Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

r""" 

Algebra of Differentiable Scalar Fields 

 

The class :class:`DiffScalarFieldAlgebra` implements the commutative algebra 

`C^k(M)` of differentiable scalar fields on a differentiable manifold `M` of 

class `C^k` over a topological field `K` (in 

most applications, `K = \RR` or `K = \CC`). By *differentiable scalar field*, 

it is meant a function `M\rightarrow K` that is `k`-times continuously 

differentiable. `C^k(M)` is an algebra over `K`, whose ring product is the 

pointwise multiplication of `K`-valued functions, which is clearly commutative. 

 

AUTHORS: 

 

- Eric Gourgoulhon, Michal Bejger (2014-2015): initial version 

 

REFERENCES: 

 

- [KN1963]_ 

- [Lee2013]_ 

- [ONe1983]_ 

 

""" 

 

#****************************************************************************** 

# Copyright (C) 2015 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr> 

# Copyright (C) 2015 Michal Bejger <bejger@camk.edu.pl> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

 

from sage.rings.infinity import infinity 

from sage.symbolic.ring import SR 

from sage.manifolds.scalarfield_algebra import ScalarFieldAlgebra 

from sage.manifolds.differentiable.scalarfield import DiffScalarField 

 

class DiffScalarFieldAlgebra(ScalarFieldAlgebra): 

r""" 

Commutative algebra of differentiable scalar fields on a differentiable 

manifold. 

 

If `M` is a differentiable manifold of class `C^k` over a topological 

field `K`, the *commutative algebra of scalar fields on* `M` is the set 

`C^k(M)` of all `k`-times continuously differentiable maps `M\rightarrow K`. 

The set `C^k(M)` is an algebra over `K`, whose ring product is the 

pointwise multiplication of `K`-valued functions, which is clearly 

commutative. 

 

If `K = \RR` or `K = \CC`, the field `K` over which the 

algebra `C^k(M)` is constructed is represented by Sage's Symbolic Ring 

``SR``, since there is no exact representation of `\RR` nor `\CC` in Sage. 

 

Via its base class 

:class:`~sage.manifolds.scalarfield_algebra.ScalarFieldAlgebra`, 

the class :class:`DiffScalarFieldAlgebra` inherits from 

:class:`~sage.structure.parent.Parent`, with the category set to 

:class:`~sage.categories.commutative_algebras.CommutativeAlgebras`. 

The corresponding *element* class is 

:class:`~sage.manifolds.differentiable.scalarfield.DiffScalarField`. 

 

INPUT: 

 

- ``domain`` -- the differentiable manifold `M` on which the scalar fields 

are defined (must be an instance of class 

:class:`~sage.manifolds.differentiable.manifold.DifferentiableManifold`) 

 

EXAMPLES: 

 

Algebras of scalar fields on the sphere `S^2` and on some open subset of 

it:: 

 

sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2 

sage: U = M.open_subset('U') # complement of the North pole 

sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole 

sage: V = M.open_subset('V') # complement of the South pole 

sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole 

sage: M.declare_union(U,V) # S^2 is the union of U and V 

sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), 

....: intersection_name='W', restrictions1= x^2+y^2!=0, 

....: restrictions2= u^2+v^2!=0) 

sage: uv_to_xy = xy_to_uv.inverse() 

sage: CM = M.scalar_field_algebra() ; CM 

Algebra of differentiable scalar fields on the 2-dimensional 

differentiable manifold M 

sage: W = U.intersection(V) # S^2 minus the two poles 

sage: CW = W.scalar_field_algebra() ; CW 

Algebra of differentiable scalar fields on the Open subset W of the 

2-dimensional differentiable manifold M 

 

`C^k(M)` and `C^k(W)` belong to the category of commutative 

algebras over `\RR` (represented here by Sage's Symbolic Ring):: 

 

sage: CM.category() 

Category of commutative algebras over Symbolic Ring 

sage: CM.base_ring() 

Symbolic Ring 

sage: CW.category() 

