Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

r""" 

Interface to Singular 

 

AUTHORS: 

 

- David Joyner and William Stein (2005): first version 

 

- Martin Albrecht (2006-03-05): code so singular.[tab] and x = 

singular(...), x.[tab] includes all singular commands. 

 

- Martin Albrecht (2006-03-06): This patch adds the equality symbol to 

singular. Also fix a problem in which " " as prompt means comparison 

will break all further communication with Singular. 

 

- Martin Albrecht (2006-03-13): added current_ring() and 

current_ring_name() 

 

- William Stein (2006-04-10): Fixed problems with ideal constructor 

 

- Martin Albrecht (2006-05-18): added sage_poly. 

 

- Simon King (2010-11-23): Reduce the overhead caused by waiting for 

the Singular prompt by doing garbage collection differently. 

 

- Simon King (2011-06-06): Make conversion from Singular to Sage more flexible. 

 

- Simon King (2015): Extend pickling capabilities. 

 

Introduction 

------------ 

 

This interface is extremely flexible, since it's exactly like 

typing into the Singular interpreter, and anything that works there 

should work here. 

 

The Singular interface will only work if Singular is installed on 

your computer; this should be the case, since Singular is included 

with Sage. The interface offers three pieces of functionality: 

 

 

#. ``singular_console()`` - A function that dumps you 

into an interactive command-line Singular session. 

 

#. ``singular(expr, type='def')`` - Creation of a 

Singular object. This provides a Pythonic interface to Singular. 

For example, if ``f=singular(10)``, then 

``f.factorize()`` returns the factorization of 

`10` computed using Singular. 

 

#. ``singular.eval(expr)`` - Evaluation of arbitrary 

Singular expressions, with the result returned as a string. 

 

Of course, there are polynomial rings and ideals in Sage as well 

(often based on a C-library interface to Singular). One can convert 

an object in the Singular interpreter interface to Sage by the 

method ``sage()``. 

 

 

Tutorial 

-------- 

 

EXAMPLES: First we illustrate multivariate polynomial 

factorization:: 

 

sage: R1 = singular.ring(0, '(x,y)', 'dp') 

sage: R1 

polynomial ring, over a field, global ordering 

// coefficients: QQ 

// number of vars : 2 

// block 1 : ordering dp 

// : names x y 

// block 2 : ordering C 

sage: f = singular('9x16 - 18x13y2 - 9x12y3 + 9x10y4 - 18x11y2 + 36x8y4 + 18x7y5 - 18x5y6 + 9x6y4 - 18x3y6 - 9x2y7 + 9y8') 

sage: f 

9*x^16-18*x^13*y^2-9*x^12*y^3+9*x^10*y^4-18*x^11*y^2+36*x^8*y^4+18*x^7*y^5-18*x^5*y^6+9*x^6*y^4-18*x^3*y^6-9*x^2*y^7+9*y^8 

sage: f.parent() 

Singular 

 

:: 

 

sage: F = f.factorize(); F 

[1]: 

_[1]=9 

_[2]=x^6-2*x^3*y^2-x^2*y^3+y^4 

_[3]=-x^5+y^2 

[2]: 

1,1,2 

 

:: 

 

sage: F[1] 

9, 

x^6-2*x^3*y^2-x^2*y^3+y^4, 

-x^5+y^2 

sage: F[1][2] 

x^6-2*x^3*y^2-x^2*y^3+y^4 

 

We can convert `f` and each exponent back to Sage objects 

as well. 

 

:: 

 

sage: g = f.sage(); g 

9*x^16 - 18*x^13*y^2 - 9*x^12*y^3 + 9*x^10*y^4 - 18*x^11*y^2 + 36*x^8*y^4 + 18*x^7*y^5 - 18*x^5*y^6 + 9*x^6*y^4 - 18*x^3*y^6 - 9*x^2*y^7 + 9*y^8 

sage: F[1][2].sage() 

x^6 - 2*x^3*y^2 - x^2*y^3 + y^4 

sage: g.parent() 

Multivariate Polynomial Ring in x, y over Rational Field 

 

This example illustrates polynomial GCD's:: 

 

sage: R2 = singular.ring(0, '(x,y,z)', 'lp') 

sage: a = singular.new('3x2*(x+y)') 

sage: b = singular.new('9x*(y2-x2)') 

sage: g = a.gcd(b) 

sage: g 

x^2+x*y 

 

This example illustrates computation of a Groebner basis:: 

 

sage: R3 = singular.ring(0, '(a,b,c,d)', 'lp') 

sage: I = singular.ideal(['a + b + c + d', 'a*b + a*d + b*c + c*d', 'a*b*c + a*b*d + a*c*d + b*c*d', 'a*b*c*d - 1']) 

sage: I2 = I.groebner() 

sage: I2 

c^2*d^6-c^2*d^2-d^4+1, 

c^3*d^2+c^2*d^3-c-d, 

b*d^4-b+d^5-d, 

b*c-b*d^5+c^2*d^4+c*d-d^6-d^2, 

b^2+2*b*d+d^2, 

a+b+c+d 

 

The following example is the same as the one in the Singular - Gap 

interface documentation:: 

 

sage: R = singular.ring(0, '(x0,x1,x2)', 'lp') 

sage: I1 = singular.ideal(['x0*x1*x2 -x0^2*x2', 'x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2', 'x0*x1-x0*x2-x1*x2']) 

sage: I2 = I1.groebner() 

sage: I2 

x1^2*x2^2, 

x0*x2^3-x1^2*x2^2+x1*x2^3, 

x0*x1-x0*x2-x1*x2, 

x0^2*x2-x0*x2^2-x1*x2^2 

sage: I2.sage() 

Ideal (x1^2*x2^2, x0*x2^3 - x1^2*x2^2 + x1*x2^3, x0*x1 - x0*x2 - x1*x2, x0^2*x2 - x0*x2^2 - x1*x2^2) of Multivariate Polynomial Ring in x0, x1, x2 over Rational Field 

 

 

This example illustrates moving a polynomial from one ring to 

another. It also illustrates calling a method of an object with an 

argument. 

 

:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: f = singular('x3+y3+(x-y)*x2y2+z2') 

sage: f 

x^3*y^2-x^2*y^3+x^3+y^3+z^2 

sage: R1 = singular.ring(0, '(x,y,z)', 'ds') 

sage: f = R.fetch(f) 

sage: f 

z^2+x^3+y^3+x^3*y^2-x^2*y^3 

 

We can calculate the Milnor number of `f`:: 

 

sage: _=singular.LIB('sing.lib') # assign to _ to suppress printing 

sage: f.milnor() 

4 

 

The Jacobian applied twice yields the Hessian matrix of 

`f`, with which we can compute. 

 

:: 

 

sage: H = f.jacob().jacob() 

sage: H 

6*x+6*x*y^2-2*y^3,6*x^2*y-6*x*y^2, 0, 

6*x^2*y-6*x*y^2, 6*y+2*x^3-6*x^2*y,0, 

0, 0, 2 

sage: H.sage() 

[6*x + 6*x*y^2 - 2*y^3 6*x^2*y - 6*x*y^2 0] 

[ 6*x^2*y - 6*x*y^2 6*y + 2*x^3 - 6*x^2*y 0] 

[ 0 0 2] 

sage: H.det() # This is a polynomial in Singular 

72*x*y+24*x^4-72*x^3*y+72*x*y^3-24*y^4-48*x^4*y^2+64*x^3*y^3-48*x^2*y^4 

sage: H.det().sage() # This is the corresponding polynomial in Sage 

72*x*y + 24*x^4 - 72*x^3*y + 72*x*y^3 - 24*y^4 - 48*x^4*y^2 + 64*x^3*y^3 - 48*x^2*y^4 

 

The 1x1 and 2x2 minors:: 

 

sage: H.minor(1) 

2, 

6*y+2*x^3-6*x^2*y, 

6*x^2*y-6*x*y^2, 

6*x^2*y-6*x*y^2, 

6*x+6*x*y^2-2*y^3 

sage: H.minor(2) 

12*y+4*x^3-12*x^2*y, 

12*x^2*y-12*x*y^2, 

12*x^2*y-12*x*y^2, 

12*x+12*x*y^2-4*y^3, 

-36*x*y-12*x^4+36*x^3*y-36*x*y^3+12*y^4+24*x^4*y^2-32*x^3*y^3+24*x^2*y^4 

 

:: 

 

sage: _=singular.eval('option(redSB)') 

sage: H.minor(1).groebner() 

1 

 

Computing the Genus 

------------------- 

 

We compute the projective genus of ideals that define curves over 

`\QQ`. It is *very important* to load the 

``normal.lib`` library before calling the 

``genus`` command, or you'll get an error message. 

 

EXAMPLES:: 

 

sage: singular.lib('normal.lib') 

sage: R = singular.ring(0,'(x,y)','dp') 

sage: i2 = singular.ideal('y9 - x2*(x-1)^9 + x') 

sage: i2.genus() 

40 

 

Note that the genus can be much smaller than the degree:: 

 

sage: i = singular.ideal('y9 - x2*(x-1)^9') 

sage: i.genus() 

0 

 

An Important Concept 

-------------------- 

 

AUTHORS: 

 

- Neal Harris 

 

The following illustrates an important concept: how Sage interacts 

with the data being used and returned by Singular. Let's compute a 

Groebner basis for some ideal, using Singular through Sage. 

 

:: 

 

sage: singular.lib('poly.lib') 

sage: singular.ring(32003, '(a,b,c,d,e,f)', 'lp') 

polynomial ring, over a field, global ordering 

// coefficients: ZZ/32003 

// number of vars : 6 

// block 1 : ordering lp 

// : names a b c d e f 

// block 2 : ordering C 

sage: I = singular.ideal('cyclic(6)') 

sage: g = singular('groebner(I)') 

Traceback (most recent call last): 

... 

TypeError: Singular error: 

... 

 

We restart everything and try again, but correctly. 

 

:: 

 

sage: singular.quit() 

sage: singular.lib('poly.lib'); R = singular.ring(32003, '(a,b,c,d,e,f)', 'lp') 

sage: I = singular.ideal('cyclic(6)') 

sage: I.groebner() 

f^48-2554*f^42-15674*f^36+12326*f^30-12326*f^18+15674*f^12+2554*f^6-1, 

... 

