Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

# -*- coding: utf-8 -*- 

r""" 

Examples of simplicial sets. 

 

These are accessible via ``simplicial_sets.Sphere(3)``, 

``simplicial_sets.Torus()``, etc. Type ``simplicial_sets.[TAB]`` to 

see a complete list. 

 

AUTHORS: 

 

- John H. Palmieri (2016-07) 

""" 

#***************************************************************************** 

# Copyright (C) 2016 John H. Palmieri <palmieri at math.washington.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty 

# of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 

# 

# See the GNU General Public License for more details; the full text 

# is available at: 

# 

# http://www.gnu.org/licenses/ 

# 

#***************************************************************************** 

 

import re 

import os 

from pyparsing import OneOrMore, nestedExpr 

 

from sage.env import SAGE_ENV 

from sage.graphs.graph import Graph 

from sage.groups.abelian_gps.abelian_group import AbelianGroup 

from sage.misc.cachefunc import cached_method, cached_function 

from sage.misc.latex import latex 

from sage.rings.infinity import Infinity 

from sage.rings.integer import Integer 

from sage.structure.parent import Parent 

 

from .delta_complex import delta_complexes 

from .simplicial_set import AbstractSimplex, \ 

SimplicialSet_arbitrary, SimplicialSet_finite 

 

import sage.homology.simplicial_complexes_catalog as simplicial_complexes 

 

from sage.misc.lazy_import import lazy_import 

lazy_import('sage.categories.simplicial_sets', 'SimplicialSets') 

 

######################################################################## 

# The nerve of a finite monoid, used in sage.categories.finite_monoid. 

 

class Nerve(SimplicialSet_arbitrary): 

def __init__(self, monoid): 

""" 

The nerve of a multiplicative monoid. 

 

INPUT: 

 

- ``monoid`` -- a multiplicative monoid 

 

See 

:meth:`sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve` 

for full documentation. 

 

EXAMPLES:: 

 

sage: M = FiniteMonoids().example() 

sage: M 

An example of a finite multiplicative monoid: the integers modulo 12 

sage: X = M.nerve() 

sage: list(M) 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] 

sage: X.n_cells(0) 

[1] 

sage: X.n_cells(1) 

[0, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9] 

""" 

category = SimplicialSets().Pointed() 

Parent.__init__(self, category=category) 

self.rename("Nerve of {}".format(str(monoid))) 

self.rename_latex("B{}".format(latex(monoid))) 

 

e = AbstractSimplex(0, name=str(monoid.one()), 

latex_name=latex(monoid.one())) 

self._basepoint = e 

vertex = SimplicialSet_finite({e: None}, base_point=e) 

# self._n_skeleton: cache the highest dimensional skeleton 

# calculated so far for this simplicial set, along with its 

# dimension. 

self._n_skeleton = (0, vertex) 

self._monoid = monoid 

# self._simplex_data: a tuple whose elements are pairs (simplex, list 

# of monoid elements). Omit the base point. 

self._simplex_data = () 

 

def __eq__(self, other): 

""" 

Return ``True`` if ``self`` and ``other`` are equal. 

 

This checks that the underlying monoids and the underlying 

base points are the same. Because the base points will be 

different each time the nerve is constructed, different 

instances will not be equal. 

 

EXAMPLES:: 

 

sage: C3 = groups.misc.MultiplicativeAbelian([3]) 

sage: C3.nerve() == C3.nerve() 

False 

sage: BC3 = C3.nerve() 

sage: BC3 == BC3 

True 

""" 

return (isinstance(other, Nerve) 

and self._monoid == other._monoid 

and self.base_point() == other.base_point()) 

 

def __ne__(self, other): 

""" 

Return the negation of `__eq__`. 

 

EXAMPLES:: 

 

sage: C3 = groups.misc.MultiplicativeAbelian([3]) 

sage: G3 = groups.permutation.Cyclic(3) 

sage: C3.nerve() != G3.nerve() 

True 

sage: C3.nerve() != C3.nerve() 

True 

""" 

return not self == other 

 

@cached_method 

def __hash__(self): 

""" 

The hash is formed from the monoid and the base point. 

