Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

r""" 

Matroid construction 

 

Theory 

====== 

 

Matroids are combinatorial structures that capture the abstract properties 

of (linear/algebraic/...) dependence. Formally, a matroid is a pair 

`M = (E, I)` of a finite set `E`, the *groundset*, and a collection of 

subsets `I`, the independent sets, subject to the following axioms: 

 

* `I` contains the empty set 

* If `X` is a set in `I`, then each subset of `X` is in `I` 

* If two subsets `X`, `Y` are in `I`, and `|X| > |Y|`, then there exists 

`x \in X - Y` such that `Y + \{x\}` is in `I`. 

 

See the :wikipedia:`Wikipedia article on matroids <Matroid>` for more theory 

and examples. Matroids can be obtained from many types of mathematical 

structures, and Sage supports a number of them. 

 

There are two main entry points to Sage's matroid functionality. The object 

:class:`matroids. <sage.matroids.matroids_catalog>` contains a number of 

constructors for well-known matroids. The function 

:func:`Matroid() <sage.matroids.constructor.Matroid>` allows you to define 

your own matroids from a variety of sources. We briefly introduce both below; 

follow the links for more comprehensive documentation. 

 

Each matroid object in Sage comes with a number of built-in operations. An 

overview can be found in the documentation of 

:mod:`the abstract matroid class <sage.matroids.matroid>`. 

 

Built-in matroids 

================= 

 

For built-in matroids, do the following: 

 

* Within a Sage session, type ``matroids.`` (Do not press "Enter", and do not 

forget the final period ".") 

* Hit "tab". 

 

You will see a list of methods which will construct matroids. For example:: 

 

sage: M = matroids.Wheel(4) 

sage: M.is_connected() 

True 

 

or:: 

 

sage: U36 = matroids.Uniform(3, 6) 

sage: U36.equals(U36.dual()) 

True 

 

A number of special matroids are collected under a ``named_matroids`` submenu. 

To see which, type ``matroids.named_matroids.<tab>`` as above:: 

 

sage: F7 = matroids.named_matroids.Fano() 

sage: len(F7.nonspanning_circuits()) 

7 

 

Constructing matroids 

===================== 

 

To define your own matroid, use the function 

:func:`Matroid() <sage.matroids.constructor.Matroid>`. This function attempts 

to interpret its arguments to create an appropriate matroid. The input 

arguments are documented in detail 

:func:`below <sage.matroids.constructor.Matroid>`. 

 

EXAMPLES:: 

 

sage: A = Matrix(GF(2), [[1, 0, 0, 0, 1, 1, 1], 

....: [0, 1, 0, 1, 0, 1, 1], 

....: [0, 0, 1, 1, 1, 0, 1]]) 

sage: M = Matroid(A) 

sage: M.is_isomorphic(matroids.named_matroids.Fano()) 

True 

 

sage: M = Matroid(graphs.PetersenGraph()) 

sage: M.rank() 

9 

 

AUTHORS: 

 

- Rudi Pendavingh, Michael Welsh, Stefan van Zwam (2013-04-01): initial 

version 

 

Functions 

========= 

""" 

 

#***************************************************************************** 

# Copyright (C) 2013 Rudi Pendavingh <rudi.pendavingh@gmail.com> 

# Copyright (C) 2013 Michael Welsh <michael@welsh.co.nz> 

# Copyright (C) 2013 Stefan van Zwam <stefanvanzwam@gmail.com> 

# 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from __future__ import absolute_import 

 

from six import itervalues 

 

from itertools import combinations 

from sage.matrix.constructor import Matrix 

from sage.graphs.all import Graph 

from sage.structure.element import is_Matrix 

from sage.rings.all import ZZ, QQ 

from sage.rings.finite_rings.finite_field_base import FiniteField 

import sage.matroids.matroid 

import sage.matroids.basis_exchange_matroid 

from .rank_matroid import RankMatroid 

from .circuit_closures_matroid import CircuitClosuresMatroid 

from .basis_matroid import BasisMatroid 

from .linear_matroid import LinearMatroid, RegularMatroid, BinaryMatroid, TernaryMatroid, QuaternaryMatroid 

from .graphic_matroid import GraphicMatroid 

import sage.matroids.utilities 

 

 

def Matroid(groundset=None, data=None, **kwds): 

r""" 

Construct a matroid. 