 

It's important to understand why the first attempt at computing a 

basis failed. The line where we gave singular the input 

'groebner(I)' was useless because Singular has no idea what 'I' is! 

Although 'I' is an object that we computed with calls to Singular 

functions, it actually lives in Sage. As a consequence, the name 

'I' means nothing to Singular. When we called 

``I.groebner()``, Sage was able to call the groebner 

function on'I' in Singular, since 'I' actually means something to 

Sage. 

 

Long Input 

---------- 

 

The Singular interface reads in even very long input (using files) 

in a robust manner, as long as you are creating a new object. 

 

:: 

 

sage: t = '"%s"'%10^15000 # 15 thousand character string (note that normal Singular input must be at most 10000) 

sage: a = singular.eval(t) 

sage: a = singular(t) 

 

TESTS: 

 

We test an automatic coercion:: 

 

sage: a = 3*singular('2'); a 

6 

sage: type(a) 

<class 'sage.interfaces.singular.SingularElement'> 

sage: a = singular('2')*3; a 

6 

sage: type(a) 

<class 'sage.interfaces.singular.SingularElement'> 

 

Create a ring over GF(9) to check that ``gftables`` has been installed, 

see :trac:`11645`:: 

 

sage: singular.eval("ring testgf9 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);") 

'' 

""" 

 

#***************************************************************************** 

# Copyright (C) 2005 David Joyner and William Stein 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

from __future__ import absolute_import 

from six.moves import range 

from six import integer_types, string_types 

 

import os 

import re 

import sys 

import pexpect 

from time import sleep 

 

from .expect import Expect, ExpectElement, FunctionElement, ExpectFunction 

 

from sage.interfaces.tab_completion import ExtraTabCompletion 

from sage.structure.sequence import Sequence 

from sage.structure.element import RingElement 

 

import sage.rings.integer 

 

from sage.misc.misc import get_verbose 

from sage.misc.superseded import deprecation 

from sage.docs.instancedoc import instancedoc 

 

from six import reraise as raise_ 

 

class SingularError(RuntimeError): 

""" 

Raised if Singular printed an error message 

""" 

pass 

 

 

class Singular(ExtraTabCompletion, Expect): 

r""" 

Interface to the Singular interpreter. 

 

EXAMPLES: A Groebner basis example. 

 

:: 

 

sage: R = singular.ring(0, '(x0,x1,x2)', 'lp') 

sage: I = singular.ideal([ 'x0*x1*x2 -x0^2*x2', 'x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2', 'x0*x1-x0*x2-x1*x2']) 

sage: I.groebner() 

x1^2*x2^2, 

x0*x2^3-x1^2*x2^2+x1*x2^3, 

x0*x1-x0*x2-x1*x2, 

x0^2*x2-x0*x2^2-x1*x2^2 

 

AUTHORS: 

 

- David Joyner and William Stein 

""" 

def __init__(self, maxread=None, script_subdirectory=None, 

logfile=None, server=None,server_tmpdir=None, 

seed=None): 

""" 

EXAMPLES:: 

 

sage: singular == loads(dumps(singular)) 

True 

""" 

prompt = '> ' 

Expect.__init__(self, 

terminal_echo=False, 

name = 'singular', 

prompt = prompt, 

# no tty, fine grained cputime() 

# and do not display CTRL-C prompt 

command = "Singular -t --ticks-per-sec 1000 --cntrlc=a", 

server = server, 

server_tmpdir = server_tmpdir, 

script_subdirectory = script_subdirectory, 

restart_on_ctrlc = True, 

verbose_start = False, 

logfile = logfile, 

eval_using_file_cutoff=100 if os.uname()[0]=="SunOS" else 1000) 

self.__libs = [] 

self._prompt_wait = prompt 

self.__to_clear = [] # list of variable names that need to be cleared. 

self._seed = seed 

 

def set_seed(self,seed=None): 

""" 

Set the seed for singular interpreter. 

 

The seed should be an integer at least 1 

and not more than 30 bits. 

See 

http://www.singular.uni-kl.de/Manual/html/sing_19.htm#SEC26 

and 

http://www.singular.uni-kl.de/Manual/html/sing_283.htm#SEC323 

 

EXAMPLES:: 

 

sage: s = Singular() 

sage: s.set_seed(1) 

1 

sage: [s.random(1,10) for i in range(5)] 

[8, 10, 4, 9, 1] 

""" 

if seed is None: 

seed = self.rand_seed() 

self.eval('system("--random",%d)' % seed) 

self._seed = seed 

return seed 

 

def _start(self, alt_message=None): 

""" 

EXAMPLES:: 

 

sage: s = Singular() 

sage: s.is_running() 

False 

sage: s._start() 

sage: s.is_running() 

True 

sage: s.quit() 

""" 

self.__libs = [] 

Expect._start(self, alt_message) 

# Load some standard libraries. 

self.lib('general') # assumed loaded by misc/constants.py 

 

# these options are required by the new coefficient rings 

# supported by Singular 3-1-0. 

self.option("redTail") 

self.option("redThrough") 

self.option("intStrategy") 

self._saved_options = self.option('get') 

# set random seed 

self.set_seed(self._seed) 

 

def __reduce__(self): 

""" 

EXAMPLES:: 

 

sage: singular.__reduce__() 

(<function reduce_load_Singular at 0x...>, ()) 

""" 

return reduce_load_Singular, () 

 

def _equality_symbol(self): 

""" 

EXAMPLES:: 

 

sage: singular._equality_symbol() 

'==' 

""" 

return '==' 

 

def _true_symbol(self): 

""" 

EXAMPLES:: 

 

sage: singular._true_symbol() 

'1' 

""" 

return '1' 

 

def _false_symbol(self): 

""" 

EXAMPLES:: 

 

sage: singular._false_symbol() 

'0' 

""" 

return '0' 

 

def _quit_string(self): 

""" 

EXAMPLES:: 

 

sage: singular._quit_string() 

'quit' 

""" 

return 'quit' 

 

def _send_interrupt(self): 

""" 

Send an interrupt to Singular. If needed, additional 

semi-colons are sent until we get back at the prompt. 

 

TESTS: 

 

The following works without restarting Singular:: 

 

sage: a = singular(1) 

sage: _ = singular._expect.sendline('1+') # unfinished input 

sage: try: 

....: alarm(0.5) 

....: singular._expect_expr('>') # interrupt this 

....: except KeyboardInterrupt: 

....: pass 

Control-C pressed. Interrupting Singular. Please wait a few seconds... 

 

We can still access a:: 

 

sage: 2*a 

2 

""" 

# Work around for Singular bug 

# http://www.singular.uni-kl.de:8002/trac/ticket/727 

sleep(0.1) 

 

E = self._expect 

E.sendline(chr(3)) 

for i in range(5): 

try: 

E.expect_upto(self._prompt, timeout=1.0) 

return 

except Exception: 

pass 

E.sendline(";") 

 

def _read_in_file_command(self, filename): 

r""" 

EXAMPLES:: 

 

sage: singular._read_in_file_command('test') 

'< "...";' 

 

sage: filename = tmp_filename() 

sage: f = open(filename, 'w') 

sage: _ = f.write('int x = 2;\n') 

sage: f.close() 

sage: singular.read(filename) 

sage: singular.get('x') 

'2' 

""" 

return '< "%s";'%filename 

 

def eval(self, x, allow_semicolon=True, strip=True, **kwds): 

r""" 

Send the code x to the Singular interpreter and return the output 

as a string. 

 

INPUT: 

 

 

- ``x`` - string (of code) 

 

- ``allow_semicolon`` - default: False; if False then 

raise a TypeError if the input line contains a semicolon. 

 

- ``strip`` - ignored 

 

 

EXAMPLES:: 

 

sage: singular.eval('2 > 1') 

'1' 

sage: singular.eval('2 + 2') 

'4' 

 

if the verbosity level is `> 1` comments are also printed 

and not only returned. 

 

:: 

 

sage: r = singular.ring(0,'(x,y,z)','dp') 

sage: i = singular.ideal(['x^2','y^2','z^2']) 

sage: s = i.std() 

sage: singular.eval('hilb(%s)'%(s.name())) 

'// 1 t^0\n// -3 t^2\n// 3 t^4\n// -1 t^6\n\n// 1 t^0\n// 

3 t^1\n// 3 t^2\n// 1 t^3\n// dimension (affine) = 0\n// 

degree (affine) = 8' 

 

:: 

 

sage: set_verbose(1) 

sage: o = singular.eval('hilb(%s)'%(s.name())) 

// 1 t^0 

// -3 t^2 

// 3 t^4 

// -1 t^6 

// 1 t^0 

// 3 t^1 

// 3 t^2 

// 1 t^3 

// dimension (affine) = 0 

// degree (affine) = 8 

 

This is mainly useful if this method is called implicitly. Because 

then intermediate results, debugging outputs and printed statements 

are printed 

 

:: 

 

sage: o = s.hilb() 

// 1 t^0 

// -3 t^2 

// 3 t^4 

// -1 t^6 

// 1 t^0 

// 3 t^1 

// 3 t^2 

// 1 t^3 

// dimension (affine) = 0 

// degree (affine) = 8 

// ** right side is not a datum, assignment ignored 

... 

 

rather than ignored 

 

:: 

 

sage: set_verbose(0) 

sage: o = s.hilb() 

""" 

# Simon King: 

# In previous versions, the interface was first synchronised and then 

# unused variables were killed. This created a considerable overhead. 

# By trac ticket #10296, killing unused variables is now done inside 

# singular.set(). Moreover, it is not done by calling a separate _eval_line. 

# In that way, the time spent by waiting for the singular prompt is reduced. 

 

# Before #10296, it was possible that garbage collection occured inside 

# of _eval_line. But collection of the garbage would launch another call 

# to _eval_line. The result would have been a dead lock, that could only 

# be avoided by synchronisation. Since garbage collection is now done 

# without an additional call to _eval_line, synchronisation is not 

# needed anymore, saving even more waiting time for the prompt. 

 

# Uncomment the print statements below for low-level debugging of 

# code that involves the singular interfaces. Everything goes 

# through here. 

 

x = str(x).rstrip().rstrip(';') 

x = x.replace("> ",">\t") #don't send a prompt (added by Martin Albrecht) 

if not allow_semicolon and x.find(";") != -1: 

raise TypeError("singular input must not contain any semicolons:\n%s"%x) 

if len(x) == 0 or x[len(x) - 1] != ';': 

x += ';' 

 

s = Expect.eval(self, x, **kwds) 

 

if s.find("error") != -1 or s.find("Segment fault") != -1: 

raise SingularError('Singular error:\n%s'%s) 

 

if get_verbose() > 0: 

for line in s.splitlines(): 

if line.startswith("//"): 

print(line) 

return s 

else: 

return s 

 

def set(self, type, name, value): 

""" 

Set the variable with given name to the given value. 

