Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

""" 

Dokchitser's L-functions Calculator 

 

AUTHORS: 

 

- Tim Dokchitser (2002): original PARI code and algorithm (and the 

documentation below is based on Dokchitser's docs). 

 

- William Stein (2006-03-08): Sage interface 

 

.. TODO:: 

 

- add more examples from SAGE_EXTCODE/pari/dokchitser that illustrate 

use with Eisenstein series, number fields, etc. 

 

- plug this code into number fields and modular forms code (elliptic 

curves are done). 

""" 

 

#***************************************************************************** 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import, print_function 

 

import copy 

import os 

import re 

import string 

import time 

 

from sage.structure.sage_object import SageObject 

from sage.rings.all import ComplexField, Integer 

from sage.misc.all import verbose, sage_eval, SAGE_TMP 

import sage.interfaces.gp 

from sage.env import SAGE_EXTCODE 

 

 

 

class Dokchitser(SageObject): 

r""" 

Dokchitser's `L`-functions Calculator 

 

Create a Dokchitser `L`-series with 

 

Dokchitser(conductor, gammaV, weight, eps, poles, residues, init, 

prec) 

 

where 

 

- ``conductor`` -- integer, the conductor 

 

- ``gammaV`` -- list of Gamma-factor parameters, e.g. [0] for 

Riemann zeta, [0,1] for ell.curves, (see examples). 

 

- ``weight`` -- positive real number, usually an integer e.g. 1 for 

Riemann zeta, 2 for `H^1` of curves/`\QQ` 

 

- ``eps`` -- complex number; sign in functional equation 

 

- ``poles`` -- (default: []) list of points where `L^*(s)` has 

(simple) poles; only poles with `Re(s)>weight/2` should be 

included 

 

- ``residues`` -- vector of residues of `L^*(s)` in those poles or 

set residues='automatic' (default value) 

 

- ``prec`` -- integer (default: 53) number of *bits* of precision 

 

RIEMANN ZETA FUNCTION: 

 

We compute with the Riemann Zeta function. :: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1') 

sage: L 

Dokchitser L-series of conductor 1 and weight 1 

sage: L(1) 

Traceback (most recent call last): 

... 

ArithmeticError 

sage: L(2) 

1.64493406684823 

sage: L(2, 1.1) 

1.64493406684823 

sage: L.derivative(2) 

-0.937548254315844 

sage: h = RR('0.0000000000001') 

sage: (zeta(2+h) - zeta(2.))/h 

-0.937028232783632 

sage: L.taylor_series(2, k=5) 

1.64493406684823 - 0.937548254315844*z + 0.994640117149451*z^2 - 1.00002430047384*z^3 + 1.00006193307...*z^4 + O(z^5) 

 

RANK 1 ELLIPTIC CURVE: 

 

We compute with the `L`-series of a rank `1` curve. :: 

 

sage: E = EllipticCurve('37a') 

sage: L = E.lseries().dokchitser(); L 

Dokchitser L-function associated to Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field 

sage: L(1) 

0.000000000000000 

sage: L.derivative(1) 

0.305999773834052 

sage: L.derivative(1,2) 

0.373095594536324 

sage: L.num_coeffs() 

48 

sage: L.taylor_series(1,4) 

0.000000000000000 + 0.305999773834052*z + 0.186547797268162*z^2 - 0.136791463097188*z^3 + O(z^4) 

sage: L.check_functional_equation() 

6.11218974700000e-18 # 32-bit 

6.04442711160669e-18 # 64-bit 

 

RANK 2 ELLIPTIC CURVE: 

 

We compute the leading coefficient and Taylor expansion of the 

`L`-series of a rank `2` elliptic curve. :: 

 

sage: E = EllipticCurve('389a') 

sage: L = E.lseries().dokchitser() 

sage: L.num_coeffs() 

156 

sage: L.derivative(1,E.rank()) 

1.51863300057685 

sage: L.taylor_series(1,4) 

