Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

""" 

A parser for symbolic equations and expressions 

  

It is both safer and more powerful than using Python's eval, as one has 

complete control over what names are used (including dynamically creating 

variables) and how integer and floating point literals are created. 

  

AUTHOR: 

  

- Robert Bradshaw 2008-04 (initial version) 

""" 

  

#***************************************************************************** 

# Copyright (C) 2008 Robert Bradshaw <robertwb@math.washington.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

  

from libc.string cimport strchr 

from cpython.bytes cimport PyBytes_FromStringAndSize 

from cpython.list cimport PyList_Append 

  

import math 

  

from sage.cpython.string cimport str_to_bytes, bytes_to_str 

  

def foo(*args, **kwds): 

""" 

This is a function for testing that simply returns the arguments and 

keywords passed into it. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import foo 

sage: foo(1, 2, a=3) 

((1, 2), {'a': 3}) 

""" 

return args, kwds 

  

function_map = { 

'foo': foo, 

'sqrt': math.sqrt, 

'sin': math.sin, 

'cos': math.cos, 

'tan': math.tan, 

} 

  

cdef enum token_types: 

# leave room for ASCII character tokens such as '+' 

INT = 128 

FLOAT 

NAME 

EOS 

ERROR 

  

LESS_EQ 

GREATER_EQ 

NOT_EQ 

MATRIX 

  

enum_map = { 

INT: 'INT', 

FLOAT: 'FLOAT', 

NAME: 'NAME', 

EOS: 'EOS', 

ERROR: 'ERROR', 

LESS_EQ: 'LESS_EQ', 

GREATER_EQ: 'GREATER_EQ', 

NOT_EQ: 'NOT_EQ', 

MATRIX: 'MATRIX', 

} 

  

def token_to_str(int token): 

""" 

For speed reasons, tokens are integers. This function returns a string 

representation of a given token. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer, token_to_str 

sage: t = Tokenizer("+ 2") 

sage: token_to_str(t.next()) 

'+' 

sage: token_to_str(t.next()) 

'INT' 

""" 

try: 

return enum_map[token] 

except KeyError: 

return chr(token) 

  

  

cdef inline bint is_alphanumeric(char c): 

return 'a' <= c <= 'z' or 'A' <= c <= 'Z' or '0' <= c <= '9' or c == '_' 

  

cdef inline bint is_whitespace(char c): 

return (c != 0) & (strchr(" \t\n\r", c) != NULL) 

  

  

cdef class Tokenizer: 

cdef char *s 

cdef string_obj 

cdef int token 

cdef int pos 

cdef int last_pos 

  

def __init__(self, s): 

""" 

This class takes a string and turns it into a list of tokens for use 

by the parser. 

  

The tokenizer wraps a string object, to tokenize a different string 

create a new tokenizer. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer 

sage: Tokenizer("1.5+2*3^4-sin(x)").test() 

['FLOAT(1.5)', '+', 'INT(2)', '*', 'INT(3)', '^', 'INT(4)', '-', 'NAME(sin)', '(', 'NAME(x)', ')'] 

  

The single character tokens are given by:: 

  

sage: Tokenizer("+-*/^(),=<>[]{}").test() 

['+', '-', '*', '/', '^', '(', ')', ',', '=', '<', '>', '[', ']', '{', '}'] 

  

Two-character comparisons accepted are:: 

  

sage: Tokenizer("<= >= != == **").test() 

['LESS_EQ', 'GREATER_EQ', 'NOT_EQ', '=', '^'] 

  

Integers are strings of 0-9:: 

  

sage: Tokenizer("1 123 9879834759873452908375013").test() 

['INT(1)', 'INT(123)', 'INT(9879834759873452908375013)'] 

  

Floating point numbers can contain a single decimal point and possibly exponential notation:: 

  

sage: Tokenizer("1. .01 1e3 1.e-3").test() 

['FLOAT(1.)', 'FLOAT(.01)', 'FLOAT(1e3)', 'FLOAT(1.e-3)'] 

  

Note that negative signs are not attached to the token:: 

  

sage: Tokenizer("-1 -1.2").test() 

['-', 'INT(1)', '-', 'FLOAT(1.2)'] 

  

Names are alphanumeric sequences not starting with a digit:: 

  

sage: Tokenizer("a a1 _a_24").test() 

