Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

# -*- coding: utf-8 -*- 

r""" 

Interface to Frobby for fast computations on monomial ideals. 

 

The software package Frobby provides a number of computations on 

monomial ideals. The current main feature is the socle of a monomial 

ideal, which is largely equivalent to computing the maximal standard 

monomials, the Alexander dual or the irreducible decomposition. 

 

Operations on monomial ideals are much faster than algorithms designed 

for ideals in general, which is what makes a specialized library for 

these operations on monomial ideals useful. 

 

AUTHORS: 

 

- Bjarke Hammersholt Roune (2008-04-25): Wrote the Frobby C++ 

program and the initial version of the Python interface. 

 

NOTES: 

 

The official source for Frobby is <http://www.broune.com/frobby>, 

which also has documentation and papers describing the algorithms used. 

""" 

from __future__ import print_function 

 

from subprocess import Popen, PIPE 

from sage.misc.misc_c import prod 

 

class Frobby: 

def __call__(self, action, input=None, options=[], verbose=False): 

r""" 

This function calls Frobby as a command line program using streams 

for input and output. Strings passed as part of the command get 

broken up at whitespace. This is not done to the data passed 

via the streams. 

 

INPUT: 

 

- action -- A string telling Frobby what to do. 

- input -- None or a string that is passed to Frobby as standard in. 

- options -- A list of options without the dash in front. 

- verbose -- bool (default: false) Print detailed information. 

 

OUTPUT: 

 

- string -- What Frobby wrote to the standard output stream. 

 

EXAMPLES: 

 

We compute the lcm of an ideal provided in Monos format. :: 

 

sage: frobby("analyze", input="vars x,y,z;[x^2,x*y];", # optional - frobby 

....: options=["lcm", "iformat monos", "oformat 4ti2"]) # optional - frobby 

' 2 1 0\n\n2 generators\n3 variables\n' 

 

 

We get an exception if frobby reports an error. :: 

 

sage: frobby("do_dishes") # optional - frobby 

Traceback (most recent call last): 

... 

RuntimeError: Frobby reported an error: 

ERROR: No action has the prefix "do_dishes". 

 

AUTHOR: 

 

- Bjarke Hammersholt Roune (2008-04-27) 

""" 

command = ['frobby'] + action.split() 

for option in options: 

command += ('-' + option.strip()).split() 

 

if verbose: 

print("Frobby action: ", action) 

print("Frobby options: ", repr(options)) 

print("Frobby command: ", repr(command)) 

print("Frobby input:\n", input) 

 

process = Popen(command, stdin = PIPE, stdout = PIPE, stderr = PIPE) 

output, err = process.communicate(input = input) 

 

if verbose: 

print("Frobby output:\n", output) 

print("Frobby error:\n", err) 

if process.poll() != 0: 

raise RuntimeError("Frobby reported an error:\n" + err) 

 

return output 

 

def alexander_dual(self, monomial_ideal): 

r""" 

This function computes the Alexander dual of the passed-in 

monomial ideal. This ideal is the one corresponding to the 

simplicial complex whose faces are the complements of the 

nonfaces of the simplicial complex corresponding to the input 

ideal. 

 

INPUT: 

 

- monomial_ideal -- The monomial ideal to decompose. 

 

OUTPUT: 

 

The monomial corresponding to the Alexander dual. 

 

EXAMPLES: 

 

This is a simple example of computing irreducible decomposition. :: 

 

sage: (a, b, c, d) = QQ['a,b,c,d'].gens() # optional - frobby 

sage: id = ideal(a * b, b * c, c * d, d * a) # optional - frobby 

sage: alexander_dual = frobby.alexander_dual(id) # optional - frobby 

sage: true_alexander_dual = ideal(b * d, a * c) # optional - frobby 

sage: alexander_dual == true_alexander_dual # use sets to ignore order # optional - frobby 

True 

 

We see how it is much faster to compute this with frobby than the built-in 

procedure for simplicial complexes. 