 

EXAMPLES:: 

 

sage: G3 = groups.permutation.Cyclic(3) 

sage: hash(G3.nerve()) # random 

17 

 

Different instances yield different base points, hence different hashes:: 

 

sage: X = G3.nerve() 

sage: Y = G3.nerve() 

sage: X.base_point() != Y.base_point() 

True 

sage: hash(X) != hash(Y) 

True 

""" 

return hash(self._monoid) ^ hash(self.base_point()) 

 

def n_skeleton(self, n): 

""" 

Return the `n`-skeleton of this simplicial set. 

 

That is, the simplicial set generated by all nondegenerate 

simplices of dimension at most `n`. 

 

INPUT: 

 

- ``n`` -- the dimension 

 

EXAMPLES:: 

 

sage: K4 = groups.misc.MultiplicativeAbelian([2,2]) 

sage: BK4 = simplicial_sets.ClassifyingSpace(K4) 

sage: BK4.n_skeleton(3) 

Simplicial set with 40 non-degenerate simplices 

sage: BK4.n_cells(1) == BK4.n_skeleton(3).n_cells(1) 

True 

sage: BK4.n_cells(3) == BK4.n_skeleton(1).n_cells(3) 

False 

""" 

from .simplicial_set_constructions import SubSimplicialSet 

monoid = self._monoid 

one = monoid.one() 

# Build up chains of elements inductively, from dimension d-1 

# to dimension d. We start with the cached 

# self._n_skeleton. If only the 0-skeleton has been 

# constructed, we construct the 1-cells by hand. 

start, skel = self._n_skeleton 

if start == n: 

return skel 

elif start > n: 

return skel.n_skeleton(n) 

 

# There is a single vertex. Name it after the identity 

# element of the monoid. 

e = skel.n_cells(0)[0] 

# Build the dictionary simplices, to be used for 

# constructing the simplicial set. 

simplices = skel.face_data() 

 

# face_dict: dictionary of simplices: keys are 

# composites of monoid elements (as tuples), values are 

# the corresponding simplices. 

face_dict = dict(self._simplex_data) 

 

if start == 0: 

for g in monoid: 

if g != one: 

x = AbstractSimplex(1, name=str(g), latex_name=latex(g)) 

simplices[x] = (e, e) 

face_dict[(g,)] = x 

start = 1 

 

for d in range(start+1, n+1): 

for g in monoid: 

if g == one: 

continue 

new_faces = {} 

for t in face_dict.keys(): 

if len(t) != d-1: 

continue 

# chain: chain of group elements to multiply, 

# as a tuple. 

chain = t + (g,) 

# bdries: the face maps applied to chain, in a 

# format suitable for passing to the DeltaComplex 

# constructor. 

x = AbstractSimplex(d, 

name=' * '.join(str(_) for _ in chain), 

latex_name = ' * '.join(latex(_) for _ in chain)) 

new_faces[chain] = x 

 

# Compute faces of x. 

faces = [face_dict[chain[1:]]] 

for i in range(d-1): 

product = chain[i] * chain[i+1] 

if product == one: 

# Degenerate. 

if d == 2: 

face = e.apply_degeneracies(i) 

else: 

face = (face_dict[chain[:i] 

+ chain[i+2:]].apply_degeneracies(i)) 

else: 

# Non-degenerate. 

face = (face_dict[chain[:i] 

+ (product,) + chain[i+2:]]) 

faces.append(face) 

faces.append(face_dict[chain[:-1]]) 

simplices[x] = faces 

face_dict.update(new_faces) 

 

K = SubSimplicialSet(simplices, self) 

self._n_skeleton = (n, K) 

self._simplex_data = face_dict.items() 

return K 

 

 

######################################################################## 

# Catalog of examples. These are accessed via simplicial_set_catalog.py. 

 

def Sphere(n): 

r""" 

Return the `n`-sphere as a simplicial set. 

 

It is constructed with two non-degenerate simplices: a vertex 

`v_0` (which is the base point) and an `n`-simplex `\sigma_n`. 