-1.27685190980159e-23 + (7.23588070754027e-24)*z + 0.759316500288427*z^2 - 0.430302337583362*z^3 + O(z^4) # 32-bit 

-2.72911738151096e-23 + (1.54658247036311e-23)*z + 0.759316500288427*z^2 - 0.430302337583362*z^3 + O(z^4) # 64-bit 

 

NUMBER FIELD: 

 

We compute with the Dedekind zeta function of a number field. :: 

 

sage: x = var('x') 

sage: K = NumberField(x**4 - x**2 - 1,'a') 

sage: L = K.zeta_function() 

sage: L.conductor 

400 

sage: L.num_coeffs() 

264 

sage: L(2) 

1.10398438736918 

sage: L.taylor_series(2,3) 

1.10398438736918 - 0.215822638498759*z + 0.279836437522536*z^2 + O(z^3) 

 

RAMANUJAN DELTA L-FUNCTION: 

 

The coefficients are given by Ramanujan's tau function:: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1) 

sage: pari_precode = 'tau(n)=(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5))' 

sage: L.init_coeffs('tau(k)', pari_precode=pari_precode) 

 

We redefine the default bound on the coefficients: Deligne's 

estimate on tau(n) is better than the default 

coefgrow(n)=`(4n)^{11/2}` (by a factor 1024), so 

re-defining coefgrow() improves efficiency (slightly faster). :: 

 

sage: L.num_coeffs() 

12 

sage: L.set_coeff_growth('2*n^(11/2)') 

sage: L.num_coeffs() 

11 

 

Now we're ready to evaluate, etc. :: 

 

sage: L(1) 

0.0374412812685155 

sage: L(1, 1.1) 

0.0374412812685155 

sage: L.taylor_series(1,3) 

0.0374412812685155 + 0.0709221123619322*z + 0.0380744761270520*z^2 + O(z^3) 

""" 

 

__gp = None 

__globals = set() # set of global variables defined in a run of the 

# computel.gp script that are replaced by indexed copies 

# in the computel.gp.template 

__globals_re = None 

__instance = 0 # Monotonically increasing unique instance ID 

__n_instances = 0 # Number of currently allocated instances 

__template_filename = os.path.join(SAGE_EXTCODE, 'pari', 'dokchitser', 

'computel.gp.template') 

__init = False 

 

def __new__(cls, *args, **kwargs): 

inst = super(Dokchitser, cls).__new__(cls, *args, **kwargs) 

inst.__instance = cls.__instance 

cls.__n_instances += 1 

cls.__instance += 1 

return inst 

 

def __init__(self, conductor, gammaV, weight, eps, \ 

poles=[], residues='automatic', prec=53, 

init=None): 

""" 

Initialization of Dokchitser calculator EXAMPLES:: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1') 

sage: L.num_coeffs() 

4 

""" 

self.conductor = conductor 

self.gammaV = gammaV 

self.weight = weight 

self.eps = eps 

self.poles = poles 

self.residues = residues 

self.prec = prec 

self.__CC = ComplexField(self.prec) 

self.__RR = self.__CC._real_field() 

self.__initialized = False 

if init is not None: 

self.init_coeffs(init) 

 

def __reduce__(self): 

D = copy.copy(self.__dict__) 

if '_Dokchitser__gp' in D: 

del D['_Dokchitser__gp'] 

return reduce_load_dokchitser, (D, ) 

 

def _repr_(self): 

return "Dokchitser L-series of conductor %s and weight %s" % ( 

self.conductor, self.weight) 

 

def __del__(self): 

self._teardown_gp(self.__instance) 

 

def gp(self): 

""" 

Return the gp interpreter that is used to implement this Dokchitser 

L-function. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a') 

sage: L = E.lseries().dokchitser() 

sage: L(2) 

0.546048036215014 

sage: L.gp() 

PARI/GP interpreter 

""" 

