Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

r""" 

Helper functions for plotting the geometric representation of matroids 

 

 

AUTHORS: 

 

- Jayant Apte (2014-06-06): initial version 

 

.. NOTE:: 

 

This file provides functions that are called by ``show()`` and ``plot()`` 

methods of abstract matroids class. The basic idea is to first decide 

the placement of points in $\mathbb{R}^2$ and then draw lines in geometric 

representation through these points. Point placement procedures such as 

``addtripts``, ``addnontripts`` together produce ``(x,y)`` tuples 

corresponding to ground set of the matroid in a dictionary. 

These methods provide simple but rigid point placement algorithm. 

Alternatively, one can build the point placement dictionary manually or 

via an optimization that gives aesthetically pleasing point placement (in 

some sense. This is not yet implemented). One can then use 

``createline`` function to produce sequence of ``100`` points on a smooth 

curve containing the points in the specified line which inturn uses 

``scipy.interpolate.splprep`` and ``scipy.interpolate.splev``. Then one 

can use sage's graphics primitives ``line``, ``point``, ``text`` and 

``points`` to produce graphics object containing points (ground set 

elements) and lines (for a rank 3 matroid, these are flats of rank 2 of 

size greater than equal to 3) of the geometric representation of the 

matroid. Loops and parallel elements are added as per conventions in 

[Oxl2011]_ using function ``addlp``. The priority order for point placement 

methods used inside plot() and show() is as follows: 

 

1. User Specified points dictionary and lineorders 

2. cached point placement dictionary and line orders (a list of ordered 

lists) in M._cached_info (a dictionary) 

3. Internal point placement and orders deciding heuristics 

If a custom point placement and/or line orders is desired, then user 

can simply specify the custom points dictionary as:: 

 

M.cached info = {'plot_positions':<dictionary_of _points>, 

'plot_lineorders':<list of lists>} 

 

 

 

REFERENCES 

========== 

 

- [Oxl2011]_ James Oxley, "Matroid Theory, Second Edition". Oxford University 

Press, 2011. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: M1=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1,0,1], 

....: [0, 1, 0, 1, 0, 1, 1,0,0,1,0], [0, 0, 1, 1, 1, 0, 1,0,0,0,0]]) 

sage: pos_dict= {0: (0, 0), 1: (2, 0), 2: (1, 2), 3: (1.5, 1.0), 

....: 4: (0.5, 1.0), 5: (1.0, 0.0), 6: (1.0, 0.666666666666667), 

....: 7: (3,3), 8: (4,0), 9: (-1,1), 10: (-2,-2)} 

sage: M1._cached_info={'plot_positions': pos_dict, 'plot_lineorders': None} 

sage: matroids_plot_helpers.geomrep(M1, sp=True) 

Graphics object consisting of 22 graphics primitives 

 

""" 

# ***************************************************************************** 

# Copyright (C) 2013 Jayant Apte <jayant91089@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

# ***************************************************************************** 

from __future__ import print_function 

 

import scipy 

import scipy.interpolate 

import numpy as np 

from sage.plot.all import Graphics, line, text, polygon2d, point, points 

from sage.plot.colors import Color 

from sage.sets.set import Set 

from sage.matroids.advanced import newlabel 

 

 

def it(M, B1, nB1, lps): 

""" 

Return points on and off the triangle and lines to be drawn for a rank 3 

matroid. 

 

INPUT: 

 

- ``M`` -- A matroid. 

- ``B1``-- A list of groundset elements of ``M`` that corresponds to a 

basis of matroid ``M``. 

- ``nB1``-- A list of elements in the ground set of M that corresponds to 

``M.simplify.groundset() \ B1``. 

- ``lps``-- A list of elements in the ground set of matroid M that are 

loops. 

 

OUTPUT: 

 

A tuple containing 4 elements in this order: 

 

1. A dictionary containing 2-tuple (x,y) co-ordinates with 

``M.simplify.groundset()`` elements that can be placed on the sides of 

the triangle as keys. 

2. A list of 3 lists of elements of ``M.simplify.groundset()`` that can 

be placed on the 3 sides of the triangle. 

3. A list of elements of `M.simplify.groundset()`` that cane be placed 

inside the triangle in the geometric representation. 