 

INPUT: 

 

- ``n`` -- integer 

 

EXAMPLES:: 

 

sage: S0 = simplicial_sets.Sphere(0) 

sage: S0 

S^0 

sage: S0.nondegenerate_simplices() 

[v_0, w_0] 

sage: S0.is_pointed() 

True 

sage: simplicial_sets.Sphere(4) 

S^4 

sage: latex(simplicial_sets.Sphere(4)) 

S^{4} 

sage: simplicial_sets.Sphere(4).nondegenerate_simplices() 

[v_0, sigma_4] 

""" 

v_0 = AbstractSimplex(0, name='v_0') 

if n == 0: 

w_0 = AbstractSimplex(0, name='w_0') 

return SimplicialSet_finite({v_0: None, w_0: None}, base_point=v_0, 

name='S^0') 

degens = range(n-2, -1, -1) 

degen_v = v_0.apply_degeneracies(*degens) 

sigma = AbstractSimplex(n, name='sigma_{}'.format(n), 

latex_name='\\sigma_{}'.format(n)) 

return SimplicialSet_finite({sigma: [degen_v] * (n+1)}, base_point=v_0, 

name='S^{}'.format(n), 

latex_name='S^{{{}}}'.format(n)) 

 

 

def ClassifyingSpace(group): 

r""" 

Return the classifying space of ``group``, as a simplicial set. 

 

INPUT: 

 

- ``group`` -- a finite group or finite monoid 

 

See 

:meth:`sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve` 

for more details and more examples. 

 

EXAMPLES:: 

 

sage: C2 = groups.misc.MultiplicativeAbelian([2]) 

sage: BC2 = simplicial_sets.ClassifyingSpace(C2) 

sage: H = BC2.homology(range(9), base_ring=GF(2)) 

sage: [H[i].dimension() for i in range(9)] 

[0, 1, 1, 1, 1, 1, 1, 1, 1] 

 

sage: Klein4 = groups.misc.MultiplicativeAbelian([2, 2]) 

sage: BK = simplicial_sets.ClassifyingSpace(Klein4) 

sage: BK 

Classifying space of Multiplicative Abelian group isomorphic to C2 x C2 

sage: BK.homology(range(5), base_ring=GF(2)) # long time (1 second) 

{0: Vector space of dimension 0 over Finite Field of size 2, 

1: Vector space of dimension 2 over Finite Field of size 2, 

2: Vector space of dimension 3 over Finite Field of size 2, 

3: Vector space of dimension 4 over Finite Field of size 2, 

4: Vector space of dimension 5 over Finite Field of size 2} 

""" 

X = group.nerve() 

X.rename('Classifying space of {}'.format(group)) 

return X 

 

 

def RealProjectiveSpace(n): 

""" 

Return real `n`-dimensional projective space, as a simplicial set. 

 

This is constructed as the `n`-skeleton of the nerve of the group 

of order 2, and therefore has a single non-degenerate simplex in 

each dimension up to `n`. 

 

EXAMPLES:: 

 

sage: simplicial_sets.RealProjectiveSpace(7) 

RP^7 

sage: RP5 = simplicial_sets.RealProjectiveSpace(5) 

sage: RP5.homology() 

{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: Z} 

sage: RP5 

RP^5 

sage: latex(RP5) 

RP^{5} 

 

sage: BC2 = simplicial_sets.RealProjectiveSpace(Infinity) 

sage: latex(BC2) 

RP^{\infty} 

""" 

if n == Infinity: 

X = AbelianGroup([2]).nerve() 

X.rename('RP^oo') 

X.rename_latex('RP^{\\infty}') 

else: 

X = RealProjectiveSpace(Infinity).n_skeleton(n) 

X.rename('RP^{}'.format(n)) 

X.rename_latex('RP^{{{}}}'.format(n)) 

return X 

 

 

def KleinBottle(): 

r""" 

Return the Klein bottle as a simplicial set. 

 

This converts the `\Delta`-complex version to a simplicial set. It 

has one 0-simplex, three 1-simplices, and two 2-simplices. 

 

EXAMPLES:: 

 

sage: K = simplicial_sets.KleinBottle() 

sage: K.f_vector() 

[1, 3, 2] 

sage: K.homology(reduced=False) 

{0: Z, 1: Z x C2, 2: 0} 

sage: K 

Klein bottle 

""" 

temp = SimplicialSet_finite(delta_complexes.KleinBottle()) 

pt = temp.n_cells(0)[0] 

return SimplicialSet_finite(temp.face_data(), base_point=pt, 

name='Klein bottle') 

 

 

def Torus(): 

r""" 

Return the torus as a simplicial set. 