 

if self.__gp is None: 

self._instantiate_gp() 

elif self.__initialized: 

return self.__gp 

 

self.__initialized = True 

 

with open(self.__template_filename) as tf: 

template = string.Template(tf.read()) 

tmp_script = os.path.join(SAGE_TMP, 'computel_%s.gp' % self.__instance) 

with open(tmp_script, 'w') as f: 

f.write(template.substitute(i=str(self.__instance))) 

 

try: 

self.__gp.read(tmp_script) 

finally: 

os.unlink(tmp_script) 

 

self._gp_eval('default(realprecision, %s)' % (self.prec // 3 + 2)) 

self._gp_set_inst('conductor', self.conductor) 

self._gp_set_inst('gammaV', self.gammaV) 

self._gp_set_inst('weight', self.weight) 

self._gp_set_inst('sgn', self.eps) 

self._gp_set_inst('Lpoles', self.poles) 

self._gp_set_inst('Lresidues', self.residues) 

return self.__gp 

 

@classmethod 

def _instantiate_gp(cls): 

from sage.env import DOT_SAGE 

logfile = os.path.join(DOT_SAGE, 'dokchitser.log') 

cls.__gp = sage.interfaces.gp.Gp(script_subdirectory='dokchitser', 

logfile=logfile) 

# Read the script template and parse out all indexed global variables 

# (easy because they all end in "_$i" and there's nothing else in the 

# script that uses $) 

global_re = re.compile(r'([a-zA-Z0-9]+)_\$i') 

with open(cls.__template_filename) as f: 

for line in f: 

for m in global_re.finditer(line): 

cls.__globals.add(m.group(1)) 

 

cls.__globals_re = re.compile( 

'([^a-zA-Z0-9_]|^)(%s)([^a-zA-Z0-9_]|$)' % '|'.join(cls.__globals)) 

return 

 

@classmethod 

def _teardown_gp(cls, instance=None): 

cls.__n_instances -= 1 

if cls.__n_instances == 0: 

cls.__gp.quit() 

elif instance is not None: 

# Clean up all global variables created by this instance 

for varname in cls.__globals: 

cls.__gp.eval('kill(%s_%s)' % (varname, instance)) 

 

def _gp_call_inst(self, func, *args): 

""" 

Call the specified PARI function in the GP interpreter, with the 

instance number of this `Dokchitser` instance automatically appended. 

 

For example, ``self._gp_call_inst('L', 1)`` is equivalent to 

``self.gp().eval('L_N(1)')`` where ``N`` is ``self.__instance``. 

""" 

 

cmd = '%s_%d(%s)' % (func, self.__instance, 

','.join(str(a) for a in args)) 

return self._gp_eval(cmd) 

 

def _gp_set_inst(self, varname, value): 

""" 

Like ``_gp_call_inst`` but sets the variable given by ``varname`` to 

the given value, appending ``_N`` to the variable name. 

 

If ``varname`` is a function (e.g. ``'func(n)'``) then this sets 

``func_N(n)``). 

""" 

 

if '(' in varname: 

funcname, args = varname.split('(', 1) 

varname = '%s_%s(%s' % (funcname, self.__instance, args) 

else: 

varname = '%s_%s' % (varname, self.__instance) 

 

cmd = '%s = %s' % (varname, value) 

return self._gp_eval(cmd) 

 

def _gp_eval(self, s): 

try: 

t = self.gp().eval(s) 

except (RuntimeError, TypeError): 

raise RuntimeError("Unable to create L-series, due to precision or other limits in PARI.") 

if not self.__init and '***' in t: 

# After init_coeffs is called, future calls to this method should 

# return the full output for futher parsing 

raise RuntimeError("Unable to create L-series, due to precision or other limits in PARI.") 

return t 

 

def __check_init(self): 

if not self.__init: 

raise ValueError("you must call init_coeffs on the L-function first") 

 

def num_coeffs(self, T=1): 

""" 

Return number of coefficients `a_n` that are needed in 

order to perform most relevant `L`-function computations to 

the desired precision. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a') 

sage: L = E.lseries().dokchitser() 

sage: L.num_coeffs() 