4. A list of lists of elements of ``M.simplify.groundset()`` that 

correspond to lines in the geometric representation other than the sides 

of the triangle. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers as mph 

sage: M=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0], 

....: [0, 1, 0, 1, 0, 1, 1,0],[0, 0, 1, 1, 1, 0, 1,0]]) 

sage: N=M.simplify() 

sage: B1=list(N.basis()) 

sage: nB1=list(set(M.simplify().groundset())-set(B1)) 

sage: pts,trilines,nontripts,curvedlines=mph.it(M, 

....: B1,nB1,M.loops()) 

sage: print(pts) 

{1: (1.0, 0.0), 2: (1.5, 1.0), 3: (0.5, 1.0), 4: (0, 0), 5: (1, 2), 

6: (2, 0)} 

sage: print(trilines) 

[[3, 4, 5], [2, 5, 6], [1, 4, 6]] 

sage: print(nontripts) 

[0] 

sage: print(curvedlines) 

[[0, 1, 5], [0, 2, 4], [0, 3, 6], [1, 2, 3], [1, 4, 6], [2, 5, 6], 

[3, 4, 5]] 

 

.. NOTE:: 

 

This method does NOT do any checks. 

 

""" 

 

tripts = [(0, 0), (1, 2), (2, 0)] 

pts = {} 

j = 0 

for i in B1: 

pts[i] = tripts[j] 

j = j + 1 

pairs = [[0, 1], [1, 2], [0, 2]] 

L1 = [] 

L2 = [] 

L3 = [] 

for i in nB1: 

if M.is_dependent([i, B1[pairs[0][0]], B1[pairs[0][1]]]): 

# Add to L1 

L1.append(i) 

elif M.is_dependent([i, B1[pairs[1][0]], B1[pairs[1][1]]]): 

# Add to L2 

L2.append(i) 

elif M.is_dependent([i, B1[pairs[2][0]], B1[pairs[2][1]]]): 

# Add to L3 

L3.append(i) 

L = [L1, L2, L3] # megalist 

lines = [] # the list of lines 

for i in range(1, len(L)+1): 

lines.append([B1[pairs[i-1][0]]]) 

lines[i-1].extend(L[i-1]) 

lines[i-1].extend([B1[pairs[i-1][1]]]) 

# place triangle and L1,L2,L3 

for i in L: # loop over megalist 

interval = 1/float(len(i)+1) 

pt1 = list(tripts[pairs[L.index(i)][0]]) 

pt2 = list(tripts[pairs[L.index(i)][1]]) 

for j in range(1, len(i)+1): 

# loop over L1,L2,L3 

cc = interval*j 

pts[i[j-1]] = (cc*pt1[0]+(1-cc)*pt2[0], cc*pt1[1]+(1-cc)*pt2[1]) 

trilines = [list(set(x)) for x in lines if len(x) >= 3] 

curvedlines = [list(set(list(x)).difference(set(lps))) 

for x in M.flats(2) if set(list(x)) not in trilines if 

len(list(x)) >= 3] 

nontripts = [i for i in nB1 if i not in pts.keys()] 

return pts, trilines, nontripts, curvedlines 

 

 

def trigrid(tripts): 

""" 

Return a grid of 4 points inside given 3 points as a list. 

 

INPUT: 

 

- ``tripts`` -- A list of 3 lists of the form [x,y] where x and y are the 

Cartesian co-ordinates of a point. 

 

OUTPUT: 

 

A list of lists containing 4 points in following order: 

 

- 1. Barycenter of 3 input points. 

- 2,3,4. Barycenters of 1. with 3 different 2-subsets of input points 

respectively. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: points=matroids_plot_helpers.trigrid([[2,1],[4,5],[5,2]]) 

sage: print(points) 

[[3.6666666666666665, 2.6666666666666665], 

[3.222222222222222, 2.888888888888889], 

[4.222222222222222, 3.222222222222222], 

[3.5555555555555554, 1.8888888888888886]] 

 

.. NOTE:: 

 

This method does NOT do any checks. 

 

""" 

n = 0 

pairs = [[0, 1], [1, 2], [0, 2]] 

cpt = list((float(tripts[0][0]+tripts[1][0]+tripts[2][0])/3, 

float(tripts[0][1]+tripts[1][1]+tripts[2][1])/3)) 

grid = [cpt] 

for p in pairs: 

pt = list((float(tripts[p[0]][0]+tripts[p[1]][0]+cpt[0])/3, 

float(tripts[p[0]][1]+tripts[p[1]][1]+cpt[1])/3)) 

grid.append(pt) 

return grid 

 

 

def addnontripts(tripts_labels, nontripts_labels, ptsdict): 

""" 

Return modified ``ptsdict`` with additional keys and values corresponding 

to ``nontripts``. 

 

INPUT: 

 

- ``tripts`` -- A list of 3 ground set elements that are to be placed on 

vertices of the triangle. 