 

This computes the product of the circle with itself, where the 

circle is represented using a single 0-simplex and a single 

1-simplex. Thus it has one 0-simplex, three 1-simplices, and two 

2-simplices. 

 

EXAMPLES:: 

 

sage: T = simplicial_sets.Torus() 

sage: T.f_vector() 

[1, 3, 2] 

sage: T.homology(reduced=False) 

{0: Z, 1: Z x Z, 2: Z} 

""" 

S1 = Sphere(1) 

T = S1.product(S1) 

T.rename('Torus') 

return T 

 

 

def Simplex(n): 

r""" 

Return the `n`-simplex as a simplicial set. 

 

EXAMPLES:: 

 

sage: K = simplicial_sets.Simplex(2) 

sage: K 

2-simplex 

sage: latex(K) 

\Delta^{2} 

sage: K.n_cells(0) 

[(0,), (1,), (2,)] 

sage: K.n_cells(1) 

[(0, 1), (0, 2), (1, 2)] 

sage: K.n_cells(2) 

[(0, 1, 2)] 

""" 

return SimplicialSet_finite(simplicial_complexes.Simplex(n), 

name='{}-simplex'.format(n), 

latex_name='\\Delta^{{{}}}'.format(n)) 

 

 

@cached_function 

def Empty(): 

""" 

Return the empty simplicial set. 

 

This should return the same simplicial set each time it is called. 

 

EXAMPLES:: 

 

sage: from sage.homology.simplicial_set_examples import Empty 

sage: E = Empty() 

sage: E 

Empty simplicial set 

sage: E.nondegenerate_simplices() 

[] 

sage: E is Empty() 

True 

""" 

return SimplicialSet_finite({}, name='Empty simplicial set') 

 

 

@cached_function 

def Point(): 

""" 

Return a single point called "*" as a simplicial set. 

 

This should return the same simplicial set each time it is called. 

 

EXAMPLES:: 

 

sage: P = simplicial_sets.Point() 

sage: P.is_pointed() 

True 

sage: P.nondegenerate_simplices() 

[*] 

 

sage: Q = simplicial_sets.Point() 

sage: P is Q 

True 

sage: P == Q 

True 

""" 

star = AbstractSimplex(0, name='*') 

return SimplicialSet_finite({star: None}, base_point=star, 

name='Point', 

latex_name='*') 

 

 

def Horn(n, k): 

r""" 

Return the horn $\Lambda^n_k$. 

 

This is the subsimplicial set of the $n$-simplex obtained by 

removing its $k$-th face. 

 

EXAMPLES:: 

 

sage: L = simplicial_sets.Horn(3, 0) 

sage: L 

(3, 0)-Horn 

sage: L.n_cells(3) 

[] 

sage: L.n_cells(2) 

[(0, 1, 2), (0, 1, 3), (0, 2, 3)] 

 

sage: L20 = simplicial_sets.Horn(2, 0) 

sage: latex(L20) 

\Lambda^{2}_{0} 

sage: L20.inclusion_map() 

Simplicial set morphism: 

From: (2, 0)-Horn 

To: 2-simplex 

Defn: [(0,), (1,), (2,), (0, 1), (0, 2)] --> [(0,), (1,), (2,), (0, 1), (0, 2)] 

""" 

K = Simplex(n) 

sigma = K.n_cells(n)[0] 

L = K.subsimplicial_set(K.faces(sigma)[:k] + K.faces(sigma)[k+1:]) 

L.rename('({}, {})-Horn'.format(n, k)) 

L.rename_latex('\\Lambda^{{{}}}_{{{}}}'.format(n, k)) 

return L 

 

 

def ComplexProjectiveSpace(n): 

r""" 

Return complex `n`-dimensional projective space, as a simplicial set. 