['NAME(a)', 'NAME(a1)', 'NAME(_a_24)'] 

  

Anything else is an error:: 

  

sage: Tokenizer("&@~").test() 

['ERROR', 'ERROR', 'ERROR'] 

  

No attempt for correctness is made at this stage:: 

  

sage: Tokenizer(") )( 5e5e5").test() 

[')', ')', '(', 'FLOAT(5e5)', 'NAME(e5)'] 

sage: Tokenizer("?$%").test() 

['ERROR', 'ERROR', 'ERROR'] 

""" 

s = str_to_bytes(s) 

self.pos = 0 

self.last_pos = 0 

self.s = s 

self.string_obj = s # so it doesn't get deallocated before self 

  

def test(self): 

""" 

This is a utility function for easy testing of the tokenizer. 

  

Destructively read off the tokens in self, returning a list of string 

representations of the tokens. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer 

sage: t = Tokenizer("a b 3") 

sage: t.test() 

['NAME(a)', 'NAME(b)', 'INT(3)'] 

sage: t.test() 

[] 

""" 

all = [] 

cdef int token = self.next() 

while token != EOS: 

if token in [INT, FLOAT, NAME]: 

all.append("%s(%s)" % (token_to_str(token), self.last_token_string())) 

else: 

all.append(token_to_str(token)) 

token = self.next() 

return all 

  

cpdef reset(self, int pos = 0): 

""" 

Reset the tokenizer to a given position. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer 

sage: t = Tokenizer("a+b*c") 

sage: t.test() 

['NAME(a)', '+', 'NAME(b)', '*', 'NAME(c)'] 

sage: t.test() 

[] 

sage: t.reset() 

sage: t.test() 

['NAME(a)', '+', 'NAME(b)', '*', 'NAME(c)'] 

sage: t.reset(3) 

sage: t.test() 

['*', 'NAME(c)'] 

  

No care is taken to make sure we don't jump in the middle of a token:: 

  

sage: t = Tokenizer("12345+a") 

sage: t.test() 

['INT(12345)', '+', 'NAME(a)'] 

sage: t.reset(2) 

sage: t.test() 

['INT(345)', '+', 'NAME(a)'] 

""" 

self.pos = self.last_pos = pos 

  

cdef int find(self) except -1: 

""" 

This function actually does all the work, and extensively is tested above. 

""" 

cdef bint seen_exp, seen_decimal 

cdef int type 

cdef char* s = self.s 

cdef int pos = self.pos 

  

# skip whitespace 

if is_whitespace(s[pos]): 

while is_whitespace(s[pos]): 

pos += 1 

self.pos = pos 

  

# end of string 

if s[pos] == 0: 

return EOS 

  

# dipthongs 

if s[pos+1] == '=': 

if s[pos] == '<': 

self.pos += 2 

return LESS_EQ 

elif s[pos] == '>': 

self.pos += 2 

return GREATER_EQ 

elif s[pos] == '!': 

self.pos += 2 

return NOT_EQ 

elif s[pos] == '=': 

self.pos += 2 

return '=' 

  

elif s[pos] == '*' and s[pos+1] == '*': 

self.pos += 2 

return '^' 

  

# simple tokens 

if strchr("+-*/^()=<>,[]{}!", s[pos]): 

type = s[pos] 

self.pos += 1 

return type 

  

# numeric literals 

if '0' <= s[pos] <= '9' or s[pos] == '.': 

type = INT 

seen_exp = False 

seen_decimal = False 

while True: 

if '0' <= s[pos] <= '9': 

pass 

elif s[pos] == '.': 

if seen_decimal or seen_exp: 

self.pos = pos 

return type 

else: 

type = FLOAT 

seen_decimal = True 

elif s[pos] == 'e' or s[pos] == 'E': 

if seen_exp: 

self.pos = pos 

return type 

else: 

type = FLOAT 

seen_exp = True 

elif s[pos] == '+' or s[pos] == '-': 

if not (seen_exp and (s[pos-1] == 'e' or s[pos-1] == 'E')): 

self.pos = pos 

return type 

else: 

self.pos = pos 

return type 

pos += 1 

  

# name literals 

if is_alphanumeric(s[pos]): 

while is_alphanumeric(s[pos]): 

pos += 1 

# matrices 

if s[self.pos:pos] == b'matrix': 

self.pos = pos 

return MATRIX 

self.pos = pos 

return NAME 

  

pos += 1 

self.pos = pos 

return ERROR 

  

cpdef int next(self): 