- ``ptsdict`` -- A dictionary (at least) containing ground set elements in 

``tripts`` as keys and their (x,y) position as values. 

- ``nontripts``-- A list of ground set elements whose corresponding points 

are to be placed inside the triangle. 

 

OUTPUT: 

 

A dictionary containing ground set elements in ``tripts`` as keys and 

their (x,y) position as values allong with all keys and respective values 

in ``ptsdict``. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: from sage.matroids.advanced import setprint 

sage: ptsdict={'a':(0,0),'b':(1,2),'c':(2,0)} 

sage: ptsdict_1=matroids_plot_helpers.addnontripts(['a','b','c'], 

....: ['d','e','f'],ptsdict) 

sage: setprint(ptsdict_1) 

{'a': [0, 0], 'b': [1, 2], 'c': [0, 2], 'd': [0.6666666666666666, 1.0], 

'e': [0.6666666666666666, 0.8888888888888888], 

'f': [0.8888888888888888, 1.3333333333333333]} 

sage: ptsdict_2=matroids_plot_helpers.addnontripts(['a','b','c'], 

....: ['d','e','f','g','h'],ptsdict) 

sage: setprint(ptsdict_2) 

{'a': [0, 0], 'b': [1, 2], 'c': [0, 2], 'd': [0.6666666666666666, 1.0], 

'e': [0.6666666666666666, 0.8888888888888888], 

'f': [0.8888888888888888, 1.3333333333333333], 

'g': [0.2222222222222222, 1.0], 

'h': [0.5185185185185185, 0.5555555555555555]} 

 

.. NOTE:: 

 

This method does NOT do any checks. 

 

""" 

tripts = [list(ptsdict[p]) for p in tripts_labels] 

pairs = [[0, 1], [1, 2], [0, 2]] 

q = [tripts] 

num = len(nontripts_labels) 

gridpts = [[float((tripts[0][0]+tripts[1][0]+tripts[2][0])/3), 

float(tripts[0][1]+tripts[1][1]+tripts[2][1])/3]] 

n = 0 

while n < num+1: 

g = trigrid(q[0]) 

q.extend([[g[0], q[0][pairs[0][0]], q[0][pairs[0][1]]], 

[g[0], q[0][pairs[1][0]], q[0][pairs[1][1]]], 

[g[0], q[0][pairs[2][0]], q[0][pairs[2][1]]]]) 

q.remove(q[0]) 

gridpts.extend(g[1:]) 

if n == 0: 

n = n + 4 

else: 

n = n + 3 

j = 0 

for p in nontripts_labels: 

ptsdict[p] = tuple(gridpts[j]) 

j = j + 1 

return ptsdict 

 

 

def createline(ptsdict, ll, lineorders2=None): 

""" 

Return ordered lists of co-ordinates of points to be traversed to draw a 

2D line. 

 

INPUT: 

 

- ``ptsdict`` -- A dictionary containing keys and their (x,y) position as 

values. 

- ``ll`` -- A list of keys in ``ptsdict`` through which a line is to be 

drawn. 

- ``lineorders2``-- (optional) A list of ordered lists of keys in 

``ptsdict`` such that if ll is setwise same as any of these then points 

corresponding to values of the keys will be traversed in that order thus 

overriding internal order deciding heuristic. 

 

OUTPUT: 

 

A tuple containing 4 elements in this order: 

 

1. Ordered list of x-coordinates of values of keys in ``ll`` specified in 

ptsdict. 

2. Ordered list of y-coordinates of values of keys in ``ll`` specified 

in ptsdict. 

3. Ordered list of interpolated x-coordinates of points through which a 

line can be drawn. 

4. Ordered list of interpolated y-coordinates of points through which a 

line can be drawn. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: ptsdict={'a':(1,3),'b':(2,1),'c':(4,5),'d':(5,2)} 

sage: x,y,x_i,y_i=matroids_plot_helpers.createline(ptsdict, 

....: ['a','b','c','d']) 

sage: [len(x), len(y), len(x_i), len(y_i)] 

[4, 4, 100, 100] 

sage: G = line(zip(x_i, y_i),color='black',thickness=3,zorder=1) 

sage: G+=points(zip(x, y), color='black', size=300,zorder=2) 

sage: G.show() 

sage: x,y,x_i,y_i=matroids_plot_helpers.createline(ptsdict, 

....: ['a','b','c','d'],lineorders2=[['b','a','c','d'], 

....: ['p','q','r','s']]) 

sage: [len(x), len(y), len(x_i), len(y_i)] 

[4, 4, 100, 100] 

sage: G = line(zip(x_i, y_i),color='black',thickness=3,zorder=1) 

sage: G+=points(zip(x, y), color='black', size=300,zorder=2) 

sage: G.show() 

 

.. NOTE:: 

 

This method does NOT do any checks. 