26 

sage: E = EllipticCurve('5077a') 

sage: L = E.lseries().dokchitser() 

sage: L.num_coeffs() 

568 

sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1') 

sage: L.num_coeffs() 

4 

 

Verify that ``num_coeffs`` works with non-real spectral 

parameters, e.g. for the L-function of the level 10 Maass form 

with eigenvalue 2.7341055592527126:: 

 

sage: ev = 2.7341055592527126 

sage: L = Dokchitser(conductor=10, gammaV=[ev*i, -ev*i],weight=2,eps=1) 

sage: L.num_coeffs() 

26 

""" 

return Integer(self._gp_call_inst('cflength', T)) 

 

def init_coeffs(self, v, cutoff=1, 

w=None, 

pari_precode='', 

max_imaginary_part=0, 

max_asymp_coeffs=40): 

""" 

Set the coefficients `a_n` of the `L`-series. 

 

If `L(s)` is not equal to its dual, pass the coefficients of 

the dual as the second optional argument. 

 

INPUT: 

 

- ``v`` -- list of complex numbers or string (pari function of k) 

 

- ``cutoff`` -- real number = 1 (default: 1) 

 

- ``w`` -- list of complex numbers or string (pari function of k) 

 

- ``pari_precode`` -- some code to execute in pari 

before calling initLdata 

 

- ``max_imaginary_part`` -- (default: 0): redefine if 

you want to compute L(s) for s having large imaginary part, 

 

- ``max_asymp_coeffs`` -- (default: 40): at most this 

many terms are generated in asymptotic series for phi(t) and 

G(s,t). 

 

EXAMPLES:: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1) 

sage: pari_precode = 'tau(n)=(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5))' 

sage: L.init_coeffs('tau(k)', pari_precode=pari_precode) 

 

Evaluate the resulting L-function at a point, and compare with 

the answer that one gets "by definition" (of L-function 

attached to a modular form):: 

 

sage: L(14) 

0.998583063162746 

sage: a = delta_qexp(1000) 

sage: sum(a[n]/float(n)^14 for n in range(1,1000)) 

0.9985830631627459 

 

Illustrate that one can give a list of complex numbers for v 

(see :trac:`10937`):: 

 

sage: L2 = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1) 

sage: L2.init_coeffs(list(delta_qexp(1000))[1:]) 

sage: L2(14) 

0.998583063162746 

 

TESTS: 

 

Verify that setting the `w` parameter does not raise an error 

(see :trac:`10937`). Note that the meaning of `w` does not seem to 

be documented anywhere in Dokchitser's package yet, so there is 

no claim that the example below is meaningful! :: 

 

sage: L2 = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1) 

sage: L2.init_coeffs(list(delta_qexp(1000))[1:], w=[1..1000]) 

""" 

if isinstance(v, tuple) and w is None: 

v, cutoff, w, pari_precode, max_imaginary_part, max_asymp_coeffs = v 

 

if pari_precode: 

# Must have __globals_re instantiated 

if self.__gp is None: 

self._instantiate_gp() 

 

def repl(m): 

return '%s%s_%d%s' % (m.group(1), m.group(2), self.__instance, 

m.group(3)) 

 

# If any of the pre-code contains references to some of the 

# templated global variables we must replace those as well 

pari_precode = self.__globals_re.sub(repl, pari_precode) 

 

if pari_precode != '': 

self._gp_eval(pari_precode) 

RR = self.__CC._real_field() 

cutoff = RR(cutoff) 

if isinstance(v, str): 

if w is None: 

self._gp_call_inst('initLdata', '"%s"' % v, cutoff) 

else: 

self._gp_call_inst('initLdata', '"%s"' % v, cutoff, '"%s"' % w) 

elif not isinstance(v, (list, tuple)): 

raise TypeError("v (=%s) must be a list, tuple, or string" % v) 

else: 