 

Matroids are combinatorial structures that capture the abstract properties 

of (linear/algebraic/...) dependence. Formally, a matroid is a pair 

`M = (E, I)` of a finite set `E`, the *groundset*, and a collection of 

subsets `I`, the independent sets, subject to the following axioms: 

 

* `I` contains the empty set 

* If `X` is a set in `I`, then each subset of `X` is in `I` 

* If two subsets `X`, `Y` are in `I`, and `|X| > |Y|`, then there exists 

`x \in X - Y` such that `Y + \{x\}` is in `I`. 

 

See the :wikipedia:`Wikipedia article on matroids <Matroid>` for more 

theory and examples. Matroids can be obtained from many types of 

mathematical structures, and Sage supports a number of them. 

 

There are two main entry points to Sage's matroid functionality. For 

built-in matroids, do the following: 

 

* Within a Sage session, type "matroids." (Do not press "Enter", and do 

not forget the final period ".") 

* Hit "tab". 

 

You will see a list of methods which will construct matroids. For 

example:: 

 

sage: F7 = matroids.named_matroids.Fano() 

sage: len(F7.nonspanning_circuits()) 

7 

 

or:: 

 

sage: U36 = matroids.Uniform(3, 6) 

sage: U36.equals(U36.dual()) 

True 

 

To define your own matroid, use the function ``Matroid()``. 

This function attempts to interpret its arguments to create an appropriate 

matroid. The following named arguments are supported: 

 

INPUT: 

 

- ``groundset`` -- (optional) If provided, the groundset of the 

matroid. Otherwise, the function attempts to determine a groundset 

from the data. 

 

Exactly one of the following inputs must be given (where ``data`` 

must be a positional argument and anything else must be a keyword 

argument): 

 

- ``data`` -- a graph or a matrix or a RevLex-Index string or a list 

of independent sets containing all bases or a matroid. 

- ``bases`` -- The list of bases (maximal independent sets) of the 

matroid. 

- ``independent_sets`` -- The list of independent sets of the matroid. 

- ``circuits`` -- The list of circuits of the matroid. 

- ``graph`` -- A graph, whose edges form the elements of the matroid. 

- ``matrix`` -- A matrix representation of the matroid. 

- ``reduced_matrix`` -- A reduced representation of the matroid: if 

``reduced_matrix = A`` 

then the matroid is represented by `[I\ \ A]` where `I` is an 

appropriately sized identity matrix. 

- ``rank_function`` -- A function that computes the rank of each subset. 

Can only be provided together with a groundset. 

- ``circuit_closures`` -- Either a list of tuples ``(k, C)`` with ``C`` 

the closure of a circuit, and ``k`` the rank of ``C``, or a dictionary 

``D`` with ``D[k]`` the set of closures of rank-``k`` circuits. 

- ``revlex`` -- the encoding as a string of ``0`` and ``*`` symbols. 

Used by [MatroidDatabase]_ and explained in [MMIB2012]_. 

- ``matroid`` -- An object that is already a matroid. Useful only with the 

``regular`` option. 

 

Further options: 

 

- ``regular`` -- (default: ``False``) boolean. If ``True``, 

output a 

:class:`RegularMatroid <sage.matroids.linear_matroid.RegularMatroid>` 

instance such that, *if* the input defines a valid regular matroid, then 

the output represents this matroid. Note that this option can be 

combined with any type of input. 

- ``ring`` -- any ring. If provided, and the input is a ``matrix`` or 

``reduced_matrix``, output will be a linear matroid over the ring or 

field ``ring``. 

- ``field`` -- any field. Same as ``ring``, but only fields are allowed. 

- ``check`` -- (default: ``True``) boolean. If ``True`` and 

``regular`` is true, the output is checked to make sure it is a valid 

regular matroid. 

 

.. WARNING:: 

 

Except for regular matroids, the input is not checked for validity. If 

your data does not correspond to an actual matroid, the behavior of 

the methods is undefined and may cause strange errors. To ensure you 

have a matroid, run 

:meth:`M.is_valid() <sage.matroids.matroid.Matroid.is_valid>`. 