 

This is only defined when `n` is at most 4. It is constructed 

using the simplicial set decomposition provided by Kenzo, as 

described by Sergeraert [Ser2010]_ 

 

EXAMPLES:: 

 

sage: simplicial_sets.ComplexProjectiveSpace(2).homology(reduced=False) 

{0: Z, 1: 0, 2: Z, 3: 0, 4: Z} 

sage: CP3 = simplicial_sets.ComplexProjectiveSpace(3) 

sage: CP3 

CP^3 

sage: latex(CP3) 

CP^{3} 

sage: CP3.f_vector() 

[1, 0, 3, 10, 25, 30, 15] 

 

sage: K = CP3.suspension() # long time (1 second) 

sage: R = K.cohomology_ring(GF(2)) # long time 

sage: R.gens() # long time 

(h^{0,0}, h^{3,0}, h^{5,0}, h^{7,0}) 

sage: x = R.gens()[1] # long time 

sage: x.Sq(2) # long time 

h^{5,0} 

 

sage: simplicial_sets.ComplexProjectiveSpace(4).f_vector() 

[1, 0, 4, 22, 97, 255, 390, 315, 105] 

 

sage: simplicial_sets.ComplexProjectiveSpace(5) 

Traceback (most recent call last): 

... 

ValueError: complex projective spaces are only available in dimensions between 0 and 4 

""" 

if n < 0 or n > 4: 

raise ValueError('complex projective spaces are only available in dimensions between 0 and 4') 

if n == 0: 

return Point() 

if n == 1: 

return Sphere(2) 

if n == 2: 

# v: Kenzo name <<GBar>> 

v = AbstractSimplex(0, name='v') 

# f_2_i: Kenzo name <<GBar<- (i)><- NIL>>> for i=1,2 

f2_1 = AbstractSimplex(2, name='rho_0') 

f2_2 = AbstractSimplex(2, name='rho_1') 

# f3_110: Kenzo name <<GBar<- (1 1)><0 NIL><- NIL>>> 

# f3_011: Kenzo name <<GBar<0 (1)><- (1)><- NIL>>> 

# f3_111: Kenzo name <<GBar<1 (1)><- (1)><- NIL>>> 

f3_110 = AbstractSimplex(3, name='sigma_0', latex_name='\\sigma_0') 

f3_011 = AbstractSimplex(3, name='sigma_1', latex_name='\\sigma_1') 

f3_111 = AbstractSimplex(3, name='sigma_2', latex_name='\\sigma_2') 

# f4_101101: Kenzo name <<GBar<1-0 (1)><1-0 NIL><- (1)><- NIL>>> 

# f4_201110: Kenzo name <<GBar<2-0 (1)><1 (1)><0 NIL><- NIL>>> 

# f4_211010: Kenzo name <<GBar<2-1 (1)><0 (1)><0 NIL><- NIL>>> 

f4_101101 = AbstractSimplex(4, name='tau_0', latex_name='\\tau_0') 

f4_201110 = AbstractSimplex(4, name='tau_1', latex_name='\\tau_1') 

f4_211010 = AbstractSimplex(4, name='tau_2', latex_name='\\tau_2') 

K = SimplicialSet_finite({f2_1: (v.apply_degeneracies(0), 

v.apply_degeneracies(0), 

v.apply_degeneracies(0)), 

f2_2: (v.apply_degeneracies(0), 

v.apply_degeneracies(0), 

v.apply_degeneracies(0)), 

f3_110: (f2_1, f2_2, f2_1, v.apply_degeneracies(1, 0)), 

f3_011: (f2_1, f2_1, f2_1, f2_1), 

f3_111: (v.apply_degeneracies(1, 0), f2_1, f2_2, f2_1), 

f4_101101: (f2_1.apply_degeneracies(0), 

f2_1.apply_degeneracies(0), 

f3_011, 

f2_1.apply_degeneracies(2), 

f2_1.apply_degeneracies(2)), 

f4_201110: (f2_1.apply_degeneracies(1), 

f3_111, 

f3_011, 

f3_110, 

f2_1.apply_degeneracies(1)), 

f4_211010: (f2_1.apply_degeneracies(2), 

f3_111, 

f2_1.apply_degeneracies(1), 

f3_110, 

f2_1.apply_degeneracies(0))}, 

base_point=v, name='CP^2', 

latex_name='CP^{2}') 

return K 

if n == 3: 

file = os.path.join(SAGE_ENV['SAGE_EXTCODE'], 'kenzo', 'CP3.txt') 

data = simplicial_data_from_kenzo_output(file) 

v = [_ for _ in data.keys() if _.dimension() == 0][0] 

K = SimplicialSet_finite(data, base_point=v, name='CP^3', 

latex_name='CP^{3}') 

return K 

if n == 4: 

file = os.path.join(SAGE_ENV['SAGE_EXTCODE'], 'kenzo', 'CP4.txt') 

data = simplicial_data_from_kenzo_output(file) 

v = [_ for _ in data.keys() if _.dimension() == 0][0] 

K = SimplicialSet_finite(data, base_point=v, name='CP^4', 

latex_name='CP^{4}') 

return K 

 

 

def simplicial_data_from_kenzo_output(filename): 

""" 

Return data to construct a simplicial set, given Kenzo output. 