 

REMARK: 

 

If a variable in the Singular interface was previously marked for 

deletion, the actual deletion is done here, before the new variable 

is created in Singular. 

 

EXAMPLES:: 

 

sage: singular.set('int', 'x', '2') 

sage: singular.get('x') 

'2' 

 

We test that an unused variable is only actually deleted if this method 

is called:: 

 

sage: a = singular(3) 

sage: n = a.name() 

sage: del a 

sage: singular.eval(n) 

'3' 

sage: singular.set('int', 'y', '5') 

sage: singular.eval('defined(%s)'%n) 

'0' 

 

""" 

cmd = ''.join('if(defined(%s)){kill %s;};'%(v,v) for v in self.__to_clear) 

cmd += '%s %s=%s;'%(type, name, value) 

self.__to_clear = [] 

self.eval(cmd) 

 

def get(self, var): 

""" 

Get string representation of variable named var. 

 

EXAMPLES:: 

 

sage: singular.set('int', 'x', '2') 

sage: singular.get('x') 

'2' 

""" 

return self.eval('print(%s);'%var) 

 

def clear(self, var): 

""" 

Clear the variable named ``var``. 

 

EXAMPLES:: 

 

sage: singular.set('int', 'x', '2') 

sage: singular.get('x') 

'2' 

sage: singular.clear('x') 

 

"Clearing the variable" means to allow to free the memory 

that it uses in the Singular sub-process. However, the 

actual deletion of the variable is only committed when 

the next element in the Singular interface is created:: 

 

sage: singular.get('x') 

'2' 

sage: a = singular(3) 

sage: singular.get('x') 

'`x`' 

 

""" 

# We add the variable to the list of vars to clear when we do an eval. 

# We queue up all the clears and do them at once to avoid synchronizing 

# the interface at the same time we do garbage collection, which can 

# lead to subtle problems. This was Willem Jan's ideas, implemented 

# by William Stein. 

self.__to_clear.append(var) 

 

def _create(self, value, type='def'): 

""" 

Creates a new variable in the Singular session and returns the name 

of that variable. 

 

EXAMPLES:: 

 

sage: singular._create('2', type='int') 

'sage...' 

sage: singular.get(_) 

'2' 

""" 

name = self._next_var_name() 

self.set(type, name, value) 

return name 

 

def __call__(self, x, type='def'): 

""" 

Create a singular object X with given type determined by the string 

x. This returns var, where var is built using the Singular 

statement type var = ... x ... Note that the actual name of var 

could be anything, and can be recovered using X.name(). 

 

The object X returned can be used like any Sage object, and wraps 

an object in self. The standard arithmetic operators work. Moreover 

if foo is a function then X.foo(y,z,...) calls foo(X, y, z, ...) 

and returns the corresponding object. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x0,x1,x2)', 'lp') 

sage: I = singular.ideal([ 'x0*x1*x2 -x0^2*x2', 'x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2', 'x0*x1-x0*x2-x1*x2']) 

sage: I 

-x0^2*x2+x0*x1*x2, 

x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2, 

x0*x1-x0*x2-x1*x2 

sage: type(I) 

<class 'sage.interfaces.singular.SingularElement'> 

sage: I.parent() 

Singular 

""" 

if isinstance(x, SingularElement) and x.parent() is self: 

return x 

elif isinstance(x, ExpectElement): 

return self(x.sage()) 

elif not isinstance(x, ExpectElement) and hasattr(x, '_singular_'): 

return x._singular_(self) 

 

# some convenient conversions 

if type in ("module","list") and isinstance(x,(list,tuple,Sequence)): 

x = str(x)[1:-1] 

 

return SingularElement(self, type, x, False) 

 

def _coerce_map_from_(self, S): 

""" 

Return ``True`` if ``S`` admits a coercion map into the 

Singular interface. 

 

EXAMPLES:: 

 

sage: singular._coerce_map_from_(ZZ) 

True 

sage: singular.coerce_map_from(ZZ) 

Call morphism: 

From: Integer Ring 

To: Singular 

sage: singular.coerce_map_from(float) 

""" 

# we want to implement this without coercing, since singular has state. 

if hasattr(S, 'an_element'): 

if hasattr(S.an_element(), '_singular_'): 

return True 

try: 

self._coerce_(S.an_element()) 

return True 

except TypeError: 

pass 

elif S in integer_types: 

return True 

return None 

 

def cputime(self, t=None): 

r""" 

Returns the amount of CPU time that the Singular session has used. 

If ``t`` is not None, then it returns the difference 

between the current CPU time and ``t``. 

 

EXAMPLES:: 

 

sage: t = singular.cputime() 

sage: R = singular.ring(0, '(x0,x1,x2)', 'lp') 

sage: I = singular.ideal([ 'x0*x1*x2 -x0^2*x2', 'x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2', 'x0*x1-x0*x2-x1*x2']) 

sage: gb = I.groebner() 

sage: singular.cputime(t) #random 

0.02 

""" 

if t: 

return float(self.eval('timer-(%d)'%(int(1000*t))))/1000.0 

else: 

return float(self.eval('timer'))/1000.0 

 

################################################################### 

# Singular libraries 

################################################################### 

def lib(self, lib, reload=False): 

""" 

Load the Singular library named lib. 

 

Note that if the library was already loaded during this session it 

is not reloaded unless the optional reload argument is True (the 

default is False). 

 

EXAMPLES:: 

 

sage: singular.lib('sing.lib') 

sage: singular.lib('sing.lib', reload=True) 

""" 

if lib[-4:] != ".lib": 

lib += ".lib" 

if not reload and lib in self.__libs: 

return 

self.eval('LIB "%s"'%lib) 

self.__libs.append(lib) 

 

LIB = lib 

load = lib 

 

################################################################### 

# constructors 

################################################################### 

def ideal(self, *gens): 

""" 

Return the ideal generated by gens. 

 

INPUT: 

 

 

- ``gens`` - list or tuple of Singular objects (or 

objects that can be made into Singular objects via evaluation) 

 

 

OUTPUT: the Singular ideal generated by the given list of gens 

 

EXAMPLES: A Groebner basis example done in a different way. 

 

:: 

 

sage: _ = singular.eval("ring R=0,(x0,x1,x2),lp") 

sage: i1 = singular.ideal([ 'x0*x1*x2 -x0^2*x2', 'x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2', 'x0*x1-x0*x2-x1*x2']) 

sage: i1 

-x0^2*x2+x0*x1*x2, 

x0^2*x1*x2-x0*x1^2*x2-x0*x1*x2^2, 

x0*x1-x0*x2-x1*x2 

 

:: 

 

sage: i2 = singular.ideal('groebner(%s);'%i1.name()) 

sage: i2 

x1^2*x2^2, 

x0*x2^3-x1^2*x2^2+x1*x2^3, 

x0*x1-x0*x2-x1*x2, 

x0^2*x2-x0*x2^2-x1*x2^2 

""" 

if isinstance(gens, string_types): 

gens = self(gens) 

 

if isinstance(gens, SingularElement): 

return self(gens.name(), 'ideal') 

 

if not isinstance(gens, (list, tuple)): 

raise TypeError("gens (=%s) must be a list, tuple, string, or Singular element"%gens) 

 

if len(gens) == 1 and isinstance(gens[0], (list, tuple)): 

gens = gens[0] 

gens2 = [] 

for g in gens: 

if not isinstance(g, SingularElement): 

gens2.append(self.new(g)) 

else: 

gens2.append(g) 

return self(",".join([g.name() for g in gens2]), 'ideal') 

 

def list(self, x): 

r""" 

Creates a list in Singular from a Sage list ``x``. 

 

EXAMPLES:: 

 

sage: singular.list([1,2]) 

[1]: 

1 

[2]: 

2 

""" 

return self(x, 'list') 

 

def matrix(self, nrows, ncols, entries=None): 

""" 

EXAMPLES:: 

 

sage: singular.lib("matrix") 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(3,2,'1,2,3,4,5,6') 

sage: A 

1,2, 

3,4, 

5,6 

sage: A.gauss_col() 

2,-1, 

1,0, 

0,1 

 

AUTHORS: 

 

- Martin Albrecht (2006-01-14) 

""" 

name = self._next_var_name() 

if entries is None: 

self.eval('matrix %s[%s][%s]'%(name, nrows, ncols)) 

else: 

self.eval('matrix %s[%s][%s] = %s'%(name, nrows, ncols, entries)) 

return SingularElement(self, None, name, True) 

 

def ring(self, char=0, vars='(x)', order='lp', check=True): 

r""" 

Create a Singular ring and makes it the current ring. 

 

INPUT: 

 

 

- ``char`` - characteristic of the base ring (see 

examples below), which must be either 0, prime (!), or one of 

several special codes (see examples below). 

 

- ``vars`` - a tuple or string that defines the 

variable names 

 

- ``order`` - string - the monomial order (default: 

'lp') 

 

- ``check`` - if True, check primality of the 

characteristic if it is an integer. 

 

 

OUTPUT: a Singular ring 

 

.. note:: 

 

This function is *not* identical to calling the Singular 

``ring`` function. In particular, it also attempts to 

"kill" the variable names, so they can actually be used 

without getting errors, and it sets printing of elements 

for this range to short (i.e., with \*'s and carets). 

 

EXAMPLES: We first declare `\QQ[x,y,z]` with degree reverse 

lexicographic ordering. 