 

.. NOTE:: 

 

The ``Matroid()`` method will return instances of type 

:class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>`, 

:class:`CircuitClosuresMatroid <sage.matroids.circuit_closures_matroid.CircuitClosuresMatroid>`, 

:class:`LinearMatroid <sage.matroids.linear_matroid.LinearMatroid>`, 

:class:`BinaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`, 

:class:`TernaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`, 

:class:`QuaternaryMatroid <sage.matroids.linear_matroid.LinearMatroid>`, 

:class:`RegularMatroid <sage.matroids.linear_matroid.LinearMatroid>`, or 

:class:`RankMatroid <sage.matroids.rank_matroid.RankMatroid>`. To 

import these classes (and other useful functions) directly into Sage's 

main namespace, type:: 

 

sage: from sage.matroids.advanced import * 

 

See :mod:`sage.matroids.advanced <sage.matroids.advanced>`. 

 

EXAMPLES: 

 

Note that in these examples we will often use the fact that strings are 

iterable in these examples. So we type ``'abcd'`` to denote the list 

``['a', 'b', 'c', 'd']``. 

 

#. List of bases: 

 

All of the following inputs are allowed, and equivalent:: 

 

sage: M1 = Matroid(groundset='abcd', bases=['ab', 'ac', 'ad', 

....: 'bc', 'bd', 'cd']) 

sage: M2 = Matroid(bases=['ab', 'ac', 'ad', 'bc', 'bd', 'cd']) 

sage: M3 = Matroid(['ab', 'ac', 'ad', 'bc', 'bd', 'cd']) 

sage: M4 = Matroid('abcd', ['ab', 'ac', 'ad', 'bc', 'bd', 'cd']) 

sage: M5 = Matroid('abcd', bases=[['a', 'b'], ['a', 'c'], 

....: ['a', 'd'], ['b', 'c'], 

....: ['b', 'd'], ['c', 'd']]) 

sage: M1 == M2 

True 

sage: M1 == M3 

True 

sage: M1 == M4 

True 

sage: M1 == M5 

True 

 

We do not check if the provided input forms an actual matroid:: 

 

sage: M1 = Matroid(groundset='abcd', bases=['ab', 'cd']) 

sage: M1.full_rank() 

2 

sage: M1.is_valid() 

False 

 

Bases may be repeated:: 

 

sage: M1 = Matroid(['ab', 'ac']) 

sage: M2 = Matroid(['ab', 'ac', 'ab']) 

sage: M1 == M2 

True 

 

#. List of independent sets: 

 

:: 

 

sage: M1 = Matroid(groundset='abcd', 

....: independent_sets=['', 'a', 'b', 'c', 'd', 'ab', 

....: 'ac', 'ad', 'bc', 'bd', 'cd']) 

 

We only require that the list of independent sets contains each basis 

of the matroid; omissions of smaller independent sets and 

repetitions are allowed:: 

 

sage: M1 = Matroid(bases=['ab', 'ac']) 

sage: M2 = Matroid(independent_sets=['a', 'ab', 'b', 'ab', 'a', 

....: 'b', 'ac']) 

sage: M1 == M2 

True 

 

#. List of circuits: 

 

:: 

 

sage: M1 = Matroid(groundset='abc', circuits=['bc']) 

sage: M2 = Matroid(bases=['ab', 'ac']) 

sage: M1 == M2 

True 

 

A matroid specified by a list of circuits gets converted to a 

:class:`BasisMatroid <sage.matroids.basis_matroid.BasisMatroid>` 

internally:: 

 

sage: M = Matroid(groundset='abcd', circuits=['abc', 'abd', 'acd', 

....: 'bcd']) 

sage: type(M) 

<... 'sage.matroids.basis_matroid.BasisMatroid'> 

 

Strange things can happen if the input does not satisfy the circuit 

axioms, and these are not always caught by the 

:meth:`is_valid() <sage.matroids.matroid.Matroid.is_valid>` method. So 

always check whether your input makes sense! 

 

:: 

 

sage: M = Matroid('abcd', circuits=['ab', 'acd']) 

sage: M.is_valid() 

True 

sage: [sorted(C) for C in M.circuits()] 

[['a']] 

 

 

 

#. Graph: 

 

Sage has great support for graphs, see :mod:`sage.graphs.graph`. 