 

INPUT: 

 

- ``filename`` -- name of file containing the output from Kenzo's 

:func:`show-structure` function 

 

OUTPUT: data to construct a simplicial set from the Kenzo output 

 

Several files with Kenzo output are in the directory 

:file:`SAGE_ROOT/src/ext/kenzo/`. 

 

EXAMPLES:: 

 

sage: from sage.homology.simplicial_set_examples import simplicial_data_from_kenzo_output 

sage: from sage.homology.simplicial_set import SimplicialSet 

sage: sphere = os.path.join(SAGE_ENV['SAGE_EXTCODE'], 'kenzo', 'S4.txt') 

sage: S4 = SimplicialSet(simplicial_data_from_kenzo_output(sphere)) 

sage: S4.homology(reduced=False) 

{0: Z, 1: 0, 2: 0, 3: 0, 4: Z} 

""" 

with open(filename, 'r') as f: 

data = f.read() 

dim = 0 

start = 0 

# simplex_data: data for constructing the simplicial set. 

simplex_data = {} 

# simplex_names: simplices indexed by their names 

simplex_names = {} 

dim_idx = data.find('Dimension = {}:'.format(dim), start) 

while dim_idx != -1: 

start = dim_idx + len('Dimension = {}:'.format(dim)) 

new_dim_idx = data.find('Dimension = {}:'.format(dim+1), start) 

if new_dim_idx == -1: 

end = len(data) 

else: 

end = new_dim_idx 

if dim == 0: 

simplex_string = data[data.find('Vertices :') + len('Vertices :'):end] 

vertices = OneOrMore(nestedExpr()).parseString(simplex_string).asList()[0] 

for v in vertices: 

vertex = AbstractSimplex(0, name=v) 

simplex_data[vertex] = None 

simplex_names[v] = vertex 

else: 

simplex_string = data[start:end].strip() 

 

for s in [_.strip() for _ in simplex_string.split('Simplex : ')]: 

if s: 

name, face_str = [_.strip() for _ in s.split('Faces : ')] 

face_str = face_str.strip('()') 

face_str = face_str.split('<AbSm ') 

faces = [] 

for f in face_str[1:]: 

# f has the form 'DEGENS NAME>', possibly with a trailing space. 

# DEGENS is a hyphen-separated list, like 

# '3-2-1-0' or '0' or '-'. 

m = re.match('[-[0-9]+', f) 

degen_str = m.group(0) 

if degen_str.find('-') != -1: 

if degen_str == '-': 

degens = [] 

else: 

degens = [Integer(_) 

for _ in degen_str.split('-')] 

else: 

degens = [Integer(degen_str)] 

 

face_name = f[m.end(0):].strip()[:-1] 

nondegen = simplex_names[face_name] 

faces.append(nondegen.apply_degeneracies(*degens)) 

 

simplex = AbstractSimplex(dim, name=name) 

simplex_data[simplex] = faces 

simplex_names[name] = simplex 

dim += 1 

dim_idx = new_dim_idx 

return simplex_data 

 

def HopfMap(): 

r""" 

Return a simplicial model of the Hopf map `S^3 \to S^2` 

 

This is taken from Exemple II.1.19 in the thesis of Clemens Berger 

[Ber1991]_. 

 

The Hopf map is a fibration `S^3 \to S^2`. If it is viewed as 

attaching a 4-cell to the 2-sphere, the resulting adjunction space 

is 2-dimensional complex projective space. The resulting model is 

a bit larger than the one obtained from 

``simplicial_sets.ComplexProjectiveSpace(2)``. 