""" 

Returns the next token in the string. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer, token_to_str 

sage: t = Tokenizer("a+3") 

sage: token_to_str(t.next()) 

'NAME' 

sage: token_to_str(t.next()) 

'+' 

sage: token_to_str(t.next()) 

'INT' 

sage: token_to_str(t.next()) 

'EOS' 

""" 

while is_whitespace(self.s[self.pos]): 

self.pos += 1 

self.last_pos = self.pos 

self.token = self.find() 

return self.token 

  

cpdef int last(self): 

""" 

Returns the last token seen. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer, token_to_str 

sage: t = Tokenizer("3a") 

sage: token_to_str(t.next()) 

'INT' 

sage: token_to_str(t.last()) 

'INT' 

sage: token_to_str(t.next()) 

'NAME' 

sage: token_to_str(t.last()) 

'NAME' 

""" 

return self.token 

  

cpdef int peek(self): 

""" 

Returns the next token that will be encountered, without changing 

the state of self. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer, token_to_str 

sage: t = Tokenizer("a+b") 

sage: token_to_str(t.peek()) 

'NAME' 

sage: token_to_str(t.next()) 

'NAME' 

sage: token_to_str(t.peek()) 

'+' 

sage: token_to_str(t.peek()) 

'+' 

sage: token_to_str(t.next()) 

'+' 

""" 

cdef int save_pos = self.pos 

cdef int token = self.find() 

self.pos = save_pos 

return token 

  

cpdef bint backtrack(self) except -2: 

""" 

Put self in such a state that the subsequent call to next() will 

return the same as if next() had not been called. 

  

Currently, one can only backtrack once. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer, token_to_str 

sage: t = Tokenizer("a+b") 

sage: token_to_str(t.next()) 

'NAME' 

sage: token_to_str(t.next()) 

'+' 

sage: t.backtrack() # the return type is bint for performance reasons 

False 

sage: token_to_str(t.next()) 

'+' 

""" 

if self.pos == self.last_pos and self.token != EOS: 

raise NotImplementedError("Can only backtrack once.") 

else: 

self.pos = self.last_pos 

self.token = 0 

  

cpdef last_token_string(self): 

""" 

Return the actual contents of the last token. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Tokenizer, token_to_str 

sage: t = Tokenizer("a - 1e5") 

sage: token_to_str(t.next()) 

'NAME' 

sage: t.last_token_string() 

'a' 

sage: token_to_str(t.next()) 

'-' 

sage: token_to_str(t.next()) 

'FLOAT' 

sage: t.last_token_string() 

'1e5' 

""" 

s = PyBytes_FromStringAndSize(&self.s[self.last_pos], 

self.pos - self.last_pos) 

return bytes_to_str(s) 

  

  

cdef class Parser: 

  

cdef integer_constructor 

cdef float_constructor 

cdef variable_constructor 

cdef callable_constructor 

cdef bint implicit_multiplication 

  

def __init__(self, make_int=int, make_float=float, make_var=str, make_function={}, bint implicit_multiplication=True): 

""" 

Create a symbolic expression parser. 

  

INPUT: 

  

- make_int -- callable object to construct integers from strings (default int) 

- make_float -- callable object to construct real numbers from strings (default float) 

- make_var -- callable object to construct variables from strings (default str) 

this may also be a dictionary of variable names 

- make_function -- callable object to construct callable functions from strings 

this may also be a dictionary 

- implicit_multiplication -- whether or not to accept implicit multiplication 

  

OUTPUT: 

  

The evaluated expression tree given by the string, where the above 

functions are used to create the leaves of this tree. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser 

sage: p = Parser() 

sage: p.parse("1+2") 

3 

sage: p.parse("1+2 == 3") 

True 

  

sage: p = Parser(make_var=var) 

sage: p.parse("a*b^c - 3a") 

a*b^c - 3*a 

  

sage: R.<x> = QQ[] 

sage: p = Parser(make_var = {'x': x }) 

sage: p.parse("(x+1)^5-x") 

x^5 + 5*x^4 + 10*x^3 + 10*x^2 + 4*x + 1 

sage: p.parse("(x+1)^5-x").parent() is R 

True 

  

sage: p = Parser(make_float=RR, make_var=var, make_function={'foo': (lambda x: x*x+x)}) 

sage: p.parse("1.5 + foo(b)") 

b^2 + b + 1.50000000000000 

sage: p.parse("1.9").parent() 