 

:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: R 

polynomial ring, over a field, global ordering 

// coefficients: QQ 

// number of vars : 3 

// block 1 : ordering dp 

// : names x y z 

// block 2 : ordering C 

 

:: 

 

sage: R1 = singular.ring(32003, '(x,y,z)', 'dp') 

sage: R2 = singular.ring(32003, '(a,b,c,d)', 'lp') 

 

This is a ring in variables named x(1) through x(10) over the 

finite field of order `7`:: 

 

sage: R3 = singular.ring(7, '(x(1..10))', 'ds') 

 

This is a polynomial ring over the transcendental extension 

`\QQ(a)` of `\QQ`:: 

 

sage: R4 = singular.ring('(0,a)', '(mu,nu)', 'lp') 

 

This is a ring over the field of single-precision floats:: 

 

sage: R5 = singular.ring('real', '(a,b)', 'lp') 

 

This is over 50-digit floats:: 

 

sage: R6 = singular.ring('(real,50)', '(a,b)', 'lp') 

sage: R7 = singular.ring('(complex,50,i)', '(a,b)', 'lp') 

 

To use a ring that you've defined, use the set_ring() method on 

the ring. This sets the ring to be the "current ring". For 

example, 

 

:: 

 

sage: R = singular.ring(7, '(a,b)', 'ds') 

sage: S = singular.ring('real', '(a,b)', 'lp') 

sage: singular.new('10*a') 

(1.000e+01)*a 

sage: R.set_ring() 

sage: singular.new('10*a') 

3*a 

""" 

if len(vars) > 2: 

s = '; '.join(['if(defined(%s)>0){kill %s;};'%(x,x) 

for x in vars[1:-1].split(',')]) 

self.eval(s) 

 

if check and isinstance(char, integer_types + (sage.rings.integer.Integer,)): 

if char != 0: 

n = sage.rings.integer.Integer(char) 

if not n.is_prime(): 

raise ValueError("the characteristic must be 0 or prime") 

R = self('%s,%s,%s'%(char, vars, order), 'ring') 

self.eval('short=0') # make output include *'s for multiplication for *THIS* ring. 

return R 

 

def string(self, x): 

""" 

Creates a Singular string from a Sage string. Note that the Sage 

string has to be "double-quoted". 

 

EXAMPLES:: 

 

sage: singular.string('"Sage"') 

Sage 

""" 

return self(x, 'string') 

 

def set_ring(self, R): 

""" 

Sets the current Singular ring to R. 

 

EXAMPLES:: 

 

sage: R = singular.ring(7, '(a,b)', 'ds') 

sage: S = singular.ring('real', '(a,b)', 'lp') 

sage: singular.current_ring() 

polynomial ring, over a field, global ordering 

// coefficients: float 

// number of vars : 2 

// block 1 : ordering lp 

// : names a b 

// block 2 : ordering C 

sage: singular.set_ring(R) 

sage: singular.current_ring() 

polynomial ring, over a field, local ordering 

// coefficients: ZZ/7 

// number of vars : 2 

// block 1 : ordering ds 

// : names a b 

// block 2 : ordering C 

""" 

if not isinstance(R, SingularElement): 

raise TypeError("R must be a singular ring") 

self.eval("setring %s; short=0"%R.name(), allow_semicolon=True) 

 

setring = set_ring 

 

def current_ring_name(self): 

""" 

Returns the Singular name of the currently active ring in 

Singular. 

 

OUTPUT: currently active ring's name 

 

EXAMPLES:: 

 

sage: r = PolynomialRing(GF(127),3,'xyz') 

sage: r._singular_().name() == singular.current_ring_name() 

True 

""" 

ringlist = self.eval("listvar(ring)").splitlines() 

p = re.compile("// ([a-zA-Z0-9_]*).*\[.*\].*\*.*") #do this in constructor? 

for line in ringlist: 

m = p.match(line) 

if m: 

return m.group(int(1)) 

return None 

 

def current_ring(self): 

""" 

Returns the current ring of the running Singular session. 

 

EXAMPLES:: 

 

sage: r = PolynomialRing(GF(127),3,'xyz', order='invlex') 

sage: r._singular_() 

polynomial ring, over a field, global ordering 

// coefficients: ZZ/127 

// number of vars : 3 

// block 1 : ordering rp 

// : names x y z 

// block 2 : ordering C 

sage: singular.current_ring() 

polynomial ring, over a field, global ordering 

// coefficients: ZZ/127 

// number of vars : 3 

// block 1 : ordering rp 

// : names x y z 

// block 2 : ordering C 

""" 

name = self.current_ring_name() 

if name: 

return self(name) 

else: 

return None 

 

def _tab_completion(self): 

""" 

Return a list of all Singular commands. 

 

EXAMPLES:: 

 

sage: singular._tab_completion() 

['exteriorPower', 

... 

'flintZ'] 

""" 

p = re.compile("// *([a-z0-9A-Z_]*).*") #compiles regular expression 

proclist = self.eval("listvar(proc)").splitlines() 

return [p.match(line).group(int(1)) for line in proclist] 

 

def console(self): 

""" 

EXAMPLES:: 

 

sage: singular_console() #not tested 

SINGULAR / Development 

A Computer Algebra System for Polynomial Computations / version 3-0-4 

0< 

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007 

FB Mathematik der Universitaet, D-67653 Kaiserslautern \ 

""" 

singular_console() 

 

def version(self): 

""" 

Return the version of Singular being used. 

 

EXAMPLES:: 

 

sage: singular.version() 

"Singular ... version 4.1.0 ... 

""" 

return singular_version() 

 

def _function_class(self): 

""" 

EXAMPLES:: 

 

sage: singular._function_class() 

<class 'sage.interfaces.singular.SingularFunction'> 

""" 

return SingularFunction 

 

def _function_element_class(self): 

""" 

EXAMPLES:: 

 

sage: singular._function_element_class() 

<class 'sage.interfaces.singular.SingularFunctionElement'> 

""" 

return SingularFunctionElement 

 

def option(self, cmd=None, val=None): 

""" 

Access to Singular's options as follows: 

 

Syntax: option() Returns a string of all defined options. 

 

Syntax: option( 'option_name' ) Sets an option. Note to disable an 

option, use the prefix no. 

 

Syntax: option( 'get' ) Returns an intvec of the state of all 

options. 

 

Syntax: option( 'set', intvec_expression ) Restores the state of 

all options from an intvec (produced by option('get')). 

 

EXAMPLES:: 

 

sage: singular.option() 

//options: redefine loadLib usage prompt 

sage: singular.option('get') 

0, 

10321 

sage: old_options = _ 

sage: singular.option('noredefine') 

sage: singular.option() 

//options: loadLib usage prompt 

sage: singular.option('set', old_options) 

sage: singular.option('get') 

0, 

10321 

""" 

if cmd is None: 

return SingularFunction(self,"option")() 

elif cmd == "get": 

#return SingularFunction(self,"option")("\"get\"") 

return self(self.eval("option(get)"),"intvec") 

elif cmd == "set": 

if not isinstance(val,SingularElement): 

raise TypeError("singular.option('set') needs SingularElement as second parameter") 

#SingularFunction(self,"option")("\"set\"",val) 

self.eval("option(set,%s)"%val.name()) 

else: 

SingularFunction(self,"option")("\""+str(cmd)+"\"") 

 

def _keyboard_interrupt(self): 

print("Interrupting %s..." % self) 

try: 

self._expect.sendline(chr(4)) 

except pexpect.ExceptionPexpect as msg: 

raise pexpect.ExceptionPexpect("THIS IS A BUG -- PLEASE REPORT. This should never happen.\n" + msg) 

self._start() 

raise KeyboardInterrupt("Restarting %s (WARNING: all variables defined in previous session are now invalid)" % self) 

 

 

@instancedoc 

class SingularElement(ExtraTabCompletion, ExpectElement): 

 

def __init__(self, parent, type, value, is_name=False): 

""" 

EXAMPLES:: 

 

sage: a = singular(2) 

sage: loads(dumps(a)) 

2 

""" 

RingElement.__init__(self, parent) 

if parent is None: return 

if not is_name: 

try: 

self._name = parent._create( value, type) 

# Convert SingularError to TypeError for 

# coercion to work properly. 

except SingularError as x: 

self._session_number = -1 

raise_(TypeError, x, sys.exc_info()[2]) 

except BaseException: 

self._session_number = -1 

raise 

else: 

self._name = value 

self._session_number = parent._session_number 

 

def _repr_(self): 

r""" 

Return string representation of ``self``. 

 

EXAMPLES:: 

 

sage: r = singular.ring(0,'(x,y)','dp') 

sage: singular(0) 

0 

sage: singular('x') # indirect doctest 

x 

sage: singular.matrix(2,2) 

0,0, 

0,0 

sage: singular.matrix(2,2,"(25/47*x^2*y^4 + 63/127*x + 27)^3,y,0,1") 

15625/103823*x^6*y.., y, 

0, 1 

 

Note that the output is truncated, and if ``self`` has a custom name then 

it is used to print the items of the matrix, rather than abbreviating its 

contents:: 

 

sage: M = singular.matrix(2,2,"(25/47*x^2*y^4 + 63/127*x + 27)^3,y,0,1") 

sage: M.rename('T') 

sage: M 

T[1,1],y, 

0, 1 

 

 

""" 

s = super(SingularElement, self)._repr_() 

if self._name in s: 

if (not hasattr(self, "__custom_name")) and self.type() == 'matrix': 

s = self.parent().eval('pmat(%s,20)'%(self.name())) 

return s 

 

def __copy__(self): 

r""" 

Returns a copy of ``self``. 

 

EXAMPLES:: 

 

sage: R=singular.ring(0,'(x,y)','dp') 

sage: M=singular.matrix(3,3,'0,0,-x, 0,y,0, x*y,0,0') 

sage: N=copy(M) 

sage: N[1,1]=singular('x+y') 

sage: N 

x+y,0,-x, 

0, y,0, 

x*y,0,0 

sage: M 

0, 0,-x, 

0, y,0, 

x*y,0,0 

sage: L=R.ringlist() 

sage: L[4]=singular.ideal('x**2-5') 

sage: Q=L.ring() 

sage: otherR=singular.ring(5,'(x)','dp') 

sage: cpQ=copy(Q) 

sage: cpQ.set_ring() 

sage: cpQ 

polynomial ring, over a field, global ordering 

// coefficients: QQ 

// number of vars : 2 

// block 1 : ordering dp 

// : names x y 

// block 2 : ordering C 

// quotient ring from ideal 

_[1]=x^2-5 

sage: R.fetch(M) 

0, 0,-x, 

0, y,0, 

x*y,0,0 

""" 

if (self.type()=='ring') or (self.type()=='qring'): 

# Problem: singular has no clean method to produce 

# a copy of a ring/qring. We use ringlist, but this 

# is only possible if we make self the active ring, 

# use ringlist, and switch back to the previous 

# base ring. 

br=self.parent().current_ring() 

self.set_ring() 

OUT = (self.ringlist()).ring() 

br.set_ring() 

return OUT 

else: 

return self.parent()(self.name()) 

 

def __len__(self): 

""" 

Returns the size of this Singular element. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: len(A) 

4 

""" 

return int(self.size()) 

 

def __setitem__(self, n, value): 

""" 

Set the n-th element of self to x. 