CC = self.__CC 

v = ','.join([CC(a)._pari_init_() for a in v]) 

self._gp_eval('Avec = [%s]' % v) 

if w is None: 

self._gp_call_inst('initLdata', '"Avec[k]"', cutoff) 

else: 

w = ','.join([CC(a)._pari_init_() for a in w]) 

self._gp_eval('Bvec = [%s]' % w) 

self._gp_call_inst('initLdata', '"Avec[k]"', cutoff, 

'"Bvec[k]"') 

self.__init = (v, cutoff, w, pari_precode, max_imaginary_part, 

max_asymp_coeffs) 

 

def __to_CC(self, s): 

s = s.replace('.E', '.0E').replace(' ', '') 

return self.__CC(sage_eval(s, locals={'I': self.__CC.gen(0)})) 

 

def _clear_value_cache(self): 

del self.__values 

 

def __call__(self, s, c=None): 

r""" 

INPUT: 

 

- ``s`` -- complex number 

 

.. NOTE:: 

 

Evaluation of the function takes a long time, so each 

evaluation is cached. Call ``self._clear_value_cache()`` to 

clear the evaluation cache. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('5077a') 

sage: L = E.lseries().dokchitser(100) 

sage: L(1) 

0.00000000000000000000000000000 

sage: L(1+I) 

-1.3085436607849493358323930438 + 0.81298000036784359634835412129*I 

""" 

self.__check_init() 

s = self.__CC(s) 

try: 

return self.__values[s] 

except AttributeError: 

self.__values = {} 

except KeyError: 

pass 

z = self._gp_call_inst('L', s) 

if 'pole' in z: 

print(z) 

raise ArithmeticError 

elif '***' in z: 

print(z) 

raise RuntimeError 

elif 'Warning' in z: 

i = z.rfind('\n') 

msg = z[:i].replace('digits', 'decimal digits') 

verbose(msg, level=-1) 

ans = self.__to_CC(z[i + 1:]) 

self.__values[s] = ans 

return ans 

ans = self.__to_CC(z) 

self.__values[s] = ans 

return ans 

 

def derivative(self, s, k=1): 

r""" 

Return the `k`-th derivative of the `L`-series at `s`. 

 

.. WARNING:: 

 

If `k` is greater than the order of vanishing of 

`L` at `s` you may get nonsense. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: L = E.lseries().dokchitser() 

sage: L.derivative(1,E.rank()) 

1.51863300057685 

""" 

self.__check_init() 

s = self.__CC(s) 

k = Integer(k) 

z = self._gp_call_inst('L', s, '', k) 

if 'pole' in z: 

raise ArithmeticError(z) 

elif 'Warning' in z: 

i = z.rfind('\n') 

msg = z[:i].replace('digits', 'decimal digits') 

verbose(msg, level=-1) 

return self.__CC(z[i:]) 

return self.__CC(z) 

 

def taylor_series(self, a=0, k=6, var='z'): 

r""" 

Return the first `k` terms of the Taylor series expansion 

of the `L`-series about `a`. 

 

This is returned as a series in ``var``, where you 

should view ``var`` as equal to `s-a`. Thus 

this function returns the formal power series whose coefficients 

are `L^{(n)}(a)/n!`. 

 

INPUT: 

 

- ``a`` -- complex number (default: 0); point about 

which to expand 

 

- ``k`` -- integer (default: 6), series is 

`O(``var``^k)` 

 

- ``var`` -- string (default: 'z'), variable of power 

series 

 

EXAMPLES:: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1') 

sage: L.taylor_series(2, 3) 

1.64493406684823 - 0.937548254315844*z + 0.994640117149451*z^2 + O(z^3) 

sage: E = EllipticCurve('37a') 

sage: L = E.lseries().dokchitser() 

sage: L.taylor_series(1) 

0.000000000000000 + 0.305999773834052*z + 0.186547797268162*z^2 - 0.136791463097188*z^3 + 0.0161066468496401*z^4 + 0.0185955175398802*z^5 + O(z^6) 