 

""" 

x, lo = line_hasorder(ll, lineorders2) 

flip = False 

if x is False: 

# convert dictionary to list of lists 

linepts = [list(ptsdict[i]) for i in ll] 

xpts = [x[0] for x in linepts] 

ypts = [y[1] for y in linepts] 

xdim = (float(max(xpts))-float(min(xpts))) 

ydim = (float(max(ypts))-float(min(ypts))) 

if xdim > ydim: 

sortedind = sorted(range(len(xpts)), key=lambda k: float(xpts[k])) 

else: 

sortedind = sorted(range(len(ypts)), key=lambda k: float(ypts[k])) 

flip = True 

sortedlinepts = [linepts[i] for i in sortedind] 

sortedx = [k[0] for k in sortedlinepts] 

sortedy = [k[1] for k in sortedlinepts] 

else: 

linepts = [list(ptsdict[i]) for i in lo] 

sortedx = [k[0] for k in linepts] 

sortedy = [k[1] for k in linepts] 

 

if flip is True: 

tck, u = scipy.interpolate.splprep([sortedy, sortedx], s=0.0, k=2) 

y_i, x_i = scipy.interpolate.splev(np.linspace(0, 1, 100), tck) 

else: 

tck, u = scipy.interpolate.splprep([sortedx, sortedy], s=0.0, k=2) 

x_i, y_i = scipy.interpolate.splev(np.linspace(0, 1, 100), tck) 

return sortedx, sortedy, x_i, y_i 

 

 

def slp(M1, pos_dict=None, B=None): 

""" 

Return simple matroid, loops and parallel elements of given matroid. 

 

INPUT: 

 

- ``M1`` -- A matroid. 

- ``pos_dict`` -- (optional) A dictionary containing non loopy elements of 

``M`` as keys and their (x,y) positions. 

as keys. While simplifying the matroid, all except one element in a 

parallel class that is also specified in ``pos_dict`` will be retained. 

- ``B`` -- (optional) A basis of M1 that has been chosen for placement on 

vertices of triangle. 

 

OUTPUT: 

 

A tuple containing 3 elements in this order: 

 

1. Simple matroid corresponding to ``M1``. 

2. Loops of matroid ``M1``. 

3. Elements that are in `M1.groundset()` but not in ground set of 1 or 

in 2 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: from sage.matroids.advanced import setprint 

sage: M1=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1,0,1], 

....: [0, 1, 0, 1, 0, 1, 1,0,0,1,0],[0, 0, 1, 1, 1, 0, 1,0,0,0,0]]) 

sage: [M,L,P]=matroids_plot_helpers.slp(M1) 

sage: M.is_simple() 

True 

sage: setprint([L,P]) 

[{7}, {8, 9, 10}] 

sage: M1=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1,0,1], 

....: [0, 1, 0, 1, 0, 1, 1,0,0,1,0],[0, 0, 1, 1, 1, 0, 1,0,0,0,0]]) 

sage: posdict= {8: (0, 0), 1: (2, 0), 2: (1, 2), 3: (1.5, 1.0), 

....: 4: (0.5, 1.0), 5: (1.0, 0.0), 6: (1.0, 0.6666666666666666)} 

sage: [M,L,P]=matroids_plot_helpers.slp(M1,pos_dict=posdict) 

sage: M.is_simple() 

True 

sage: setprint([L,P]) 

[{7}, {0, 9, 10}] 

 

.. NOTE:: 

 

This method does NOT do any checks. 

 

""" 

L = set(M1.loops()) 

sg = sorted(M1.simplify().groundset()) 

nP = L | set(M1.simplify().groundset()) 

P = set(M1.groundset())-nP 

if len(P) > 0: 

if pos_dict is not None: 

pcls = list(set([frozenset(set(M1.closure([p])) - L) 

for p in list(P)])) 

newP = [] 

for pcl in pcls: 

pcl_in_dict = [p for p in list(pcl) if p in pos_dict.keys()] 

newP.extend(list(pcl-set([pcl_in_dict[0]]))) 

return [M1.delete(L | set(newP)), L, set(newP)] 

elif B is not None: 

pcls = list(set([frozenset(set(M1.closure([p])) - L) 

for p in list(P)])) 

newP = [] 

for pcl in pcls: 

pcl_list = list(pcl) 

pcl_in_basis = [p for p in pcl_list if p in B] 

if len(pcl_in_basis) > 0: 

newP.extend(list(pcl - set([pcl_in_basis[0]]))) 

else: 

newP.extend(list(pcl - set([pcl_list[0]]))) 

return [M1.delete(L | set(newP)), L, set(newP)] 

else: 

return [M1.delete(L | P), L, P] 

else: 

return [M1.delete(L | P), L, P] 

 

 

def addlp(M, M1, L, P, ptsdict, G=None, limits=None): 

""" 

Return a graphics object containing loops (in inset) and parallel elements 

of matroid. 