 

:: 

 

sage: G = graphs.PetersenGraph() 

sage: Matroid(G) 

Graphic matroid of rank 9 on 15 elements 

 

If each edge has a unique label, then those are used as the ground set 

labels:: 

 

sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'c')]) 

sage: M = Matroid(G) 

sage: sorted(M.groundset()) 

['a', 'b', 'c'] 

 

If there are parallel edges, then integers are used for the ground set. 

If there are no edges in parallel, and is not a complete list of labels, 

or the labels are not unique, then vertex tuples are used:: 

 

sage: G = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'b')]) 

sage: M = Matroid(G) 

sage: sorted(M.groundset()) 

[(0, 1), (0, 2), (1, 2)] 

sage: H = Graph([(0, 1, 'a'), (0, 2, 'b'), (1, 2, 'b'), (1, 2, 'c')], multiedges=True) 

sage: N = Matroid(H) 

sage: sorted(N.groundset()) 

[0, 1, 2, 3] 

 

The GraphicMatroid object forces its graph to be connected. If a 

disconnected graph is used as input, it will connect the components. 

 

sage: G1 = graphs.CycleGraph(3); G2 = graphs.DiamondGraph() 

sage: G = G1.disjoint_union(G2) 

sage: M = Matroid(G) 

sage: M 

Graphic matroid of rank 5 on 8 elements 

sage: M.graph() 

Looped multi-graph on 6 vertices 

sage: M.graph().is_connected() 

True 

sage: M.is_connected() 

False 

 

 

If the keyword ``regular`` is set to ``True``, the output will instead 

be an instance of ``RegularMatroid``. 

 

:: 

 

sage: G = Graph([(0, 1), (0, 2), (1, 2)]) 

sage: M = Matroid(G, regular=True); M 

Regular matroid of rank 2 on 3 elements with 3 bases 

 

Note: if a groundset is specified, we assume it is in the same order 

as 

:meth:`G.edge_iterator() <sage.graphs.generic_graph.GenericGraph.edge_iterator>` 

provides:: 

 

sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)], multiedges=True) 

sage: M = Matroid('abcd', G) 

sage: M.rank(['b', 'c']) 

1 

 

As before, 

if no edge labels are present and the graph is simple, we use the 

tuples ``(i, j)`` of endpoints. If that fails, we simply use a list 

``[0..m-1]`` :: 

 

sage: G = Graph([(0, 1), (0, 2), (1, 2)]) 

sage: M = Matroid(G, regular=True) 

sage: sorted(M.groundset()) 

[(0, 1), (0, 2), (1, 2)] 

 

sage: G = Graph([(0, 1), (0, 2), (0, 2), (1, 2)], multiedges=True) 

sage: M = Matroid(G, regular=True) 

sage: sorted(M.groundset()) 

[0, 1, 2, 3] 

 

When the ``graph`` keyword is used, a variety of inputs can be 

converted to a graph automatically. The following uses a graph6 string 

(see the :class:`Graph <sage.graphs.graph.Graph>` method's 

documentation):: 

 

sage: Matroid(graph=':I`AKGsaOs`cI]Gb~') 

Graphic matroid of rank 9 on 17 elements 

 

However, this method is no more clever than ``Graph()``:: 

 

sage: Matroid(graph=41/2) 

Traceback (most recent call last): 

... 

ValueError: This input cannot be turned into a graph 

 

#. Matrix: 

 

The basic input is a 

:mod:`Sage matrix <sage.matrix.constructor>`:: 

 

sage: A = Matrix(GF(2), [[1, 0, 0, 1, 1, 0], 

....: [0, 1, 0, 1, 0, 1], 

....: [0, 0, 1, 0, 1, 1]]) 

sage: M = Matroid(matrix=A) 

sage: M.is_isomorphic(matroids.CompleteGraphic(4)) 

True 

 

Various shortcuts are possible:: 

