.to_matrix(0) # in degree 0 

[1] 

sage: h.to_matrix(1) # in degree 1 

[1] 

[0] 

sage: h.to_matrix() # the entire homomorphism 

[1|0] 

[-+-] 

[0|1] 

[0|0] 

[-+-] 

[0|0] 

 

We can evaluate it on (co)homology classes:: 

 

sage: coh = diag.induced_homology_morphism(QQ, cohomology=True) 

sage: coh.to_matrix(1) 

[1 0] 

sage: x,y = list(T.cohomology_ring(QQ).basis(1)) 

sage: coh(x) 

h^{1,0} 

sage: coh(2*x+3*y) 

2*h^{1,0} 

 

Note that the complexes must be immutable for this to 

work. Many, but not all, complexes are immutable when 

constructed:: 

 

sage: S.is_immutable() 

True 

sage: S.barycentric_subdivision().is_immutable() 

False 

sage: S2 = S.suspension() 

sage: S2.is_immutable() 

False 

sage: h = Hom(S,S2)({0: 0, 1:1, 2:2}).induced_homology_morphism() 

Traceback (most recent call last): 

... 

ValueError: the domain and codomain complexes must be immutable 

sage: S2.set_immutable(); S2.is_immutable() 

True 

sage: h = Hom(S,S2)({0: 0, 1:1, 2:2}).induced_homology_morphism() 

""" 

from .homology_morphism import InducedHomologyMorphism 

return InducedHomologyMorphism(self, base_ring, cohomology) 

 

def is_contiguous_to(self, other): 

r""" 

Return ``True`` if ``self`` is contiguous to ``other``. 

 

Two morphisms `f_0, f_1: K \to L` are *contiguous* if for any 

simplex `\sigma \in K`, the union `f_0(\sigma) \cup 

f_1(\sigma)` is a simplex in `L`. This is not a transitive 

relation, but it induces an equivalence relation on simplicial 

maps: `f` is equivalent to `g` if there is a finite sequence 

`f_0 = f`, `f_1`, ..., `f_n = g` such that `f_i` and `f_{i+1}` 

are contiguous for each `i`. 

 

This is related to maps being homotopic: if they are 

contiguous, then they induce homotopic maps on the geometric 

realizations. Given two homotopic maps on the geometric 

realizations, then after barycentrically subdividing `n` times 

for some `n`, the maps have simplicial approximations which 

are in the same contiguity class. (This last fact is only true 

if the domain is a *finite* simplicial complex, by the way.) 

 

See Section 3.5 of Spanier [Spa1966]_ for details. 

 

ALGORITHM: 

 

It is enough to check when `\sigma` ranges over the facets. 

 

INPUT: 

 

- ``other`` -- a simplicial complex morphism with the same 

domain and codomain as ``self`` 

 

EXAMPLES:: 

 

sage: K = simplicial_complexes.Simplex(1) 

sage: L = simplicial_complexes.Sphere(1) 

sage: H = Hom(K, L) 

sage: f = H({0: 0, 1: 1}) 

sage: g = H({0: 0, 1: 0}) 

sage: f.is_contiguous_to(f) 

True 

sage: f.is_contiguous_to(g) 

True 

sage: h = H({0: 1, 1: 2}) 

sage: f.is_contiguous_to(h) 

False 

 

TESTS:: 

 

sage: one = Hom(K,K).identity() 

sage: one.is_contiguous_to(f) 

False 

sage: one.is_contiguous_to(3) # nonsensical input 

False 

""" 

if not isinstance(other, SimplicialComplexMorphism): 

return False 

if self.codomain() != other.codomain() or self.domain() != other.domain(): 

return False 

domain = self.domain() 

codomain = self.codomain() 

return all(Simplex(self(sigma).set().union(other(sigma))) in codomain 

for sigma in domain.facets())