 

sage: t=simplicial_complexes.PoincareHomologyThreeSphere() # optional - frobby 

sage: R=PolynomialRing(QQ,16,'x') # optional - frobby 

sage: I=R.ideal([prod([R.gen(i-1) for i in a]) for a in t.facets()]) # optional - frobby 

sage: len(frobby.alexander_dual(I).gens()) # optional - frobby 

643 

 

 

""" 

frobby_input = self._ideal_to_string(monomial_ideal) 

frobby_output = self('alexdual', input=frobby_input) 

return self._parse_ideals(frobby_output, monomial_ideal.ring())[0] 

 

def hilbert(self, monomial_ideal): 

r""" 

Computes the multigraded Hilbert-Poincaré series of the input 

ideal. Use the -univariate option to get the univariate series. 

 

The Hilbert-Poincaré series of a monomial ideal is the sum of all 

monomials not in the ideal. This sum can be written as a (finite) 

rational function with $(x_1-1)(x_2-1)...(x_n-1)$ in the denominator, 

assuming the variables of the ring are $x_1,x2,...,x_n$. This action 

computes the polynomial in the numerator of this fraction. 

 

INPUT: 

 

 

monomial_ideal -- A monomial ideal. 

 

OUTPUT: 

 

 

A polynomial in the same ring as the ideal. 

 

EXAMPLES:: 

 

sage: R.<d,b,c>=QQ[] # optional - frobby 

sage: I=[d*b*c,b^2*c,b^10,d^10]*R # optional - frobby 

sage: frobby.hilbert(I) # optional - frobby 

d^10*b^10*c + d^10*b^10 + d^10*b*c + b^10*c + d^10 + b^10 + d*b^2*c + d*b*c + b^2*c + 1 

 

""" 

frobby_input = self._ideal_to_string(monomial_ideal) 

frobby_output = self('hilbert', input=frobby_input) 

ring=monomial_ideal.ring() 

lines=frobby_output.split('\n') 

if lines[-1]=='': 

lines.pop(-1) 

if lines[-1]=='(coefficient)': 

lines.pop(-1) 

lines.pop(0) 

resul=0 

for l in lines: 

lis = [int(_) for _ in l.split()] 

resul += lis[0]+prod([ring.gen(i)**lis[i+1] for i in range(len(lis)-1)]) 

return resul 

 

def associated_primes(self, monomial_ideal): 

r""" 

This function computes the associated primes of the passed-in 

monomial ideal. 

 

INPUT: 

 

- monomial_ideal -- The monomial ideal to decompose. 

 

OUTPUT: 

 

A list of the associated primes of the monomial ideal. These ideals 

are constructed in the same ring as monomial_ideal is. 

 

EXAMPLES:: 

 

sage: R.<d,b,c>=QQ[] # optional - frobby 

sage: I=[d*b*c,b^2*c,b^10,d^10]*R # optional - frobby 

sage: frobby.associated_primes(I) # optional - frobby 

[Ideal (d, b) of Multivariate Polynomial Ring in d, b, c over Rational Field, 

Ideal (d, b, c) of Multivariate Polynomial Ring in d, b, c over Rational Field] 

 

""" 

frobby_input = self._ideal_to_string(monomial_ideal) 

frobby_output = self('assoprimes', input=frobby_input) 

lines=frobby_output.split('\n') 

lines.pop(0) 

if lines[-1]=='': 

lines.pop(-1) 

lists = [[int(_) for _ in a.split()] for a in lines] 

def to_monomial(exps): 

return [v ** e for v, e in zip(monomial_ideal.ring().gens(), exps) if e != 0] 

return [monomial_ideal.ring().ideal(to_monomial(a)) for a in lists] 

 

def dimension(self, monomial_ideal): 

r""" 

This function computes the dimension of the passed-in 

monomial ideal. 

 

INPUT: 

 

- monomial_ideal -- The monomial ideal to decompose. 

 

OUTPUT: 

 

The dimension of the zero set of the ideal. 

 

EXAMPLES:: 

 

sage: R.<d,b,c>=QQ[] # optional - frobby 

sage: I=[d*b*c,b^2*c,b^10,d^10]*R # optional - frobby 

sage: frobby.dimension(I) # optional - frobby 

1 

 

""" 

frobby_input = self._ideal_to_string(monomial_ideal) 

frobby_output = self('dimension', input=frobby_input) 

return int(frobby_output) 

 

def irreducible_decomposition(self, monomial_ideal): 

r""" 

This function computes the irreducible decomposition of the passed-in 

monomial ideal. I.e. it computes the unique minimal list of 

irreducible monomial ideals whose intersection equals monomial_ideal. 