Category of commutative algebras over Symbolic Ring 

sage: CW.base_ring() 

Symbolic Ring 

 

The elements of `C^k(M)` are scalar fields on `M`:: 

 

sage: CM.an_element() 

Scalar field on the 2-dimensional differentiable manifold M 

sage: CM.an_element().display() # this sample element is a constant field 

M --> R 

on U: (x, y) |--> 2 

on V: (u, v) |--> 2 

 

Those of `C^k(W)` are scalar fields on `W`:: 

 

sage: CW.an_element() 

Scalar field on the Open subset W of the 2-dimensional differentiable 

manifold M 

sage: CW.an_element().display() # this sample element is a constant field 

W --> R 

(x, y) |--> 2 

(u, v) |--> 2 

 

The zero element:: 

 

sage: CM.zero() 

Scalar field zero on the 2-dimensional differentiable manifold M 

sage: CM.zero().display() 

zero: M --> R 

on U: (x, y) |--> 0 

on V: (u, v) |--> 0 

 

:: 

 

sage: CW.zero() 

Scalar field zero on the Open subset W of the 2-dimensional 

differentiable manifold M 

sage: CW.zero().display() 

zero: W --> R 

(x, y) |--> 0 

(u, v) |--> 0 

 

The unit element:: 

 

sage: CM.one() 

Scalar field 1 on the 2-dimensional differentiable manifold M 

sage: CM.one().display() 

1: M --> R 

on U: (x, y) |--> 1 

on V: (u, v) |--> 1 

 

:: 

 

sage: CW.one() 

Scalar field 1 on the Open subset W of the 2-dimensional differentiable 

manifold M 

sage: CW.one().display() 

1: W --> R 

(x, y) |--> 1 

(u, v) |--> 1 

 

A generic element can be constructed as for any parent in Sage, namely 

by means of the ``__call__`` operator on the parent (here with the 

dictionary of the coordinate expressions defining the scalar field):: 

 

sage: f = CM({c_xy: atan(x^2+y^2), c_uv: pi/2 - atan(u^2+v^2)}); f 

Scalar field on the 2-dimensional differentiable manifold M 

sage: f.display() 

M --> R 

on U: (x, y) |--> arctan(x^2 + y^2) 

on V: (u, v) |--> 1/2*pi - arctan(u^2 + v^2) 

sage: f.parent() 

Algebra of differentiable scalar fields on the 2-dimensional 

differentiable manifold M 

 

Specific elements can also be constructed in this way:: 

 

sage: CM(0) == CM.zero() 

True 

sage: CM(1) == CM.one() 

True 

 

Note that the zero scalar field is cached:: 

 

sage: CM(0) is CM.zero() 

True 

 

Elements can also be constructed by means of the method 

:meth:`~sage.manifolds.manifold.TopologicalManifold.scalar_field` acting on 

the domain (this allows one to set the name of the scalar field at the 

construction):: 

 

sage: f1 = M.scalar_field({c_xy: atan(x^2+y^2), c_uv: pi/2 - atan(u^2+v^2)}, 

....: name='f') 

sage: f1.parent() 

Algebra of differentiable scalar fields on the 2-dimensional 

differentiable manifold M 

sage: f1 == f 

True 

sage: M.scalar_field(0, chart='all') == CM.zero() 

True 

 

The algebra `C^k(M)` coerces to `C^k(W)` since `W` is an open 

subset of `M`:: 

 

sage: CW.has_coerce_map_from(CM) 

True 

 

The reverse is of course false:: 

 

sage: CM.has_coerce_map_from(CW) 

False 

 

The coercion map is nothing but the restriction to `W` of scalar fields 

on `M`:: 

 

sage: fW = CW(f) ; fW 

Scalar field on the Open subset W of the 2-dimensional differentiable 

manifold M 

sage: fW.display() 

W --> R 

(x, y) |--> arctan(x^2 + y^2) 

(u, v) |--> 1/2*pi - arctan(u^2 + v^2) 

 

:: 