 

INPUT: 

 

- ``M`` -- A matroid. 

- ``M1`` -- A simple matroid corresponding to ``M``. 

- ``L`` -- List of elements in ``M.groundset()`` that are loops of matroid 

``M``. 

- ``P`` -- List of elements in ``M.groundset()`` not in 

``M.simplify.groundset()`` or ``L``. 

- ``ptsdict`` -- A dictionary containing elements in ``M.groundset()`` not 

necessarily containing elements of ``L``. 

- ``G`` -- (optional) A sage graphics object to which loops and parallel 

elements of matroid `M` added . 

- ``limits``-- (optional) Current axes limits [xmin,xmax,ymin,ymax]. 

 

OUTPUT: 

 

A 2-tuple containing: 

 

1. A sage graphics object containing loops and parallel elements of 

matroid ``M`` 

2. axes limits array 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: M=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1], 

....: [0, 1, 0, 1, 0, 1, 1,0,0],[0, 0, 1, 1, 1, 0, 1,0,0]]) 

sage: [M1,L,P]=matroids_plot_helpers.slp(M) 

sage: G,lims=matroids_plot_helpers.addlp(M,M1,L,P,{0:(0,0)}) 

sage: G.show(axes=False) 

 

.. NOTE:: 

 

This method does NOT do any checks. 

 

""" 

if G is None: 

G = Graphics() 

# deal with loops 

if len(L) > 0: 

loops = L 

looptext = ", ".join([str(l) for l in loops]) 

if(limits is None): 

rectx = -1 

recty = -1 

else: 

rectx = limits[0] 

recty = limits[2]-1 

rectw = 0.5 + 0.4*len(loops) + 0.5 # controlled based on len(loops) 

recth = 0.6 

G += polygon2d([[rectx, recty], [rectx, recty+recth], 

[rectx+rectw, recty+recth], [rectx+rectw, recty]], 

color='black', fill=False, thickness=4) 

G += text(looptext, (rectx+0.5, recty+0.3), color='black', 

fontsize=13) 

G += point((rectx+0.2, recty+0.3), color=Color('#BDBDBD'), size=300, 

zorder=2) 

G += text('Loop(s)', (rectx+0.5+0.4*len(loops)+0.1, recty+0.3), 

fontsize=13, color='black') 

limits = tracklims(limits, [rectx, rectx+rectw], [recty, recty+recth]) 

# deal with parallel elements 

if len(P) > 0: 

# create list of lists where inner lists are parallel classes 

pcls = [] 

gnd = sorted(list(M1.groundset())) 

for g in gnd: 

pcl = [g] 

for p in P: 

if M.rank([g, p]) == 1: 

pcl.extend([p]) 

pcls.append(pcl) 

ext_gnd = list(M.groundset()) 

for pcl in pcls: 

if len(pcl) > 1: 

basept = list(ptsdict[pcl[0]]) 

if len(pcl) <= 2: 

# add side by side 

ptsdict[pcl[1]] = (basept[0], basept[1]-0.13) 

G += points(zip([basept[0]], [basept[1]-0.13]), 

color=Color('#BDBDBD'), size=300, zorder=2) 

G += text(pcl[0], (float(basept[0]), 

float(basept[1])), color='black', 

fontsize=13) 

G += text(pcl[1], (float(basept[0]), 

float(basept[1])-0.13), color='black', 

fontsize=13) 

limits = tracklims(limits, [basept[0]], [basept[1]-0.13]) 

else: 

# add in a bracket 

pce = sorted([str(kk) for kk in pcl]) 

l = newlabel(set(ext_gnd)) 

ext_gnd.append(l) 

G += text(l+'={ '+", ".join(pce)+' }', (float(basept[0]), 

float(basept[1]-0.2)-0.034), color='black', 

fontsize=13) 

G += text(l, (float(basept[0]), 

float(basept[1])), color='black', 

fontsize=13) 

limits = tracklims(limits, [basept[0]], 

[(basept[1]-0.2)-0.034]) 

return G, limits 

 

 

def line_hasorder(l, lodrs=None): 

""" 

Determine if an order is specified for a line 

 

INPUT: 

 

- ``l`` -- A line specified as a list of ground set elements. 