 

EXAMPLES:: 

 

sage: g = simplicial_sets.HopfMap() 

sage: g.domain() 

Simplicial set with 20 non-degenerate simplices 

sage: g.codomain() 

S^2 

 

Using the Hopf map to attach a cell:: 

 

sage: X = g.mapping_cone() 

sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2) 

sage: X.homology() == CP2.homology() 

True 

 

sage: X.f_vector() 

[1, 0, 5, 9, 6] 

sage: CP2.f_vector() 

[1, 0, 2, 3, 3] 

""" 

# The 2-sphere and its simplices. 

S2 = Sphere(2) 

v_0 = S2.n_cells(0)[0] 

v_1 = v_0.apply_degeneracies(0) 

v_2 = v_0.apply_degeneracies(0, 0) 

sigma = S2.n_cells(2)[0] 

s0_sigma = sigma.apply_degeneracies(0) 

s1_sigma = sigma.apply_degeneracies(1) 

s2_sigma = sigma.apply_degeneracies(2) 

# The 3-sphere and its simplices. 

w_0 = AbstractSimplex(0, name='w') 

w_1 = w_0.apply_degeneracies(0) 

w_2 = w_0.apply_degeneracies(0, 0) 

beta_11 = AbstractSimplex(1, name='beta_11', latex_name='\\beta_{11}') 

beta_22 = AbstractSimplex(1, name='beta_22', latex_name='\\beta_{22}') 

beta_23 = AbstractSimplex(1, name='beta_23', latex_name='\\beta_{23}') 

beta_44 = AbstractSimplex(1, name='beta_44', latex_name='\\beta_{44}') 

beta_1 = AbstractSimplex(2, name='beta_1', latex_name='\\beta_1') 

beta_2 = AbstractSimplex(2, name='beta_2', latex_name='\\beta_2') 

beta_3 = AbstractSimplex(2, name='beta_3', latex_name='\\beta_3') 

beta_4 = AbstractSimplex(2, name='beta_4', latex_name='\\beta_4') 

alpha_12 = AbstractSimplex(2, name='alpha_12', latex_name='\\alpha_{12}') 

alpha_23 = AbstractSimplex(2, name='alpha_23', latex_name='\\alpha_{23}') 

alpha_34 = AbstractSimplex(2, name='alpha_34', latex_name='\\alpha_{34}') 

alpha_45 = AbstractSimplex(2, name='alpha_45', latex_name='\\alpha_{45}') 

alpha_56 = AbstractSimplex(2, name='alpha_56', latex_name='\\alpha_{56}') 

alpha_1 = AbstractSimplex(3, name='alpha_1', latex_name='\\alpha_1') 

alpha_2 = AbstractSimplex(3, name='alpha_2', latex_name='\\alpha_2') 

alpha_3 = AbstractSimplex(3, name='alpha_3', latex_name='\\alpha_3') 

alpha_4 = AbstractSimplex(3, name='alpha_4', latex_name='\\alpha_4') 

alpha_5 = AbstractSimplex(3, name='alpha_5', latex_name='\\alpha_5') 

alpha_6 = AbstractSimplex(3, name='alpha_6', latex_name='\\alpha_6') 

S3 = SimplicialSet_finite({beta_11: (w_0, w_0), beta_22: (w_0, w_0), 

beta_23: (w_0, w_0), beta_44: (w_0, w_0), 

beta_1: (w_1, beta_11, w_1), 

beta_2: (w_1, beta_22, beta_23), 

beta_3: (w_1, beta_23, w_1), 

beta_4: (w_1, beta_44, w_1), 

alpha_12: (beta_11, beta_23, w_1), 

alpha_23: (beta_11, beta_22, w_1), 

alpha_34: (beta_11, beta_22, beta_44), 

alpha_45: (w_1, beta_23, beta_44), 

alpha_56: (w_1, beta_23, w_1), 

alpha_1: (beta_1, beta_3, alpha_12, w_2), 

alpha_2: (beta_11.apply_degeneracies(1), beta_2, 

alpha_23, alpha_12), 

alpha_3: (beta_11.apply_degeneracies(0), alpha_34, 

alpha_23, beta_4), 

alpha_4: (beta_1, beta_2, alpha_34, alpha_45), 

alpha_5: (w_2, alpha_45, alpha_56, beta_4), 

alpha_6: (w_2, beta_3, alpha_56, w_2)}, 

base_point=w_0) 

return S3.Hom(S2)({alpha_1:s0_sigma, alpha_2:s1_sigma, 

alpha_3:s2_sigma, alpha_4:s0_sigma, 

alpha_5:s2_sigma, alpha_6:s1_sigma})