 

sage: CW(CM.one()) == CW.one() 

True 

 

The coercion map allows for the addition of elements of `C^k(W)` 

with elements of `C^k(M)`, the result being an element of 

`C^k(W)`:: 

 

sage: s = fW + f 

sage: s.parent() 

Algebra of differentiable scalar fields on the Open subset W of the 

2-dimensional differentiable manifold M 

sage: s.display() 

W --> R 

(x, y) |--> 2*arctan(x^2 + y^2) 

(u, v) |--> pi - 2*arctan(u^2 + v^2) 

 

Another coercion is that from the Symbolic Ring, the parent of all 

symbolic expressions (cf. :class:`~sage.symbolic.ring.SymbolicRing`). 

Since the Symbolic Ring is the base ring for the algebra ``CM``, the 

coercion of a symbolic expression ``s`` is performed by the operation 

``s*CM.one()``, which invokes the reflected multiplication operator 

:meth:`sage.manifolds.scalarfield.ScalarField._rmul_`. If the symbolic 

expression does not involve any chart coordinate, the outcome is a 

constant scalar field:: 

 

sage: h = CM(pi*sqrt(2)) ; h 

Scalar field on the 2-dimensional differentiable manifold M 

sage: h.display() 

M --> R 

on U: (x, y) |--> sqrt(2)*pi 

on V: (u, v) |--> sqrt(2)*pi 

sage: a = var('a') 

sage: h = CM(a); h.display() 

M --> R 

on U: (x, y) |--> a 

on V: (u, v) |--> a 

 

If the symbolic expression involves some coordinate of one of the 

manifold's charts, the outcome is initialized only on the chart domain:: 

 

sage: h = CM(a+x); h.display() 

M --> R 

on U: (x, y) |--> a + x 

sage: h = CM(a+u); h.display() 

M --> R 

on V: (u, v) |--> a + u 

 

If the symbolic expression involves coordinates of different charts, 

the scalar field is created as a Python object, but is not initialized, 

in order to avoid any ambiguity:: 

 

sage: h = CM(x+u); h.display() 

M --> R 

 

.. RUBRIC:: TESTS OF THE ALGEBRA LAWS: 

 

Ring laws:: 

 

sage: h = CM(pi*sqrt(2)) 

sage: s = f + h ; s 

Scalar field on the 2-dimensional differentiable manifold M 

sage: s.display() 

M --> R 

on U: (x, y) |--> sqrt(2)*pi + arctan(x^2 + y^2) 

on V: (u, v) |--> 1/2*pi*(2*sqrt(2) + 1) - arctan(u^2 + v^2) 

 

:: 

 

sage: s = f - h ; s 

Scalar field on the 2-dimensional differentiable manifold M 

sage: s.display() 

M --> R 

on U: (x, y) |--> -sqrt(2)*pi + arctan(x^2 + y^2) 

on V: (u, v) |--> -1/2*pi*(2*sqrt(2) - 1) - arctan(u^2 + v^2) 

 

:: 

 

sage: s = f*h ; s 

Scalar field on the 2-dimensional differentiable manifold M 

sage: s.display() 

M --> R 

on U: (x, y) |--> sqrt(2)*pi*arctan(x^2 + y^2) 

on V: (u, v) |--> 1/2*sqrt(2)*(pi^2 - 2*pi*arctan(u^2 + v^2)) 

 

:: 

 

sage: s = f/h ; s 

Scalar field on the 2-dimensional differentiable manifold M 

sage: s.display() 

M --> R 

on U: (x, y) |--> 1/2*sqrt(2)*arctan(x^2 + y^2)/pi 

on V: (u, v) |--> 1/4*sqrt(2)*(pi - 2*arctan(u^2 + v^2))/pi 

 

:: 

 

sage: f*(h+f) == f*h + f*f 

True 

 

Ring laws with coercion:: 

 

sage: f - fW == CW.zero() 

True 

sage: f/fW == CW.one() 