 

sage: M1 = Matroid(matrix=[[1, 0, 0, 1, 1, 0], 

....: [0, 1, 0, 1, 0, 1], 

....: [0, 0, 1, 0, 1, 1]], ring=GF(2)) 

sage: M2 = Matroid(reduced_matrix=[[1, 1, 0], 

....: [1, 0, 1], 

....: [0, 1, 1]], ring=GF(2)) 

sage: M3 = Matroid(groundset=[0, 1, 2, 3, 4, 5], 

....: matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], 

....: ring=GF(2)) 

sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]]) 

sage: M4 = Matroid([0, 1, 2, 3, 4, 5], A) 

sage: M1 == M2 

True 

sage: M1 == M3 

True 

sage: M1 == M4 

True 

 

However, with unnamed arguments the input has to be a ``Matrix`` 

instance, or the function will try to interpret it as a set of bases:: 

 

sage: Matroid([0, 1, 2], [[1, 0, 1], [0, 1, 1]]) 

Traceback (most recent call last): 

... 

ValueError: basis has wrong cardinality. 

 

If the groundset size equals number of rows plus number of columns, an 

identity matrix is prepended. Otherwise the groundset size must equal 

the number of columns:: 

 

sage: A = Matrix(GF(2), [[1, 1, 0], [1, 0, 1], [0, 1, 1]]) 

sage: M = Matroid([0, 1, 2], A) 

sage: N = Matroid([0, 1, 2, 3, 4, 5], A) 

sage: M.rank() 

2 

sage: N.rank() 

3 

 

We automatically create an optimized subclass, if available:: 

 

sage: Matroid([0, 1, 2, 3, 4, 5], 

....: matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], 

....: field=GF(2)) 

Binary matroid of rank 3 on 6 elements, type (2, 7) 

sage: Matroid([0, 1, 2, 3, 4, 5], 

....: matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], 

....: field=GF(3)) 

Ternary matroid of rank 3 on 6 elements, type 0- 

sage: Matroid([0, 1, 2, 3, 4, 5], 

....: matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], 

....: field=GF(4, 'x')) 

Quaternary matroid of rank 3 on 6 elements 

sage: Matroid([0, 1, 2, 3, 4, 5], 

....: matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], 

....: field=GF(2), regular=True) 

Regular matroid of rank 3 on 6 elements with 16 bases 

 

Otherwise the generic LinearMatroid class is used:: 

 

sage: Matroid([0, 1, 2, 3, 4, 5], 

....: matrix=[[1, 1, 0], [1, 0, 1], [0, 1, 1]], 

....: field=GF(83)) 

Linear matroid of rank 3 on 6 elements represented over the Finite 

Field of size 83 

 

An integer matrix is automatically converted to a matrix over `\QQ`. 

If you really want integers, you can specify the ring explicitly:: 

 

sage: A = Matrix([[1, 1, 0], [1, 0, 1], [0, 1, -1]]) 

sage: A.base_ring() 

Integer Ring 

sage: M = Matroid([0, 1, 2, 3, 4, 5], A) 

sage: M.base_ring() 

Rational Field 

sage: M = Matroid([0, 1, 2, 3, 4, 5], A, ring=ZZ) 

sage: M.base_ring() 

Integer Ring 

 

#. Rank function: 

 

Any function mapping subsets to integers can be used as input:: 

 

sage: def f(X): 

....: return min(len(X), 2) 

sage: M = Matroid('abcd', rank_function=f) 

sage: M 

Matroid of rank 2 on 4 elements 

sage: M.is_isomorphic(matroids.Uniform(2, 4)) 

True 

 

#. Circuit closures: 

 

This is often a really concise way to specify a matroid. The usual way 

is a dictionary of lists:: 

 

sage: M = Matroid(circuit_closures={3: ['edfg', 'acdg', 'bcfg', 

....: 'cefh', 'afgh', 'abce', 'abdf', 'begh', 'bcdh', 'adeh'], 

....: 4: ['abcdefgh']}) 

sage: M.equals(matroids.named_matroids.P8()) 

True 

 

You can also input tuples `(k, X)` where `X` is the closure of a 

circuit, and `k` the rank of `X`:: 

 

sage: M = Matroid(circuit_closures=[(2, 'abd'), (3, 'abcdef'), 

....: (2, 'bce')]) 

sage: M.equals(matroids.named_matroids.Q6()) 

True 

 

#. RevLex-Index: 