- ``lordrs`` -- (optional) A list of lists each specifying an order on 

a subset of ground set elements that may or may not correspond to a 

line in geometric representation. 

 

OUTPUT: 

 

A tuple containing 2 elements in this order: 

 

1. A boolean indicating whether there is any list in ``lordrs`` that is 

setwise equal to ``l``. 

2. A list specifying an order on ``set(l)`` if 1. is True, otherwise 

an empty list. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: matroids_plot_helpers.line_hasorder(['a','b','c','d'], 

....: [['a','c','d','b'],['p','q','r']]) 

(True, ['a', 'c', 'd', 'b']) 

sage: matroids_plot_helpers.line_hasorder(['a','b','c','d'], 

....: [['p','q','r'],['l','m','n','o']]) 

(False, []) 

 

.. NOTE:: 

 

This method does NOT do any checks. 

""" 

if lodrs is not None: 

if len(lodrs) > 0: 

for i in lodrs: 

if Set(i) == Set(l): 

return True, i 

return False, [] 

 

 

def lineorders_union(lineorders1, lineorders2): 

""" 

Return a list of ordered lists of ground set elements that corresponds to 

union of two sets of ordered lists of ground set elements in a sense. 

 

INPUT: 

 

- ``lineorders1`` -- A list of ordered lists specifying orders on subsets 

of ground set. 

- ``lineorders2`` -- A list of ordered lists specifying orders subsets of 

ground set. 

 

OUTPUT: 

 

A list of ordered lists of ground set elements that are (setwise) in only 

one of ``lineorders1`` or ``lineorders2`` along with the ones in 

lineorder2 that are setwise equal to any list in lineorders1. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: matroids_plot_helpers.lineorders_union([['a','b','c'], 

....: ['p','q','r'],['i','j','k','l']],[['r','p','q']]) 

[['a', 'b', 'c'], ['p', 'q', 'r'], ['i', 'j', 'k', 'l']] 

 

""" 

if lineorders1 is not None and lineorders2 is not None: 

lineorders = lineorders1 

for order in lineorders2: 

x, lo = line_hasorder(order, lineorders1) 

if x is False: 

lineorders.append(order) 

lineorders.remove(lo) 

return lineorders 

elif lineorders1 is None and lineorders2 is not None: 

return lineorders2 

elif lineorders1 is not None: 

return lineorders1 

else: 

return None 

 

 

def posdict_is_sane(M1, pos_dict): 

""" 

Return a boolean establishing sanity of ``posdict`` wrt matroid ``M``. 

 

INPUT: 

 

- ``M1`` -- A matroid. 

- ``posdict`` -- A dictionary mapping ground set elements to (x,y) 

positions. 

 

OUTPUT: 

 

A boolean that is ``True`` if posdict indeed has all the required elements 

to plot the geometric elements, otherwise ``False``. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: M1=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1,0,1], 

....: [0, 1, 0, 1, 0, 1, 1,0,0,1,0],[0, 0, 1, 1, 1, 0, 1,0,0,0,0]]) 

sage: pos_dict= {0: (0, 0), 1: (2, 0), 2: (1, 2), 3: (1.5, 1.0), 

....: 4: (0.5, 1.0), 5: (1.0, 0.0), 6: (1.0, 0.6666666666666666)} 

sage: matroids_plot_helpers.posdict_is_sane(M1,pos_dict) 

True 

sage: pos_dict= {1: (2, 0), 2: (1, 2), 3: (1.5, 1.0), 

....: 4: (0.5, 1.0), 5: (1.0, 0.0), 6: (1.0, 0.6666666666666666)} 

sage: matroids_plot_helpers.posdict_is_sane(M1,pos_dict) 

False 

 

.. NOTE:: 

 

This method does NOT do any checks. ``M1`` is assumed to be a 

matroid and ``posdict`` is assumed to be a dictionary. 

""" 

L = set(M1.loops()) 

sg = sorted(M1.simplify().groundset()) 

nP = L | set(M1.simplify().groundset()) 

P = set(M1.groundset())-nP 

pcls = list(set([frozenset(set(M1.closure([p])) - L) for p in list(P)])) 

for pcl in pcls: 

pcl_list = list(pcl) 

if not any([x in pos_dict.keys() for x in pcl_list]): 

return False 

allP = [] 

for pcl in pcls: 

allP.extend(list(pcl)) 

if not all([x in pos_dict.keys() 

for x in list(set(M1.groundset()) - (L | set(allP)))]): 

return False 

return True 

 

 

def tracklims(lims, x_i=[], y_i=[]): 

""" 

Return modified limits list. 