 

INPUT: 

 

 

- ``n`` - an integer *or* a 2-tuple (for setting 

matrix elements) 

 

- ``value`` - anything (is coerced to a Singular 

object if it is not one already) 

 

 

OUTPUT: Changes elements of self. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: A 

0,0, 

0,0 

sage: A[1,1] = 5 

sage: A 

5,0, 

0,0 

sage: A[1,2] = '5*x + y + z3' 

sage: A 

5,z^3+5*x+y, 

0,0 

""" 

P = self.parent() 

if not isinstance(value, SingularElement): 

value = P(value) 

if isinstance(n, tuple): 

if len(n) != 2: 

raise ValueError("If n (=%s) is a tuple, it must be a 2-tuple"%n) 

x, y = n 

P.eval('%s[%s,%s] = %s'%(self.name(), x, y, value.name())) 

else: 

P.eval('%s[%s] = %s'%(self.name(), n, value.name())) 

 

def __bool__(self): 

""" 

Returns ``True`` if this Singular element is not zero. 

 

EXAMPLES:: 

 

sage: bool(singular(0)) 

False 

sage: bool(singular(1)) 

True 

""" 

P = self.parent() 

return P.eval('%s == 0' % self.name()) == '0' 

 

__nonzero__ = __bool__ 

 

def sage_polystring(self): 

r""" 

If this Singular element is a polynomial, return a string 

representation of this polynomial that is suitable for evaluation 

in Python. Thus \* is used for multiplication and \*\* for 

exponentiation. This function is primarily used internally. 

 

The short=0 option *must* be set for the parent ring or this 

function will not work as expected. This option is set by default 

for rings created using ``singular.ring`` or set using 

``ring_name.set_ring()``. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0,'(x,y)') 

sage: f = singular('x^3 + 3*y^11 + 5') 

sage: f 

x^3+3*y^11+5 

sage: f.sage_polystring() 

'x**3+3*y**11+5' 

""" 

return str(self).replace('^','**') 

 

def sage_global_ring(self): 

""" 

Return the current basering in Singular as a polynomial ring or quotient ring. 

 

EXAMPLES:: 

 

sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)') 

'' 

sage: R = singular('r1').sage_global_ring() 

sage: R 

Multivariate Polynomial Ring in a, b, c, d, e, f over Finite Field in x of size 3^2 

sage: R.term_order() 

Block term order with blocks: 

(Matrix term order with matrix 

[1 2] 

[3 0], 

Weighted degree reverse lexicographic term order with weights (2, 3), 

Lexicographic term order of length 2) 

 

:: 

 

sage: singular.eval('ring r2 = (0,x),(a,b,c),dp') 

'' 

sage: singular('r2').sage_global_ring() 

Multivariate Polynomial Ring in a, b, c over Fraction Field of Univariate Polynomial Ring in x over Rational Field 

 

:: 

 

sage: singular.eval('ring r3 = (3,z),(a,b,c),dp') 

'' 

sage: singular.eval('minpoly = 1+z+z2+z3+z4') 

'' 

sage: singular('r3').sage_global_ring() 

Multivariate Polynomial Ring in a, b, c over Finite Field in z of size 3^4 

 

Real and complex fields in both Singular and Sage are defined with a precision. 

The precision in Singular is given in terms of digits, but in Sage it is given 

in terms of bits. So, the digit precision is internally converted to a reasonable 

bit precision:: 

 

sage: singular.eval('ring r4 = (real,20),(a,b,c),dp') 

'' 

sage: singular('r4').sage_global_ring() 

Multivariate Polynomial Ring in a, b, c over Real Field with 70 bits of precision 

 

The case of complex coefficients is not fully supported, yet, since 

the generator of a complex field in Sage is always called "I":: 

 

sage: singular.eval('ring r5 = (complex,15,j),(a,b,c),dp') 

'' 

sage: R = singular('r5').sage_global_ring(); R 

Multivariate Polynomial Ring in a, b, c over Complex Field with 54 bits of precision 

sage: R.base_ring()('j') 

Traceback (most recent call last): 

... 

NameError: name 'j' is not defined 

sage: R.base_ring()('I') 

1.00000000000000*I 

 

An example where the base ring is a polynomial ring over an extension of the rational field:: 

 

sage: singular.eval('ring r7 = (0,a), (x,y), dp') 

'' 

sage: singular.eval('minpoly = a2 + 1') 

'' 

sage: singular('r7').sage_global_ring() 

Multivariate Polynomial Ring in x, y over Number Field in a with defining polynomial a^2 + 1 

 

In our last example, the base ring is a quotient ring:: 

 

sage: singular.eval('ring r6 = (9,a), (x,y,z),lp') 

'' 

sage: Q = singular('std(ideal(x^2,x+y^2+z^3))', type='qring') 

sage: Q.sage_global_ring() 

Quotient of Multivariate Polynomial Ring in x, y, z over Finite Field in a of size 3^2 by the ideal (y^4 - y^2*z^3 + z^6, x + y^2 + z^3) 

 

AUTHOR: 

 

- Simon King (2011-06-06) 

 

""" 

# extract the ring of coefficients 

singular = self.parent() 

charstr = singular.eval('charstr(basering)').split(',',1) 

from sage.all import ZZ 

is_extension = len(charstr)==2 

if charstr[0] in ['integer', 'ZZ']: 

br = ZZ 

is_extension = False 

elif charstr[0] in ['0', 'QQ']: 

from sage.all import QQ 

br = QQ 

elif charstr[0]=='real': 

from sage.all import RealField, ceil, log 

prec = singular.eval('ringlist(basering)[1][2][1]') 

br = RealField(ceil((ZZ(prec)+1)/log(2,10))) 

is_extension = False 

elif charstr[0]=='complex': 

from sage.all import ComplexField, ceil, log 

prec = singular.eval('ringlist(basering)[1][2][1]') 

br = ComplexField(ceil((ZZ(prec)+1)/log(2,10))) 

is_extension = False 

else: 

# it ought to be a finite field 

q = ZZ(charstr[0].lstrip('ZZ/')) 

from sage.all import GF 

if q.is_prime(): 

br = GF(q) 

else: 

br = GF(q,charstr[1]) 

# Singular has no extension of a non-prime field 

is_extension = False 

 

# We have the base ring of the base ring. But is it 

# an extension? 

if is_extension: 

minpoly = singular.eval('minpoly') 

if minpoly == '0': 

from sage.all import Frac 

BR = Frac(br[charstr[1]]) 

else: 

is_short = singular.eval('short') 

if is_short != '0': 

singular.eval('short=0') 

minpoly = ZZ[charstr[1]](singular.eval('minpoly')) 

singular.eval('short=%s'%is_short) 

else: 

minpoly = ZZ[charstr[1]](minpoly) 

BR = br.extension(minpoly,names=charstr[1]) 

else: 

BR = br 

 

# Now, we form the polynomial ring over BR with the given variables, 

# using Singular's term order 

from sage.rings.polynomial.term_order import termorder_from_singular 

from sage.all import PolynomialRing 

# Meanwhile Singulars quotient rings are also of 'ring' type, not 'qring' as it was in the past. 

# To find out if a singular ring is a quotient ring or not checking for ring type does not help 

# and instead of that we check if the quotient ring is zero or not: 

if (singular.eval('ideal(basering)==0')=='1'): 

return PolynomialRing(BR, names=singular.eval('varstr(basering)'), order=termorder_from_singular(singular)) 

P = PolynomialRing(BR, names=singular.eval('varstr(basering)'), order=termorder_from_singular(singular)) 

return P.quotient(singular('ringlist(basering)[4]')._sage_(P), names=singular.eval('varstr(basering)')) 

 

def sage_poly(self, R=None, kcache=None): 

""" 

Returns a Sage polynomial in the ring r matching the provided poly 

which is a singular polynomial. 

 

INPUT: 

 

 

- ``R`` - (default: None); an optional polynomial ring. 

If it is provided, then you have to make sure that it 

matches the current singular ring as, e.g., returned by 

singular.current_ring(). By default, the output of 

:meth:`sage_global_ring` is used. 

 

- ``kcache`` - (default: None); an optional dictionary 

for faster finite field lookups, this is mainly useful for finite 

extension fields 

 

 

OUTPUT: MPolynomial 

 

EXAMPLES:: 

 

sage: R = PolynomialRing(GF(2^8,'a'), 'x,y') 

sage: f = R('a^20*x^2*y+a^10+x') 

sage: f._singular_().sage_poly(R) == f 

True 

sage: R = PolynomialRing(GF(2^8,'a'), 'x', implementation="singular") 

sage: f = R('a^20*x^3+x^2+a^10') 

sage: f._singular_().sage_poly(R) == f 

True 

 

:: 

 

sage: P.<x,y> = PolynomialRing(QQ, 2) 

sage: f = x*y**3 - 1/9 * x + 1; f 

x*y^3 - 1/9*x + 1 

sage: singular(f) 

x*y^3-1/9*x+1 

sage: P(singular(f)) 

x*y^3 - 1/9*x + 1 

 

TESTS:: 

 

sage: singular.eval('ring r = (3,z),(a,b,c),dp') 

'' 

sage: singular.eval('minpoly = 1+z+z2+z3+z4') 

'' 

sage: p = singular('z^4*a^3+z^2*a*b*c') 

sage: p.sage_poly() 

(-z^3 - z^2 - z - 1)*a^3 + (z^2)*a*b*c 

sage: singular('z^4') 

(-z3-z2-z-1) 

 

AUTHORS: 

 

- Martin Albrecht (2006-05-18) 

- Simon King (2011-06-06): Deal with Singular's short polynomial representation, 

automatic construction of a polynomial ring, if it is not explicitly given. 