 

This requires the ``groundset`` to be given and also needs a 

additional keyword argument ``rank`` to specify the rank of the 

matroid:: 

 

sage: M = Matroid("abcdef", "000000******0**", rank=4); M 

Matroid of rank 4 on 6 elements with 8 bases 

sage: list(M.bases()) 

[frozenset({'a', 'b', 'd', 'f'}), 

frozenset({'a', 'c', 'd', 'f'}), 

frozenset({'b', 'c', 'd', 'f'}), 

frozenset({'a', 'b', 'e', 'f'}), 

frozenset({'a', 'c', 'e', 'f'}), 

frozenset({'b', 'c', 'e', 'f'}), 

frozenset({'b', 'd', 'e', 'f'}), 

frozenset({'c', 'd', 'e', 'f'})] 

 

Only the ``0`` symbols really matter, any symbol can be used 

instead of ``*``: 

 

sage: Matroid("abcdefg", revlex="0++++++++0++++0+++++0+--++----+--++", rank=4) 

Matroid of rank 4 on 7 elements with 31 bases 

 

It is checked that the input makes sense (but not that it 

defines a matroid):: 

 

sage: Matroid("abcdef", "000000******0**") 

Traceback (most recent call last): 

... 

TypeError: for RevLex-Index, the rank needs to be specified 

sage: Matroid("abcdef", "000000******0**", rank=3) 

Traceback (most recent call last): 

... 

ValueError: expected string of length 20 (6 choose 3), got 15 

sage: M = Matroid("abcdef", "*0000000000000*", rank=4); M 

Matroid of rank 4 on 6 elements with 2 bases 

sage: M.is_valid() 

False 

 

#. Matroid: 

 

Most of the time, the matroid itself is returned:: 

 

sage: M = matroids.named_matroids.Fano() 

sage: N = Matroid(M) 

sage: N is M 

True 

 

But it can be useful with the ``regular`` option:: 

 

sage: M = Matroid(circuit_closures={2:['adb', 'bec', 'cfa', 

....: 'def'], 3:['abcdef']}) 

sage: N = Matroid(M, regular=True) 

sage: N 

Regular matroid of rank 3 on 6 elements with 16 bases 

sage: Matrix(N) 

[1 0 0 1 1 0] 

[0 1 0 1 1 1] 

[0 0 1 0 1 1] 

 

The ``regular`` option:: 

 

sage: M = Matroid(reduced_matrix=[[1, 1, 0], 

....: [1, 0, 1], 

....: [0, 1, 1]], regular=True) 

sage: M 

Regular matroid of rank 3 on 6 elements with 16 bases 

 

sage: M.is_isomorphic(matroids.CompleteGraphic(4)) 

True 

 

By default we check if the resulting matroid is actually regular. To 

increase speed, this check can be skipped:: 

 

sage: M = matroids.named_matroids.Fano() 

sage: N = Matroid(M, regular=True) 

Traceback (most recent call last): 

... 

ValueError: input is not a valid regular matroid 

sage: N = Matroid(M, regular=True, check=False) 

sage: N 

Regular matroid of rank 3 on 7 elements with 32 bases 

 

sage: N.is_valid() 

False 

 

Sometimes the output is regular, but represents a different matroid 

from the one you intended:: 

 

sage: M = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]])) 

sage: N = Matroid(Matrix(GF(3), [[1, 0, 1, 1], [0, 1, 1, 2]]), 

....: regular=True) 

sage: N.is_valid() 

True 

sage: N.is_isomorphic(M) 

False 

 

TESTS:: 

 

sage: Matroid() 

Traceback (most recent call last): 

... 

TypeError: no input data given for Matroid() 

sage: Matroid("abc", bases=["abc"], foo="bar") 

Traceback (most recent call last): 

... 

TypeError: Matroid() got an unexpected keyword argument 'foo' 

sage: Matroid(data=["x"], matrix=Matrix(1,1)) 

Traceback (most recent call last): 

... 

TypeError: Matroid() got an unexpected keyword argument 'matrix' 

sage: Matroid(bases=["x"], matrix=Matrix(1,1)) 

Traceback (most recent call last): 

... 

