Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

""" 

Minimal Polynomials of Linear Recurrence Sequences 

 

AUTHORS: 

 

- William Stein 

""" 

 

 

#***************************************************************************** 

# Copyright (C) 2005 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

import sage.rings.rational_field 

 

def berlekamp_massey(a): 

""" 

Use the Berlekamp-Massey algorithm to find the minimal polynomial 

of a linearly recurrence sequence a. 

 

The minimal polynomial of a linear recurrence `\{a_r\}` is 

by definition the unique monic polynomial `g`, such that if 

`\{a_r\}` satisfies a linear recurrence 

`a_{j+k} + b_{j-1} a_{j-1+k} + \cdots + b_0 a_k=0` 

(for all `k\geq 0`), then `g` divides the 

polynomial `x^j + \sum_{i=0}^{j-1} b_i x^i`. 

 

INPUT: 

 

 

- ``a`` - a list of even length of elements of a field 

(or domain) 

 

 

OUTPUT: 

 

 

- ``Polynomial`` - the minimal polynomial of the 

sequence (as a polynomial over the field in which the entries of a 

live) 

 

 

EXAMPLES:: 

 

sage: berlekamp_massey([1,2,1,2,1,2]) 

x^2 - 1 

sage: berlekamp_massey([GF(7)(1),19,1,19]) 

x^2 + 6 

sage: berlekamp_massey([2,2,1,2,1,191,393,132]) 

x^4 - 36727/11711*x^3 + 34213/5019*x^2 + 7024942/35133*x - 335813/1673 

sage: berlekamp_massey(prime_range(2,38)) 

x^6 - 14/9*x^5 - 7/9*x^4 + 157/54*x^3 - 25/27*x^2 - 73/18*x + 37/9 

""" 

 

if not isinstance(a, list): 

raise TypeError("Argument 1 must be a list.") 

if len(a)%2 != 0: 

raise ValueError("Argument 1 must have an even number of terms.") 

 

M = len(a)//2 

 

try: 

K = a[0].parent().fraction_field() 

except AttributeError: 

K = sage.rings.rational_field.RationalField() 

R = K['x'] 

x = R.gen() 

 

f = {} 

q = {} 

s = {} 

t = {} 

f[-1] = R(a) 

f[0] = x**(2*M) 

s[-1] = 1 

t[0] = 1 

s[0] = 0 

t[-1] = 0 

j = 0 

while f[j].degree() >= M: 

j += 1 

q[j], f[j] = f[j-2].quo_rem(f[j-1]) 

# assert q[j]*f[j-1] + f[j] == f[j-2], "poly divide failed." 

s[j] = s[j-2] - q[j]*s[j-1] 

t[j] = t[j-2] - q[j]*t[j-1] 

t = s[j].reverse() 

f = ~(t[t.degree()]) * t # make monic (~ is inverse in python) 

return f