 

.. note:: 

 

For very simple polynomials 

``eval(SingularElement.sage_polystring())`` is faster than 

SingularElement.sage_poly(R), maybe we should detect the 

crossover point (in dependence of the string length) and 

choose an appropriate conversion strategy 

""" 

# TODO: Refactor imports to move this to the top 

from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict 

from sage.rings.polynomial.multi_polynomial_libsingular import MPolynomialRing_libsingular 

from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict 

from sage.rings.polynomial.polynomial_ring import is_PolynomialRing 

from sage.rings.polynomial.polydict import PolyDict,ETuple 

from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular 

from sage.rings.quotient_ring import QuotientRing_generic 

from sage.rings.quotient_ring_element import QuotientRingElement 

 

ring_is_fine = False 

if R is None: 

ring_is_fine = True 

R = self.sage_global_ring() 

 

sage_repr = {} 

k = R.base_ring() 

 

variable_str = "*".join(R.variable_names()) 

 

# This returns a string which looks like a list where the first 

# half of the list is filled with monomials occurring in the 

# Singular polynomial and the second half filled with the matching 

# coefficients. 

# 

# Our strategy is to split the monomials at "*" to get the powers 

# in the single variables and then to split the result to get 

# actual exponent. 

# 

# So e.g. ['x^3*y^3','a'] get's split to 

# [[['x','3'],['y','3']],'a']. We may do this quickly, 

# as we know what to expect. 

 

is_short = self.parent().eval('short') 

if is_short!='0': 

self.parent().eval('short=0') 

if isinstance(R, MPolynomialRing_libsingular): 

out = R(self) 

self.parent().eval('short=%s'%is_short) 

return out 

singular_poly_list = self.parent().eval("string(coef(%s,%s))"%(\ 

self.name(),variable_str)).split(",") 

self.parent().eval('short=%s'%is_short) 

else: 

if isinstance(R, MPolynomialRing_libsingular): 

return R(self) 

singular_poly_list = self.parent().eval("string(coef(%s,%s))"%(\ 

self.name(),variable_str)).split(",") 

 

# Directly treat constants 

if singular_poly_list[0] in ['1', '(1.000e+00)']: 

return R(singular_poly_list[1]) 

 

coeff_start = len(singular_poly_list) // 2 

 

# Singular 4 puts parentheses around floats and sign outside them 

charstr = self.parent().eval('charstr(basering)').split(',',1) 

if charstr[0] in ['real', 'complex']: 

for i in range(coeff_start, 2 * coeff_start): 

singular_poly_list[i] = singular_poly_list[i].replace('(','').replace(')','') 

 

if isinstance(R,(MPolynomialRing_polydict,QuotientRing_generic)) and (ring_is_fine or can_convert_to_singular(R)): 

# we need to lookup the index of a given variable represented 

# through a string 

var_dict = dict(zip(R.variable_names(),range(R.ngens()))) 

 

ngens = R.ngens() 

 

for i in range(coeff_start): 

exp = dict() 

monomial = singular_poly_list[i] 

 

if monomial!="1": 

variables = [var.split("^") for var in monomial.split("*") ] 

for e in variables: 

var = e[0] 

if len(e)==int(2): 

power = int(e[1]) 

else: 

power=1 

exp[var_dict[var]]=power 

 

if kcache is None: 

sage_repr[ETuple(exp,ngens)]=k(singular_poly_list[coeff_start+i]) 

else: 

elem = singular_poly_list[coeff_start+i] 

if elem not in kcache: 

kcache[elem] = k( elem ) 

sage_repr[ETuple(exp,ngens)]= kcache[elem] 

 

p = MPolynomial_polydict(R,PolyDict(sage_repr,force_int_exponents=False,force_etuples=False)) 

if isinstance(R, MPolynomialRing_polydict): 

return p 

else: 

return QuotientRingElement(R,p,reduce=False) 

 

elif is_PolynomialRing(R) and (ring_is_fine or can_convert_to_singular(R)): 

 

sage_repr = [0]*int(self.deg()+1) 

 

for i in range(coeff_start): 

monomial = singular_poly_list[i] 

exp = int(0) 

 

if monomial!="1": 

term = monomial.split("^") 

if len(term)==int(2): 

exp = int(term[1]) 

else: 

exp = int(1) 

 

if kcache is None: 

sage_repr[exp] = k(singular_poly_list[coeff_start+i]) 

else: 

elem = singular_poly_list[coeff_start+i] 

if elem not in kcache: 

kcache[elem] = k( elem ) 

sage_repr[ exp ]= kcache[elem] 

 

return R(sage_repr) 

 

else: 

raise TypeError("Cannot coerce %s into %s"%(self,R)) 

 

def sage_matrix(self, R, sparse=True): 

""" 

Returns Sage matrix for self 

 

INPUT: 

 

- ``R`` - (default: None); an optional ring, over which 

the resulting matrix is going to be defined. 

By default, the output of :meth:`sage_global_ring` is used. 

 

- ``sparse`` - (default: True); determines whether the 

resulting matrix is sparse or not. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: A.sage_matrix(ZZ) 

[0 0] 

[0 0] 

sage: A.sage_matrix(RDF) 

[0.0 0.0] 

[0.0 0.0] 

""" 

from sage.matrix.constructor import Matrix 

nrows, ncols = int(self.nrows()),int(self.ncols()) 

 

if R is None: 

R = self.sage_global_ring() 

A = Matrix(R, nrows, ncols, sparse=sparse) 

#this is slow 

for x in range(nrows): 

for y in range(ncols): 

A[x,y]=self[x+1,y+1].sage_poly(R) 

return A 

 

A = Matrix(R, nrows, ncols, sparse=sparse) 

#this is slow 

for x in range(nrows): 

for y in range(ncols): 

A[x,y]=R(self[x+1,y+1]) 

 

return A 

 

def _sage_(self, R=None): 

r""" 

Convert self to Sage. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: A.sage(ZZ) # indirect doctest 

[0 0] 

[0 0] 

sage: A = random_matrix(ZZ,3,3); A 

[ -8 2 0] 

[ 0 1 -1] 

[ 2 1 -95] 

sage: As = singular(A); As 

-8 2 0 

0 1 -1 

2 1 -95 

sage: As.sage() 

[ -8 2 0] 

[ 0 1 -1] 

[ 2 1 -95] 

 

:: 

 

sage: singular.eval('ring R = integer, (x,y,z),lp') 

'// ** redefining R (ring R = integer, (x,y,z),lp;)' 

sage: I = singular.ideal(['x^2','y*z','z+x']) 

sage: I.sage() 

Ideal (x^2, y*z, x + z) of Multivariate Polynomial Ring in x, y, z over Integer Ring 

 

:: 

 

sage: singular('ringlist(basering)').sage() 

[['integer'], ['x', 'y', 'z'], [['lp', (1, 1, 1)], ['C', (0)]], Ideal (0) of Multivariate Polynomial Ring in x, y, z over Integer Ring] 

 

:: 

 

sage: singular.eval('ring r10 = (9,a), (x,y,z),lp') 

'' 

sage: singular.eval('setring R') 

'' 

sage: singular('r10').sage() 

Multivariate Polynomial Ring in x, y, z over Finite Field in a of size 3^2 

 

Note that the current base ring has not been changed by asking for another ring:: 

 

sage: singular('basering') 

polynomial ring, over a domain, global ordering 

// coefficients: ZZ 

// number of vars : 3 

// block 1 : ordering lp 

// : names x y z 

// block 2 : ordering C 

 

:: 

 

sage: singular.eval('setring r10') 

'' 

sage: Q = singular('std(ideal(x^2,x+y^2+z^3))', type='qring') 

sage: Q.sage() 

Quotient of Multivariate Polynomial Ring in x, y, z over Finite Field in a of size 3^2 by the ideal (y^4 - y^2*z^3 + z^6, x + y^2 + z^3) 

sage: singular('x^2+y').sage() 

x^2 + y 

sage: singular('x^2+y').sage().parent() 

Quotient of Multivariate Polynomial Ring in x, y, z over Finite Field in a of size 3^2 by the ideal (y^4 - y^2*z^3 + z^6, x + y^2 + z^3) 

 

Test that :trac:`18848` is fixed:: 

 

sage: singular(5).sage() 

5 

sage: type(singular(int(5)).sage()) 

<type 'sage.rings.integer.Integer'> 

 

""" 

typ = self.type() 

if typ=='poly': 

return self.sage_poly(R) 

elif typ=='int': 

return sage.rings.integer.Integer(repr(self)) 

elif typ == 'module': 

return self.sage_matrix(R,sparse=True) 

elif typ == 'matrix': 

return self.sage_matrix(R,sparse=False) 

elif typ == 'list': 

return [ f._sage_(R) for f in self ] 

elif typ == 'intvec': 

from sage.modules.free_module_element import vector 

return vector([sage.rings.integer.Integer(str(e)) for e in self]) 

elif typ == 'intmat': 

from sage.matrix.constructor import matrix 

from sage.rings.integer_ring import ZZ 

A = matrix(ZZ, int(self.nrows()), int(self.ncols())) 

for i in range(A.nrows()): 

for j in range(A.ncols()): 

A[i,j] = sage.rings.integer.Integer(str(self[i+1,j+1])) 

return A 

elif typ == 'string': 

return repr(self) 

elif typ == 'ideal': 

R = R or self.sage_global_ring() 

return R.ideal([p.sage_poly(R) for p in self]) 

elif typ in ['ring', 'qring']: 

br = singular('basering') 

self.set_ring() 

R = self.sage_global_ring() 

br.set_ring() 

return R 

raise NotImplementedError("Coercion of this datatype not implemented yet") 

 

def is_string(self): 

""" 

Tell whether this element is a string. 

 

EXAMPLES:: 

 

sage: singular('"abc"').is_string() 

True 

sage: singular('1').is_string() 

False 

 

""" 

return self.type() == 'string' 

 

def set_ring(self): 

""" 

Sets the current ring in Singular to be self. 