TypeError: Matroid() got an unexpected keyword argument 'matrix' 

sage: Matroid(Matrix(1,1), ring=ZZ, field=QQ) 

Traceback (most recent call last): 

... 

TypeError: Matroid() got an unexpected keyword argument 'ring' 

sage: Matroid(rank_function=lambda X: len(X)) 

Traceback (most recent call last): 

... 

TypeError: for rank functions, the groundset needs to be specified 

sage: Matroid(matroid="rubbish") 

Traceback (most recent call last): 

... 

TypeError: input 'rubbish' is not a matroid 

""" 

# process options 

want_regular = kwds.pop('regular', False) 

check = kwds.pop('check', True) 

 

base_ring = None 

if 'field' in kwds: 

base_ring = kwds.pop('field') 

if check and not base_ring.is_field(): 

raise TypeError("{} is not a field".format(base_ring)) 

elif 'ring' in kwds: 

base_ring = kwds.pop('ring') 

if check and not base_ring.is_ring(): 

raise TypeError("{} is not a ring".format(base_ring)) 

 

# "key" is the kind of data we got 

key = None 

if data is None: 

for k in ['bases', 'independent_sets', 'circuits', 'graph', 

'matrix', 'reduced_matrix', 'rank_function', 'revlex', 

'circuit_closures', 'matroid']: 

if k in kwds: 

data = kwds.pop(k) 

key = k 

break 

else: 

# Assume that the single positional argument was actually 

# the data (instead of the groundset) 

data = groundset 

groundset = None 

 

if key is None: 

if isinstance(data, sage.graphs.graph.Graph): 

key = 'graph' 

elif is_Matrix(data): 

key = 'matrix' 

elif isinstance(data, sage.matroids.matroid.Matroid): 

key = 'matroid' 

elif isinstance(data, str): 

key = 'revlex' 

elif data is None: 

raise TypeError("no input data given for Matroid()") 

else: 

key = 'independent_sets' 

 

# Bases: 

if key == 'bases': 

if groundset is None: 

groundset = set() 

for B in data: 

groundset.update(B) 

M = BasisMatroid(groundset=groundset, bases=data) 

 

# Independent sets: 

elif key == 'independent_sets': 

# Convert to list of bases first 

rk = -1 

bases = [] 

for I in data: 

if len(I) == rk: 

bases.append(I) 

elif len(I) > rk: 

bases = [I] 

rk = len(I) 

if groundset is None: 

groundset = set() 

for B in bases: 

groundset.update(B) 

M = BasisMatroid(groundset=groundset, bases=bases) 

 

# Circuits: 

elif key == 'circuits': 

# Convert to list of bases first 

# Determine groundset (note that this cannot detect coloops) 

if groundset is None: 

groundset = set() 

for C in data: 

groundset.update(C) 

# determine the rank by computing a basis element 

b = set(groundset) 

for C in data: 

I = b.intersection(C) 

if len(I) >= len(C): 

b.discard(I.pop()) 

rk = len(b) 

# Construct the basis matroid of appropriate rank. Note: slow! 

BB = [frozenset(B) for B in combinations(groundset, rk) if not any([frozenset(C).issubset(B) for C in data])] 

M = BasisMatroid(groundset=groundset, bases=BB) 

 

# Graphs: 

 

elif key == 'graph': 

if isinstance(data, sage.graphs.generic_graph.GenericGraph): 

G = data 

else: 

G = Graph(data) 

# Decide on the groundset 

m = G.num_edges() 

if groundset is None: 

# 1. Attempt to use edge labels. 

sl = G.edge_labels() 

if len(sl) == len(set(sl)): 

groundset = sl 

# 2. If simple, use vertex tuples 

elif not G.has_multiple_edges(): 

groundset = [(i, j) for i, j, k in G.edge_iterator()] 

else: 

# 3. Use numbers 

groundset = list(range(m)) 

if want_regular: 

# Construct the incidence matrix 

# NOTE: we are not using Sage's built-in method because 

# 1) we would need to fix the loops anyway 

# 2) Sage will sort the columns, making it impossible to keep labels! 

V = G.vertices() 

n = G.num_verts() 

A = Matrix(ZZ, n, m, 0) 

mm = 0 

for i, j, k in G.edge_iterator(): 