 

INPUT: 

 

- ``lims`` -- A list with 4 elements ``[xmin,xmax,ymin,ymax]`` 

- ``x_i`` -- New x values to track 

- ``y_i`` -- New y values to track 

 

OUTPUT: 

 

A list with 4 elements ``[xmin,xmax,ymin,ymax]`` 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: matroids_plot_helpers.tracklims([0,5,-1,7],[1,2,3,6,-1], 

....: [-1,2,3,6]) 

[-1, 6, -1, 7] 

 

.. NOTE:: 

 

This method does NOT do any checks. 

""" 

if lims is not None and lims[0] is not None and lims[1] is not None and \ 

lims[2] is not None and lims[3] is not None: 

lims = [min(min(x_i), lims[0]), max(max(x_i), lims[1]), 

min(min(y_i), lims[2]), max(max(y_i), lims[3])] 

else: 

lims = [min(x_i), max(x_i), min(y_i), max(y_i)] 

return lims 

 

 

def geomrep(M1, B1=None, lineorders1=None, pd=None, sp=False): 

""" 

Return a sage graphics object containing geometric representation of 

matroid M1. 

 

INPUT: 

 

- ``M1`` -- A matroid. 

- ``B1`` -- (optional) A list of elements in ``M1.groundset()`` that 

correspond to a basis of ``M1`` and will be placed as vertices of the 

triangle in the geometric representation of ``M1``. 

- ``lineorders1`` -- (optional) A list of ordered lists of elements of 

``M1.grondset()`` such that if a line in geometric representation is 

setwise same as any of these then points contained will be traversed in 

that order thus overriding internal order deciding heuristic. 

- ``pd`` - (optional) A dictionary mapping ground set elements to their 

(x,y) positions. 

- ``sp`` -- (optional) If True, a positioning dictionary and line orders 

will be placed in ``M._cached_info``. 

 

OUTPUT: 

 

A sage graphics object of type <class 'sage.plot.graphics.Graphics'> that 

corresponds to the geometric representation of the matroid. 

 

EXAMPLES:: 

 

sage: from sage.matroids import matroids_plot_helpers 

sage: M=matroids.named_matroids.P7() 

sage: G=matroids_plot_helpers.geomrep(M) 

sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3) 

sage: M=matroids.named_matroids.P7() 

sage: G=matroids_plot_helpers.geomrep(M,lineorders1=[['f','e','d']]) 

sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3) 

 

.. NOTE:: 

 

This method does NOT do any checks. 

""" 

G = Graphics() 

# create lists of loops and parallel elements and simplify given matroid 

[M, L, P] = slp(M1, pos_dict=pd, B=B1) 

if B1 is None: 

B1 = list(M.basis()) 

M._cached_info = M1._cached_info 

 

if M.rank() == 0: 

limits = None 

loops = L 

looptext = ", ".join([str(l) for l in loops]) 

rectx = -1 

recty = -1 

rectw = 0.5 + 0.4*len(loops) + 0.5 # controlled based on len(loops) 

recth = 0.6 

G += polygon2d([[rectx, recty], [rectx, recty+recth], 

[rectx+rectw, recty+recth], [rectx+rectw, recty]], 

color='black', fill=False, thickness=4) 

G += text(looptext, (rectx+0.5, recty+0.3), color='black', 

fontsize=13) 

G += point((rectx+0.2, recty+0.3), color=Color('#BDBDBD'), size=300, 

zorder=2) 

G += text('Loop(s)', (rectx+0.5+0.4*len(loops)+0.1, recty+0.3), 

fontsize=13, color='black') 

limits = tracklims(limits, [rectx, rectx+rectw], [recty, recty+recth]) 

G.axes(False) 

G.axes_range(xmin=limits[0]-0.5, xmax=limits[1]+0.5, 

ymin=limits[2]-0.5, ymax=limits[3]+0.5) 

return G 

elif M.rank() == 1: 

if M._cached_info is not None and \ 

'plot_positions' in M._cached_info.keys() and \ 

M._cached_info['plot_positions'] is not None: 

pts = M._cached_info['plot_positions'] 

else: 

pts = {} 

gnd = sorted(M.groundset()) 

pts[gnd[0]] = (1, float(2)/3) 

G += point((1, float(2)/3), size=300, color=Color('#BDBDBD'), zorder=2) 

pt = [1, float(2)/3] 

if len(P) == 0: 