 

EXAMPLES:: 

 

sage: R = singular.ring(7, '(a,b)', 'ds') 

sage: S = singular.ring('real', '(a,b)', 'lp') 

sage: singular.current_ring() 

polynomial ring, over a field, global ordering 

// coefficients: float 

// number of vars : 2 

// block 1 : ordering lp 

// : names a b 

// block 2 : ordering C 

sage: R.set_ring() 

sage: singular.current_ring() 

polynomial ring, over a field, local ordering 

// coefficients: ZZ/7 

// number of vars : 2 

// block 1 : ordering ds 

// : names a b 

// block 2 : ordering C 

""" 

self.parent().set_ring(self) 

 

 

def sage_flattened_str_list(self): 

""" 

EXAMPLES:: 

 

sage: R=singular.ring(0,'(x,y)','dp') 

sage: RL = R.ringlist() 

sage: RL.sage_flattened_str_list() 

['0', 'x', 'y', 'dp', '1,1', 'C', '0', '_[1]=0'] 

""" 

s = str(self) 

c = '\[[0-9]*\]:' 

r = re.compile(c) 

s = r.sub('',s).strip() 

return s.split() 

 

def sage_structured_str_list(self): 

r""" 

If self is a Singular list of lists of Singular elements, returns 

corresponding Sage list of lists of strings. 

 

EXAMPLES:: 

 

sage: R=singular.ring(0,'(x,y)','dp') 

sage: RL=R.ringlist() 

sage: RL 

[1]: 

0 

[2]: 

[1]: 

x 

[2]: 

y 

[3]: 

[1]: 

[1]: 

dp 

[2]: 

1,1 

[2]: 

[1]: 

C 

[2]: 

0 

[4]: 

_[1]=0 

sage: RL.sage_structured_str_list() 

['0', ['x', 'y'], [['dp', '1,\n1'], ['C', '0']], '0'] 

""" 

if not (self.type()=='list'): 

return str(self) 

return [X.sage_structured_str_list() for X in self] 

 

def _tab_completion(self): 

""" 

Returns the possible tab-completions for self. In this case, we 

just return all the tab completions for the Singular object. 

 

EXAMPLES:: 

 

sage: R = singular.ring(0,'(x,y)','dp') 

sage: R._tab_completion() 

['exteriorPower', 

... 

'flintZ'] 

""" 

return self.parent()._tab_completion() 

 

def type(self): 

""" 

Returns the internal type of this element. 

 

EXAMPLES:: 

 

sage: R = PolynomialRing(GF(2^8,'a'),2,'x') 

sage: R._singular_().type() 

'ring' 

sage: fs = singular('x0^2','poly') 

sage: fs.type() 

'poly' 

""" 

# singular reports // $varname $type $stuff 

p = re.compile("// [\w]+ (\w+) [\w]*") 

m = p.match(self.parent().eval("type(%s)"%self.name())) 

return m.group(1) 

 

def __iter__(self): 

""" 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: list(iter(A)) 

[[0], [0]] 

sage: A[1,1] = 1; A[1,2] = 2 

sage: A[2,1] = 3; A[2,2] = 4 

sage: list(iter(A)) 

[[1,3], [2,4]] 

""" 

if self.type()=='matrix': 

l = self.ncols() 

else: 

l = len(self) 

for i in range(1, l + 1): 

yield self[i] 

 

def _singular_(self): 

""" 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: A._singular_() is A 

True 

""" 

return self 

 

def attrib(self, name, value=None): 

""" 

Get and set attributes for self. 

 

INPUT: 

 

 

- ``name`` - string to choose the attribute 

 

- ``value`` - boolean value or None for reading, 

(default:None) 

 

 

VALUES: isSB - the standard basis property is set by all commands 

computing a standard basis like groebner, std, stdhilb etc.; used 

by lift, dim, degree, mult, hilb, vdim, kbase isHomog - the weight 

vector for homogeneous or quasihomogeneous ideals/modules isCI - 

complete intersection property isCM - Cohen-Macaulay property rank 

- set the rank of a module (see nrows) withSB - value of type 

ideal, resp. module, is std withHilb - value of type intvec is 

hilb(_,1) (see hilb) withRes - value of type list is a free 

resolution withDim - value of type int is the dimension (see dim) 

withMult - value of type int is the multiplicity (see mult) 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = PolynomialRing(QQ) 

sage: I = Ideal([z^2, y*z, y^2, x*z, x*y, x^2]) 

sage: Ibar = I._singular_() 

sage: Ibar.attrib('isSB') 

0 

sage: singular.eval('vdim(%s)'%Ibar.name()) # sage7 name is random 

// ** sage7 is no standard basis 

4 

sage: Ibar.attrib('isSB',1) 

sage: singular.eval('vdim(%s)'%Ibar.name()) 

'4' 

""" 

if value is None: 

return int(self.parent().eval('attrib(%s,"%s")'%(self.name(),name))) 

else: 

self.parent().eval('attrib(%s,"%s",%d)'%(self.name(),name,value)) 

 

 

@instancedoc 

class SingularFunction(ExpectFunction): 

def _instancedoc_(self): 

""" 

EXAMPLES:: 

 

sage: 'groebner' in singular.groebner.__doc__ 

True 

""" 

if not nodes: 

generate_docstring_dictionary() 

 

prefix = \ 

""" 

This function is an automatically generated pexpect wrapper around the Singular 

function '%s'. 

 

EXAMPLES:: 

 

sage: groebner = singular.groebner 

sage: P.<x, y> = PolynomialRing(QQ) 

sage: I = P.ideal(x^2-y, y+x) 

sage: groebner(singular(I)) 

x+y, 

y^2-y 

"""%(self._name,) 

prefix2 = \ 

""" 

 

The Singular documentation for '%s' is given below. 

"""%(self._name,) 

 

try: 

return prefix + prefix2 + nodes[node_names[self._name]] 

except KeyError: 

return prefix 

 

 

@instancedoc 

class SingularFunctionElement(FunctionElement): 

def _instancedoc_(self): 

r""" 

EXAMPLES:: 

 

sage: R = singular.ring(0, '(x,y,z)', 'dp') 

sage: A = singular.matrix(2,2) 

sage: 'matrix_expression' in A.nrows.__doc__ 

True 

""" 

if not nodes: 

generate_docstring_dictionary() 

try: 

return nodes[node_names[self._name]] 

except KeyError: 

return "" 

 

def is_SingularElement(x): 

r""" 

Returns True is x is of type ``SingularElement``. 

 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import is_SingularElement 

sage: is_SingularElement(singular(2)) 

True 

sage: is_SingularElement(2) 

False 

""" 

return isinstance(x, SingularElement) 

 

 

nodes = {} 

node_names = {} 

 

def generate_docstring_dictionary(): 

""" 

Generate global dictionaries which hold the docstrings for 

Singular functions. 

 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import generate_docstring_dictionary 

sage: generate_docstring_dictionary() 

""" 

from sage.env import SAGE_LOCAL 

 

global nodes 

global node_names 

 

nodes.clear() 

node_names.clear() 

 

singular_docdir = SAGE_LOCAL+"/share/info/" 

 

new_node = re.compile("File: singular\.hlp, Node: ([^,]*),.*") 

new_lookup = re.compile("\* ([^:]*):*([^.]*)\..*") 

 

L, in_node, curr_node = [], False, None 

 

for line in open(singular_docdir + "singular.hlp"): 

m = re.match(new_node,line) 

if m: 

# a new node starts 

in_node = True 

nodes[curr_node] = "".join(L) 

L = [] 

curr_node, = m.groups() 

elif in_node: # we are in a node 

L.append(line) 

else: 

m = re.match(new_lookup, line) 

if m: 

a,b = m.groups() 

node_names[a] = b.strip() 

 

if line == "6 Index\n": 

in_node = False 

 

nodes[curr_node] = "".join(L) # last node 

 

def get_docstring(name): 

""" 

Return the docstring for the function ``name``. 

 

INPUT: 

 

- ``name`` - a Singular function name 

 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import get_docstring 

sage: 'groebner' in get_docstring('groebner') 

True 

sage: 'standard.lib' in get_docstring('groebner') 

True 

 

""" 

if not nodes: 

generate_docstring_dictionary() 

try: 

return nodes[node_names[name]] 

except KeyError: 

return "" 

 

################################## 

 

singular = Singular() 

 

def reduce_load_Singular(): 

""" 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import reduce_load_Singular 

sage: reduce_load_Singular() 

Singular 

""" 

return singular 

 

 

def singular_console(): 

""" 

Spawn a new Singular command-line session. 

 

EXAMPLES:: 

 

sage: singular_console() #not tested 

SINGULAR / Development 

A Computer Algebra System for Polynomial Computations / version 3-0-4 

0< 

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007 

FB Mathematik der Universitaet, D-67653 Kaiserslautern \ 

""" 

from sage.repl.rich_output.display_manager import get_display_manager 

if not get_display_manager().is_in_terminal(): 

raise RuntimeError('Can use the console only in the terminal. Try %%singular magics instead.') 

os.system('Singular') 

 

 

def singular_version(): 

""" 

Return the version of Singular being used. 

 

EXAMPLES:: 

 

sage: singular.version() 

"Singular ... version 4.1.0 ... 

""" 

return singular.eval('system("--version");') 

 

 

 

class SingularGBLogPrettyPrinter: 

""" 

A device which prints Singular Groebner basis computation logs 

more verbatim. 

""" 

rng_chng = re.compile("\[\d+:\d+\]")# [m:n] internal ring change to 

# poly representation with 

# exponent bound m and n words in 

# exponent vector 

new_elem = re.compile("s") # found a new element of the standard basis 

red_zero = re.compile("-") # reduced a pair/S-polynomial to 0 

red_post = re.compile("\.") # postponed a reduction of a pair/S-polynomial 

cri_hilb = re.compile("h") # used Hilbert series criterion 

hig_corn = re.compile("H\(\d+\)") # found a 'highest corner' of degree d, no need to consider higher degrees 

num_crit = re.compile("\(\d+\)") # n critical pairs are still to be reduced 

red_num = re.compile("\(S:\d+\)") # doing complete reduction of n elements 

deg_lead = re.compile("\d+") # the degree of the leading terms is currently d 

 

# SlimGB 

red_para = re.compile("M\[(\d+),(\d+)\]") # parallel reduction of n elements with m non-zero output elements 

red_betr = re.compile("b") # exchange of a reductor by a 'better' one 

non_mini = re.compile("e") # a new reductor with non-minimal leading term 

 

crt_lne1 = re.compile("product criterion:(\d+) chain criterion:(\d+)") 

crt_lne2 = re.compile("NF:(\d+) product criterion:(\d+), ext_product criterion:(\d+)") 

 

pat_sync = re.compile("1\+(\d+);") 

 

global_pattern = re.compile("(\[\d+:\d+\]|s|-|\.|h|H\(\d+\)|\(\d+\)|\(S:\d+\)|\d+|M\[\d+,[b,e]*\d+\]|b|e).*") 

 

def __init__(self, verbosity=1): 

""" 

Construct a new Singular Groebner Basis log pretty printer. 