 

INPUT: 

 

- monomial_ideal -- The monomial ideal to decompose. 

 

OUTPUT: 

 

A list of the unique irredundant irreducible components of 

monomial_ideal. These ideals are constructed in the same ring 

as monomial_ideal is. 

 

EXAMPLES: 

 

This is a simple example of computing irreducible decomposition. :: 

 

sage: (x, y, z) = QQ['x,y,z'].gens() # optional - frobby 

sage: id = ideal(x ** 2, y ** 2, x * z, y * z) # optional - frobby 

sage: decom = frobby.irreducible_decomposition(id) # optional - frobby 

sage: true_decom = [ideal(x, y), ideal(x ** 2, y ** 2, z)] # optional - frobby 

sage: set(decom) == set(true_decom) # use sets to ignore order # optional - frobby 

True 

 

We now try the special case of the zero ideal in different rings. 

 

We should also try PolynomialRing(QQ, names=[]), but it has a bug 

which makes that impossible (see :trac:`3028`). :: 

 

sage: rings = [ZZ['x'], CC['x,y']] # optional - frobby 

sage: allOK = True # optional - frobby 

sage: for ring in rings: # optional - frobby 

....: id0 = ring.ideal(0) # optional - frobby 

....: decom0 = frobby.irreducible_decomposition(id0) # optional - frobby 

....: allOK = allOK and decom0 == [id0] # optional - frobby 

sage: allOK # optional - frobby 

True 

 

Finally, we try the ideal that is all of the ring in different 

rings. :: 

 

sage: rings = [ZZ['x'], CC['x,y']] # optional - frobby 

sage: allOK = True # optional - frobby 

sage: for ring in rings: # optional - frobby 

....: id1 = ring.ideal(1) # optional - frobby 

....: decom1 = frobby.irreducible_decomposition(id1) # optional - frobby 

....: allOK = allOK and decom1 == [id1] # optional - frobby 

sage: allOK # optional - frobby 

True 

""" 

frobby_input = self._ideal_to_string(monomial_ideal) 

frobby_output = self('irrdecom', input=frobby_input) 

return self._parse_ideals(frobby_output, monomial_ideal.ring()) 

 

def _parse_ideals(self, string, ring): 

r""" 

This function parses a list of irreducible monomial ideals in 4ti2 

format and constructs them within the passed-in ring. 

 

INPUT: 

 

- string -- The string to be parsed. 

- ring -- The ring within which to construct the irreducible 

monomial ideals within. 

 

OUTPUT: 

 

A list of the monomial ideals in the order they are listed 

in the string. 

 

EXAMPLES:: 

 

sage: ring = QQ['x,y,z'] # optional - frobby 

sage: (x, y, z) = ring.gens() # optional - frobby 

sage: string = '2 3\n1 2 3\n0 5 0\n2 3\n1 2 3\n4 5 6' # optional - frobby 

sage: frobby._parse_ideals(string, ring) # optional - frobby 

[Ideal (x*y^2*z^3, y^5) of Multivariate Polynomial Ring in x, y, z over Rational Field, 

Ideal (x*y^2*z^3, x^4*y^5*z^6) of Multivariate Polynomial Ring in x, y, z over Rational Field] 

 

""" 

lines=string.split('\n') 

if lines[-1]=='': 

lines.pop(-1) 

matrices=[] 

while len(lines)>0: 

if lines[0].split()[1]=='ring': 

lines.pop(0) 

lines.pop(0) 

matrices.append('1 '+str(ring.ngens())+'\n'+'0 '*ring.ngens()+'\n') 

else: 

nrows=int(lines[0].split()[0]) 

nmatrix=lines.pop(0)+'\n' 

for i in range(nrows): 

nmatrix+=lines.pop(0)+'\n' 

matrices.append(nmatrix) 

def to_ideal(exps): 

if len(exps)==0: 

return ring.zero_ideal() 

gens = [prod([v ** e for v, e in zip(ring.gens(), expo) if e != 0]) for expo in exps] 

return ring.ideal(gens or ring(1)) 

return [to_ideal(self._parse_4ti2_matrix(a)) for a in matrices] or [ring.ideal()] 

 

def _parse_4ti2_matrix(self, string): 

r""" 

Parses a string of a matrix in 4ti2 format into a nested list 

representation. 