 

We compute a Taylor series where each coefficient is to high 

precision. :: 

 

sage: E = EllipticCurve('389a') 

sage: L = E.lseries().dokchitser(200) 

sage: L.taylor_series(1,3) 

-9.094...e-82 + (5.1538...e-82)*z + 0.75931650028842677023019260789472201907809751649492435158581*z^2 + O(z^3) 

""" 

self.__check_init() 

a = self.__CC(a) 

k = Integer(k) 

try: 

z = self._gp_call_inst('Lseries', a, '', k - 1) 

z = self.gp()('Vec(%s)' % z) 

except TypeError as msg: 

raise RuntimeError("%s\nUnable to compute Taylor expansion (try lowering the number of terms)" % msg) 

r = repr(z) 

if 'pole' in r: 

raise ArithmeticError(r) 

elif 'Warning' in r: 

i = r.rfind('\n') 

msg = r[:i].replace('digits', 'decimal digits') 

verbose(msg, level=-1) 

v = list(z) 

K = self.__CC 

v = [K(repr(x)) for x in v] 

R = self.__CC[[var]] 

return R(v, len(v)) 

 

def check_functional_equation(self, T=1.2): 

r""" 

Verifies how well numerically the functional equation is satisfied, 

and also determines the residues if ``self.poles != 

[]`` and residues='automatic'. 

 

More specifically: for `T>1` (default 1.2), 

``self.check_functional_equation(T)`` should ideally 

return 0 (to the current precision). 

 

- if what this function returns does not look like 0 at all, 

probably the functional equation is wrong (i.e. some of the 

parameters gammaV, conductor etc., or the coefficients are wrong), 

 

- if checkfeq(T) is to be used, more coefficients have to be 

generated (approximately T times more), e.g. call cflength(1.3), 

initLdata("a(k)",1.3), checkfeq(1.3) 

 

- T=1 always (!) returns 0, so T has to be away from 1 

 

- default value `T=1.2` seems to give a reasonable 

balance 

 

- if you don't have to verify the functional equation or the 

L-values, call num_coeffs(1) and initLdata("a(k)",1), you need 

slightly less coefficients. 

 

EXAMPLES:: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1') 

sage: L.check_functional_equation() 

-1.35525271600000e-20 # 32-bit 

-2.71050543121376e-20 # 64-bit 

 

If we choose the sign in functional equation for the 

`\zeta` function incorrectly, the functional equation 

doesn't check out. :: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=-11, poles=[1], residues=[-1], init='1') 

sage: L.check_functional_equation() 

-9.73967861488124 

""" 

self.__check_init() 

z = self._gp_call_inst('checkfeq', T) 

z = z.replace(' ', '') 

return self.__CC(z) 

 

def set_coeff_growth(self, coefgrow): 

r""" 

You might have to redefine the coefficient growth function if the 

`a_n` of the `L`-series are not given by the 

following PARI function:: 

 

coefgrow(n) = if(length(Lpoles), 

1.5*n^(vecmax(real(Lpoles))-1), 

sqrt(4*n)^(weight-1)); 

 

 

INPUT: 

 

- ``coefgrow`` -- string that evaluates to a PARI 

function of n that defines a coefgrow function. 

 

EXAMPLES:: 

 

sage: L = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1) 

sage: pari_precode = 'tau(n)=(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5))' 

sage: L.init_coeffs('tau(k)', pari_precode=pari_precode) 

sage: L.set_coeff_growth('2*n^(11/2)') 

sage: L(1) 

0.0374412812685155 

""" 

if not isinstance(coefgrow, str): 

raise TypeError("coefgrow must be a string") 

 

self._gp_set_inst('coefgrow(n)', coefgrow.replace('\n', ' ')) 

 

 

def reduce_load_dokchitser(D): 

X = Dokchitser(1, 1, 1, 1) 

X.__dict__ = D 

X.init_coeffs(X._Dokchitser__init) 

return X