 

INPUT: 

 

- ``verbosity`` - how much information should be printed 

(between 0 and 3) 

 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import SingularGBLogPrettyPrinter 

sage: s0 = SingularGBLogPrettyPrinter(verbosity=0) 

sage: s1 = SingularGBLogPrettyPrinter(verbosity=1) 

sage: s0.write("[1:2]12") 

 

sage: s1.write("[1:2]12") 

Leading term degree: 12. 

""" 

self.verbosity = verbosity 

 

self.curr_deg = 0 # current degree 

self.max_deg = 0 # maximal degree in total 

 

self.nf = 0 # number of normal forms computed (SlimGB only) 

self.prod = 0 # number of S-polynomials discarded using product criterion 

self.ext_prod = 0 # number of S-polynomials discarded using extended product criterion 

self.chain = 0 # number of S-polynomials discarded using chain criterion 

 

self.storage = "" # stores incomplete strings 

self.sync = None # should we expect a sync integer? 

 

def write(self, s): 

""" 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import SingularGBLogPrettyPrinter 

sage: s3 = SingularGBLogPrettyPrinter(verbosity=3) 

sage: s3.write("(S:1337)") 

Performing complete reduction of 1337 elements. 

sage: s3.write("M[389,12]") 

Parallel reduction of 389 elements with 12 non-zero output elements. 

""" 

verbosity = self.verbosity 

 

if self.storage: 

s = self.storage + s 

self.storage = "" 

 

for line in s.splitlines(): 

# deal with the Sage <-> Singular syncing code 

match = re.match(SingularGBLogPrettyPrinter.pat_sync,line) 

if match: 

self.sync = int(match.groups()[0]) 

continue 

 

if self.sync and line == "%d"%(self.sync+1): 

self.sync = None 

continue 

 

if line.endswith(";"): 

continue 

if line.startswith(">"): 

continue 

 

if line.startswith("std") or line.startswith("slimgb"): 

continue 

 

# collect stats returned about avoided reductions to zero 

match = re.match(SingularGBLogPrettyPrinter.crt_lne1,line) 

if match: 

self.prod,self.chain = map(int,re.match(SingularGBLogPrettyPrinter.crt_lne1,line).groups()) 

self.storage = "" 

continue 

match = re.match(SingularGBLogPrettyPrinter.crt_lne2,line) 

if match: 

self.nf,self.prod,self.ext_prod = map(int,re.match(SingularGBLogPrettyPrinter.crt_lne2,line).groups()) 

self.storage = "" 

continue 

 

while line: 

match = re.match(SingularGBLogPrettyPrinter.global_pattern, line) 

if not match: 

self.storage = line 

line = None 

continue 

 

token, = match.groups() 

line = line[len(token):] 

 

if re.match(SingularGBLogPrettyPrinter.rng_chng,token): 

continue 

 

elif re.match(SingularGBLogPrettyPrinter.new_elem,token) and verbosity >= 3: 

print("New element found.") 

 

elif re.match(SingularGBLogPrettyPrinter.red_zero,token) and verbosity >= 2: 

print("Reduction to zero.") 

 

elif re.match(SingularGBLogPrettyPrinter.red_post, token) and verbosity >= 2: 

print("Reduction postponed.") 

 

elif re.match(SingularGBLogPrettyPrinter.cri_hilb, token) and verbosity >= 2: 

print("Hilber series criterion applied.") 

 

elif re.match(SingularGBLogPrettyPrinter.hig_corn, token) and verbosity >= 1: 

print("Maximal degree found: %s" % token) 

 

elif re.match(SingularGBLogPrettyPrinter.num_crit, token) and verbosity >= 1: 

print("Leading term degree: %2d. Critical pairs: %s."%(self.curr_deg,token[1:-1])) 

 

elif re.match(SingularGBLogPrettyPrinter.red_num, token) and verbosity >= 3: 

print("Performing complete reduction of %s elements."%token[3:-1]) 

 

elif re.match(SingularGBLogPrettyPrinter.deg_lead, token): 

if verbosity >= 1: 

print("Leading term degree: %2d." % int(token)) 

self.curr_deg = int(token) 

if self.max_deg < self.curr_deg: 

self.max_deg = self.curr_deg 

 

elif re.match(SingularGBLogPrettyPrinter.red_para, token) and verbosity >= 3: 

m,n = re.match(SingularGBLogPrettyPrinter.red_para,token).groups() 

print("Parallel reduction of %s elements with %s non-zero output elements." % (m, n)) 

 

elif re.match(SingularGBLogPrettyPrinter.red_betr, token) and verbosity >= 3: 

print("Replaced reductor by 'better' one.") 

 

elif re.match(SingularGBLogPrettyPrinter.non_mini, token) and verbosity >= 2: 

print("New reductor with non-minimal leading term found.") 

 

def flush(self): 

""" 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import SingularGBLogPrettyPrinter 

sage: s3 = SingularGBLogPrettyPrinter(verbosity=3) 

sage: s3.flush() 

""" 

sys.stdout.flush() 

 

class SingularGBDefaultContext: 

""" 

Within this context all Singular Groebner basis calculations are 

reduced automatically. 

 

AUTHORS: 

 

- Martin Albrecht 

- Simon King 

""" 

def __init__(self, singular=None): 

""" 

Within this context all Singular Groebner basis calculations 

are reduced automatically. 

 

INPUT: 

 

- ``singular`` - Singular instance (default: default instance) 

 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import SingularGBDefaultContext 

sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex') 

sage: I = sage.rings.ideal.Katsura(P,3) 

sage: singular.option('noredTail') 

sage: singular.option('noredThrough') 

sage: Is = I._singular_() 

sage: gb = Is.groebner() 

sage: gb 

84*c^4-40*c^3+c^2+c, 

7*b+210*c^3-79*c^2+3*c, 

a+2*b+2*c-1 

 

:: 

 

sage: with SingularGBDefaultContext(): rgb = Is.groebner() 

sage: rgb 

84*c^4-40*c^3+c^2+c, 

7*b+210*c^3-79*c^2+3*c, 

7*a-420*c^3+158*c^2+8*c-7 

 

Note that both bases are Groebner bases because they have 

pairwise prime leading monomials but that the monic version of 

the last element in ``rgb`` is smaller than the last element 

of ``gb`` with respect to the lexicographical term ordering. :: 

 

sage: (7*a-420*c^3+158*c^2+8*c-7)/7 < (a+2*b+2*c-1) 

True 

 

.. note:: 

 

This context is used automatically internally whenever a 

Groebner basis is computed so the user does not need to use 

it manually. 

""" 

if singular is None: 

from sage.interfaces.all import singular as singular_default 

singular = singular_default 

self.singular = singular 

 

def __enter__(self): 

""" 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import SingularGBDefaultContext 

sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex') 

sage: I = sage.rings.ideal.Katsura(P,3) 

sage: singular.option('noredTail') 

sage: singular.option('noredThrough') 

sage: Is = I._singular_() 

sage: with SingularGBDefaultContext(): rgb = Is.groebner() 

sage: rgb 

84*c^4-40*c^3+c^2+c, 

7*b+210*c^3-79*c^2+3*c, 

7*a-420*c^3+158*c^2+8*c-7 

""" 

from sage.interfaces.singular import SingularError 

try: 

self.bck_degBound = int(self.singular.eval('degBound')) 

except SingularError: 

self.bck_degBound = int(0) 

try: 

self.bck_multBound = int(self.singular.eval('multBound')) 

except SingularError: 

self.bck_multBound = int(0) 

self.o = self.singular.option("get") 

self.singular.option('set',self.singular._saved_options) 

self.singular.option("redSB") 

self.singular.option("redTail") 

try: 

self.singular.eval('degBound=0') 

except SingularError: 

pass 

try: 

self.singular.eval('multBound=0') 

except SingularError: 

pass 

 

def __exit__(self, typ, value, tb): 

""" 

EXAMPLES:: 

 

sage: from sage.interfaces.singular import SingularGBDefaultContext 

sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex') 

sage: I = sage.rings.ideal.Katsura(P,3) 

sage: singular.option('noredTail') 

sage: singular.option('noredThrough') 

sage: Is = I._singular_() 

sage: with SingularGBDefaultContext(): rgb = Is.groebner() 

sage: rgb 

84*c^4-40*c^3+c^2+c, 

7*b+210*c^3-79*c^2+3*c, 

7*a-420*c^3+158*c^2+8*c-7 

""" 

from sage.interfaces.singular import SingularError 

self.singular.option("set",self.o) 

try: 

self.singular.eval('degBound=%d'%self.bck_degBound) 

except SingularError: 

pass 

try: 

self.singular.eval('multBound=%d'%self.bck_multBound) 

except SingularError: 

pass 

 

def singular_gb_standard_options(func): 

r""" 

Decorator to force a reduced Singular groebner basis. 

 

TESTS:: 

 

sage: P.<a,b,c,d,e> = PolynomialRing(GF(127)) 

sage: J = sage.rings.ideal.Cyclic(P).homogenize() 

sage: from sage.misc.sageinspect import sage_getsource 

sage: "basis" in sage_getsource(J.interreduced_basis) #indirect doctest 

True 

 

The following tests against a bug that was fixed in :trac:`11298`:: 

 

sage: from sage.misc.sageinspect import sage_getsourcelines, sage_getargspec 

sage: P.<x,y> = QQ[] 

sage: I = P*[x,y] 

sage: sage_getargspec(I.interreduced_basis) 

ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) 

sage: sage_getsourcelines(I.interreduced_basis) 

([' @singular_gb_standard_options\n', 

' @libsingular_gb_standard_options\n', 

' def interreduced_basis(self):\n', ' 

... 

' return self.basis.reduced()\n'], ...) 

 

.. note:: 

 

This decorator is used automatically internally so the user 

does not need to use it manually. 

""" 

from sage.misc.decorators import sage_wraps 

@sage_wraps(func) 

def wrapper(*args, **kwds): 

with SingularGBDefaultContext(): 

return func(*args, **kwds) 

return wrapper