Real Field with 53 bits of precision 

""" 

self.integer_constructor = make_int 

self.float_constructor = make_float 

if not callable(make_var): 

make_var = LookupNameMaker(make_var) 

if not callable(make_function): 

make_function = LookupNameMaker(make_function) 

self.variable_constructor = make_var 

self.callable_constructor = make_function 

self.implicit_multiplication = implicit_multiplication 

  

cpdef parse(self, s, bint accept_eqn=True): 

""" 

Parse the given string. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser 

sage: p = Parser(make_var=var) 

sage: p.parse("E = m c^2") 

E == c^2*m 

""" 

cdef Tokenizer tokens = Tokenizer(s) 

if tokens.peek() == MATRIX: 

tokens.next() 

expr = self.p_matrix(tokens) 

else: 

expr = self.p_eqn(tokens) if accept_eqn else self.p_expr(tokens) 

  

if tokens.next() != EOS: 

self.parse_error(tokens) 

return expr 

  

cpdef parse_expression(self, s): 

""" 

Parse an expression. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser 

sage: p = Parser(make_var=var) 

sage: p.parse_expression('a-3b^2') 

-3*b^2 + a 

""" 

cdef Tokenizer tokens = Tokenizer(s) 

expr = self.p_expr(tokens) 

if tokens.next() != EOS: 

self.parse_error(tokens) 

return expr 

  

cpdef parse_sequence(self, s): 

""" 

Parse a (possibly nested) set of lists and tuples. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser 

sage: p = Parser(make_var=var) 

sage: p.parse_sequence("1,2,3") 

[1, 2, 3] 

sage: p.parse_sequence("[1,2,(a,b,c+d)]") 

[1, 2, (a, b, c + d)] 

sage: p.parse_sequence("13") 

13 

""" 

cdef Tokenizer tokens = Tokenizer(s) 

all = self.p_sequence(tokens) 

if tokens.next() != EOS: 

self.parse_error(tokens) 

if len(all) == 1 and isinstance(all, list): 

all = all[0] 

return all 

  

cpdef p_matrix(self, Tokenizer tokens): 

""" 

Parse a matrix 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_matrix(Tokenizer("([a,0],[0,a])")) 

[a 0] 

[0 a] 

""" 

cdef int token 

all = [] 

if tokens.next() == '(': 

token = ',' 

while token == ',': 

all.append(self.p_list(tokens)) 

token = tokens.next() 

  

if token == ')': 

from sage.matrix.constructor import matrix 

return matrix(all) 

else: 

self.parse_error(tokens, "Malformed matrix") 

else: 

self.parse_error(tokens, "Malformed matrix") 

  

cpdef p_sequence(self, Tokenizer tokens): 

""" 

Parse a (possibly nested) set of lists and tuples. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_sequence(Tokenizer("[1+2,0]")) 

[[3, 0]] 

sage: p.p_sequence(Tokenizer("(1,2,3) , [1+a, 2+b, (3+c), (4+d,)]")) 

[(1, 2, 3), [a + 1, b + 2, c + 3, (d + 4,)]] 

""" 

all = [] 

cdef int token = ',' 

while token == ',': 

token = tokens.peek() 

if token == MATRIX: 

tokens.next() 

obj = self.p_matrix(tokens) 

elif token == INT: 

# we optimize for this rather than going all the way to atom 

tokens.next() 

if tokens.peek() == c',': 

obj = self.integer_constructor(tokens.last_token_string()) 

else: 

tokens.backtrack() 

obj = self.p_eqn(tokens) 

elif token == '[': 

obj = self.p_list(tokens) 

elif token == '(': 

obj = self.p_tuple(tokens) 

elif token == EOS: 

return all 

elif token == ']' or token == ')': 

tokens.token = ',' 

return all 

else: 

obj = self.p_eqn(tokens) 

PyList_Append(all, obj) 

token = tokens.next() 

  

tokens.backtrack() 

return all 

  

cpdef p_list(self, Tokenizer tokens): 

""" 

Parse a list of items. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_list(Tokenizer("[1+2, 1e3]")) 