G += text(gnd[0], (float(pt[0]), float(pt[1])), color='black', 

fontsize=13) 

pts2 = pts 

# track limits [xmin,xmax,ymin,ymax] 

pl = [list(x) for x in pts2.values()] 

lims = tracklims([None, None, None, None], [pt[0] for pt in pl], 

[pt[1] for pt in pl]) 

elif M.rank() == 2: 

nB1 = list(set(list(M.groundset())) - set(B1)) 

bline = [] 

for j in nB1: 

if M.is_dependent([j, B1[0], B1[1]]): 

bline.append(j) 

interval = len(bline)+1 

if M._cached_info is not None and \ 

'plot_positions' in M._cached_info.keys() and \ 

M._cached_info['plot_positions'] is not None: 

pts2 = M._cached_info['plot_positions'] 

else: 

pts2 = {} 

pts2[B1[0]] = (0, 0) 

pts2[B1[1]] = (2, 0) 

lpt = list(pts2[B1[0]]) 

rpt = list(pts2[B1[1]]) 

for k in range(len(bline)): 

cc = (float(1)/interval)*(k+1) 

pts2[bline[k]] = (cc*lpt[0]+(1-cc)*rpt[0], 

cc*lpt[1]+(1-cc)*rpt[1]) 

if sp is True: 

M._cached_info['plot_positions'] = pts2 

# track limits [xmin,xmax,ymin,ymax] 

pl = [list(x) for x in pts2.values()] 

lims = tracklims([None, None, None, None], [pt[0] for pt in pl], 

[pt[1] for pt in pl]) 

bline.extend(B1) 

ptsx, ptsy, x_i, y_i = createline(pts2, bline, lineorders1) 

lims = tracklims(lims, x_i, y_i) 

G += line(zip(x_i, y_i), color='black', thickness=3, zorder=1) 

pels = [p for p in pts2.keys() if any([M1.rank([p, q]) == 1 

for q in P])] 

allpts = [list(pts2[i]) for i in M.groundset()] 

xpts = [float(k[0]) for k in allpts] 

ypts = [float(k[1]) for k in allpts] 

G += points(zip(xpts, ypts), color=Color('#BDBDBD'), size=300, 

zorder=2) 

for i in pts2: 

if i not in pels: 

pt = list(pts2[i]) 

G += text(i, (float(pt[0]), float(pt[1])), color='black', 

fontsize=13) 

else: 

if M._cached_info is None or \ 

'plot_positions' not in M._cached_info.keys() or \ 

M._cached_info['plot_positions'] is None: 

(pts, trilines, 

nontripts, curvedlines) = it(M1, B1, 

list(set(M.groundset())-set(B1)), 

list(set(L) | set(P))) 

pts2 = addnontripts([B1[0], B1[1], B1[2]], nontripts, pts) 

trilines.extend(curvedlines) 

else: 

pts2 = M._cached_info['plot_positions'] 

trilines = [list(set(list(x)).difference(L | P)) 

for x in M1.flats(2) 

if len(list(x)) >= 3] 

pl = [list(x) for x in pts2.values()] 

lims = tracklims([None, None, None, None], [pt[0] for pt in pl], 

[pt[1] for pt in pl]) 

j = 0 

for ll in trilines: 

if len(ll) >= 3: 

ptsx, ptsy, x_i, y_i = createline(pts2, ll, lineorders1) 

lims = tracklims(lims, x_i, y_i) 

G += line(zip(x_i, y_i), color='black', thickness=3, zorder=1) 

pels = [p for p in pts2.keys() if any([M1.rank([p, q]) == 1 

for q in P])] 

allpts = [list(pts2[i]) for i in M.groundset()] 

xpts = [float(k[0]) for k in allpts] 

ypts = [float(k[1]) for k in allpts] 

G += points(zip(xpts, ypts), color=Color('#BDBDBD'), size=300, 

zorder=2) 

for i in pts2: 

if i not in pels: 

pt = list(pts2[i]) 

G += text(i, (float(pt[0]), float(pt[1])), color='black', 

fontsize=13) 

if sp is True: 

M1._cached_info['plot_positions'] = pts2 

M1._cached_info['plot_lineorders'] = lineorders1 

# deal with loops and parallel elements 

G, lims = addlp(M1, M, L, P, pts2, G, lims) 

G.axes(False) 

G.axes_range(xmin=lims[0]-0.5, xmax=lims[1]+0.5, ymin=lims[2]-0.5, 

ymax=lims[3]+0.5) 

return G