True 

sage: s = f*fW ; s 

Scalar field on the Open subset W of the 2-dimensional differentiable 

manifold M 

sage: s.display() 

W --> R 

(x, y) |--> arctan(x^2 + y^2)^2 

(u, v) |--> 1/4*pi^2 - pi*arctan(u^2 + v^2) + arctan(u^2 + v^2)^2 

sage: s/f == fW 

True 

 

Multiplication by a number:: 

 

sage: s = 2*f ; s 

Scalar field on the 2-dimensional differentiable manifold M 

sage: s.display() 

M --> R 

on U: (x, y) |--> 2*arctan(x^2 + y^2) 

on V: (u, v) |--> pi - 2*arctan(u^2 + v^2) 

 

:: 

 

sage: 0*f == CM.zero() 

True 

sage: 1*f == f 

True 

sage: 2*(f/2) == f 

True 

sage: (f+2*f)/3 == f 

True 

sage: 1/3*(f+2*f) == f 

True 

 

The Sage test suite for algebras is passed:: 

 

sage: TestSuite(CM).run() 

 

It is passed also for `C^k(W)`:: 

 

sage: TestSuite(CW).run() 

 

""" 

 

Element = DiffScalarField 

 

def __init__(self, domain): 

r""" 

Construct an algebra of differentiable scalar fields. 

 

TESTS:: 

 

sage: M = Manifold(2, 'M') 

sage: X.<x,y> = M.chart() 

sage: CM = M.scalar_field_algebra(); CM 

Algebra of differentiable scalar fields on the 2-dimensional 

differentiable manifold M 

sage: type(CM) 

<class 'sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra_with_category'> 

sage: type(CM).__base__ 

<class 'sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra'> 

sage: TestSuite(CM).run() 

 

""" 

ScalarFieldAlgebra.__init__(self, domain) 

 

#### Methods required for any Parent 

 

def _coerce_map_from_(self, other): 

r""" 

Determine whether coercion to self exists from other parent 

 

TESTS:: 

 

sage: M = Manifold(2, 'M') 

sage: X.<x,y> = M.chart() 

sage: CM = M.scalar_field_algebra() 

sage: CM._coerce_map_from_(SR) 

True 

sage: U = M.open_subset('U', coord_def={X: x>0}) 

sage: CU = U.scalar_field_algebra() 

sage: CM._coerce_map_from_(CU) 

False 

sage: CU._coerce_map_from_(CM) 

True 

 

""" 

if other is SR: 

return True # coercion from the base ring (multiplication by the 

# algebra unit, i.e. self.one()) 

# cf. ScalarField._lmul_() for the implementation of 

# the coercion map 

elif isinstance(other, DiffScalarFieldAlgebra): 

return self._domain.is_subset(other._domain) 

else: 

return False 

 

#### End of methods required for any Parent 

 

def _repr_(self): 

r""" 

String representation of the object. 

 

TESTS:: 

 

sage: M = Manifold(2, 'M') 

sage: CM = M.scalar_field_algebra() 

sage: CM._repr_() 

'Algebra of differentiable scalar fields on the 2-dimensional differentiable manifold M' 

sage: repr(CM) # indirect doctest 

'Algebra of differentiable scalar fields on the 2-dimensional differentiable manifold M' 

 

""" 

return "Algebra of differentiable scalar fields on " + \ 

"the {}".format(self._domain) 

 

def _latex_(self): 

r""" 

LaTeX representation of the object. 

 

TESTS:: 

 

sage: M = Manifold(2, 'M') 

sage: CM = M.scalar_field_algebra() 

sage: CM._latex_() 

'C^{\\infty}\\left(M\\right)' 

sage: latex(CM) # indirect doctest 

C^{\infty}\left(M\right) 

 

""" 

degree = self._domain.diff_degree() 

if degree == infinity: 

latex_degree = r"\infty" # to skip the "+" in latex(infinity) 

else: 

latex_degree = "{}".format(degree) 

return r"C^{" + latex_degree + r"}\left(" + self._domain._latex_() + \ 

r"\right)"