A[V.index(i), mm] = -1 

A[V.index(j), mm] += 1 # So loops get 0 

mm += 1 

M = RegularMatroid(matrix=A, groundset=groundset) 

want_regular = False # Save some time, since result is already regular 

else: 

M = GraphicMatroid(G, groundset=groundset) 

 

# Matrices: 

elif key in ['matrix', 'reduced_matrix']: 

A = data 

is_reduced = (key == 'reduced_matrix') 

 

# Fix the representation 

if not is_Matrix(A): 

if base_ring is not None: 

A = Matrix(base_ring, A) 

else: 

A = Matrix(A) 

 

# Fix the ring 

if base_ring is not None: 

if A.base_ring() is not base_ring: 

A = A.change_ring(base_ring) 

elif A.base_ring() is ZZ and not want_regular: # Usually a rational matrix is intended, we presume. 

A = A.change_ring(QQ) 

base_ring = QQ 

else: 

base_ring = A.base_ring() 

 

# Check groundset 

if groundset is not None: 

if not is_reduced: 

if len(groundset) == A.ncols(): 

pass 

elif len(groundset) == A.nrows() + A.ncols(): 

is_reduced = True 

else: 

raise ValueError("groundset size does not correspond to matrix size") 

elif is_reduced: 

if len(groundset) == A.nrows() + A.ncols(): 

pass 

else: 

raise ValueError("groundset size does not correspond to matrix size") 

 

if is_reduced: 

kw = dict(groundset=groundset, reduced_matrix=A) 

else: 

kw = dict(groundset=groundset, matrix=A) 

 

if isinstance(base_ring, FiniteField): 

q = base_ring.order() 

else: 

q = 0 

 

if q == 2: 

M = BinaryMatroid(**kw) 

elif q == 3: 

M = TernaryMatroid(**kw) 

elif q == 4: 

M = QuaternaryMatroid(**kw) 

else: 

M = LinearMatroid(ring=base_ring, **kw) 

 

# Rank functions: 

elif key == 'rank_function': 

if groundset is None: 

raise TypeError('for rank functions, the groundset needs to be specified') 

M = RankMatroid(groundset=groundset, rank_function=data) 

 

# RevLex-Index: 

elif key == "revlex": 

if groundset is None: 

raise TypeError('for RevLex-Index, the groundset needs to be specified') 

try: 

rk = kwds.pop("rank") 

except KeyError: 

raise TypeError('for RevLex-Index, the rank needs to be specified') 

 

groundset = tuple(groundset) 

data = tuple(data) 

rk = int(rk) 

N = len(groundset) 

 

def revlex_sort_key(s): 

return tuple(reversed(s)) 

subsets = sorted(combinations(range(N), rk), key=revlex_sort_key) 

if len(data) != len(subsets): 

raise ValueError("expected string of length %s (%s choose %s), got %s" % 

(len(subsets), N, rk, len(data))) 

bases = [] 

for i, x in enumerate(data): 

if x != '0': 

bases.append([groundset[c] for c in subsets[i]]) 

M = BasisMatroid(groundset=groundset, bases=bases) 

 

# Circuit closures: 

elif key == 'circuit_closures': 

if isinstance(data, dict): 

CC = data 

else: 

# Convert to dictionary 

CC = {} 

for X in data: 

if X[0] not in CC: 

CC[X[0]] = [] 

CC[X[0]].append(X[1]) 

 

if groundset is None: 

groundset = set() 

for X in itervalues(CC): 

for Y in X: 

groundset.update(Y) 

 

M = CircuitClosuresMatroid(groundset=groundset, circuit_closures=CC) 

 

# Matroids: 

elif key == 'matroid': 

if not isinstance(data, sage.matroids.matroid.Matroid): 

raise TypeError("input {!r} is not a matroid".format(data)) 

M = data 

 

else: 

raise AssertionError("unknown key %r" % key) 

 

# All keywords should be used 

for k in kwds: 

raise TypeError("Matroid() got an unexpected keyword argument '{}'".format(k)) 

 

if want_regular: 

M = sage.matroids.utilities.make_regular_matroid_from_matroid(M) 

if check and not M.is_valid(): 

raise ValueError('input is not a valid regular matroid') 

 

return M