 

INPUT: 

 

- string -- The string to be parsed. 

 

OUTPUT: 

 

A list of rows of the matrix, where each row is represented as 

a list of integers. 

 

EXAMPLES:: 

 

The format is straight-forward, as this example shows. :: 

 

sage: string = '2 3\n1 2 3\n 0 5 0' # optional - frobby 

sage: parsed_matrix = frobby._parse_4ti2_matrix(string) # optional - frobby 

sage: reference_matrix = [[1, 2, 3], [0, 5, 0]] # optional - frobby 

sage: parsed_matrix == reference_matrix # optional - frobby 

True 

 

A number of syntax errors lead to exceptions. :: 

 

sage: string = '1 1\n one' # optional - frobby 

sage: frobby._parse_4ti2_matrix(string) # optional - frobby 

Traceback (most recent call last): 

... 

RuntimeError: Format error: encountered non-number. 

""" 

try: 

ints = [int(_) for _ in string.split()] 

except ValueError: 

raise RuntimeError("Format error: encountered non-number.") 

if len(ints) < 2: 

raise RuntimeError("Format error: " + 

"matrix dimensions not specified.") 

 

term_count = ints[0] 

var_count = ints[1] 

ints = ints[2:] 

 

if term_count * var_count != len(ints): 

raise RuntimeError("Format error: incorrect matrix dimensions.") 

 

exponents = [] 

for i in range(term_count): 

exponents.append(ints[:var_count]) 

ints = ints[var_count:] 

return exponents; 

 

def _ideal_to_string(self, monomial_ideal): 

r""" 

This function formats the passed-in monomial ideal in 4ti2 format. 

 

INPUT: 

 

- monomial_ideal -- The monomial ideal to be formatted as a string. 

 

OUTPUT: 

 

A string in 4ti2 format representing the ideal. 

 

EXAMPLES:: 

 

sage: ring = QQ['x,y,z'] # optional - frobby 

sage: (x, y, z) = ring.gens() # optional - frobby 

sage: id = ring.ideal(x ** 2, x * y * z) # optional - frobby 

sage: frobby._ideal_to_string(id) == "2 3\n2 0 0\n1 1 1\n" # optional - frobby 

True 

""" 

# There is no exponent vector that represents zero as a generator, so 

# we take care that the zero ideal gets represented correctly in the 

# 4ti2 format; as an ideal with no generators. 

if monomial_ideal.is_zero(): 

gens = [] 

else: 

gens = monomial_ideal.gens(); 

var_count = monomial_ideal.ring().ngens(); 

first_row = str(len(gens)) + ' ' + str(var_count) + '\n' 

rows = [self._monomial_to_string(_) for _ in gens]; 

return first_row + "".join(rows) 

 

def _monomial_to_string(self, monomial): 

r""" 

This function formats the exponent vector of a monomial as a string 

containing a space-delimited list of integers. 

 

INPUT: 

 

- monomial -- The monomial whose exponent vector is to be formatted. 

 

OUTPUT: 

 

A string representing the exponent vector of monomial. 

 

EXAMPLES:: 

 

sage: ring = QQ['x,y,z'] # optional - frobby 

sage: (x, y, z) = ring.gens() # optional - frobby 

sage: monomial = x * x * z # optional - frobby 

sage: frobby._monomial_to_string(monomial) == '2 0 1\n' # optional - frobby 

True 

""" 

exponents = monomial.exponents() 

if len(exponents) != 1: 

raise RuntimeError(str(monomial) + " is not a monomial.") 

exponents = exponents[0] 

 

# for a multivariate ring exponents will be an ETuple, while 

# for a univariate ring exponents will be just an int. To get 

# this to work we make the two cases look alike. 

if isinstance(exponents, int): 

exponents = [exponents] 

strings = [str(exponents[var]) for var in range(len(exponents))] 

return ' '.join(strings) + '\n' 

 

# This singleton instance is what should be used outside this file. 

frobby = Frobby()