[3, 1000.0] 

sage: p.p_list(Tokenizer("[]")) 

[] 

""" 

cdef int token = tokens.next() 

if token != '[': 

self.parse_error(tokens, "Malformed list") 

all = self.p_sequence(tokens) 

token = tokens.next() 

if token != ']': 

self.parse_error(tokens, "Malformed list") 

return all 

  

cpdef p_tuple(self, Tokenizer tokens): 

""" 

Parse a tuple of items. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_tuple(Tokenizer("( (), (1), (1,), (1,2), (1,2,3), (1+2)^2, )")) 

((), 1, (1,), (1, 2), (1, 2, 3), 9) 

""" 

cdef int start = tokens.pos 

cdef int token = tokens.next() 

cdef bint real_tuple = True 

if token != '(': 

self.parse_error(tokens, "Malformed tuple") 

all = self.p_sequence(tokens) 

if len(all) == 1: 

if tokens.last() != c',': 

real_tuple = False 

token = tokens.next() 

if token != ')': 

self.parse_error(tokens, "Malformed tuple") 

if real_tuple: 

return tuple(all) 

else: 

token = tokens.peek() 

if token == ',' or token == EOS: 

return all[0] 

else: 

# we have to reparse the entire thing as an expression 

tokens.reset(start) 

return self.p_eqn(tokens) 

  

# eqn ::= expr op expr | expr 

cpdef p_eqn(self, Tokenizer tokens): 

""" 

Parse an equation or expression. 

  

This is the top-level node called by the \code{parse} function. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_eqn(Tokenizer("1+a")) 

a + 1 

  

sage: p.p_eqn(Tokenizer("a == b")) 

a == b 

sage: p.p_eqn(Tokenizer("a < b")) 

a < b 

sage: p.p_eqn(Tokenizer("a > b")) 

a > b 

sage: p.p_eqn(Tokenizer("a <= b")) 

a <= b 

sage: p.p_eqn(Tokenizer("a >= b")) 

a >= b 

sage: p.p_eqn(Tokenizer("a != b")) 

a != b 

""" 

lhs = self.p_expr(tokens) 

cdef int op = tokens.next() 

if op == '=': 

return lhs == self.p_expr(tokens) 

elif op == NOT_EQ: 

return lhs != self.p_expr(tokens) 

elif op == '<': 

return lhs < self.p_expr(tokens) 

elif op == LESS_EQ: 

return lhs <= self.p_expr(tokens) 

elif op == '>': 

return lhs > self.p_expr(tokens) 

elif op == GREATER_EQ: 

return lhs >= self.p_expr(tokens) 

else: 

tokens.backtrack() 

return lhs 

  

# expr ::= term | expr '+' term | expr '-' term 

cpdef p_expr(self, Tokenizer tokens): 

""" 

Parse a list of one or more terms. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_expr(Tokenizer("a+b")) 

a + b 

sage: p.p_expr(Tokenizer("a")) 

a 

sage: p.p_expr(Tokenizer("a - b + 4*c - d^2")) 

-d^2 + a - b + 4*c 

sage: p.p_expr(Tokenizer("a - -3")) 

a + 3 

sage: p.p_expr(Tokenizer("a + 1 == b")) 

a + 1 

""" 

# Note: this is left-recursive, so we can't just recurse 

cdef int op 

operand1 = self.p_term(tokens) 

op = tokens.next() 

while op == '+' or op == '-': 

operand2 = self.p_term(tokens) 

if op == '+': 

operand1 = operand1 + operand2 

else: 

operand1 = operand1 - operand2 

op = tokens.next() 

tokens.backtrack() 

return operand1 

  

# term ::= factor | term '*' factor | term '/' factor 

cpdef p_term(self, Tokenizer tokens): 

""" 

Parse a single term (consisting of one or more factors). 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_term(Tokenizer("a*b")) 

a*b 

sage: p.p_term(Tokenizer("a * b / c * d")) 

a*b*d/c 

sage: p.p_term(Tokenizer("-a * b + c")) 

-a*b 

sage: p.p_term(Tokenizer("a*(b-c)^2")) 

a*(b - c)^2 

sage: p.p_term(Tokenizer("-3a")) 

-3*a 

""" 

# Note: this is left-recursive, so we can't just recurse 

cdef int op 

operand1 = self.p_factor(tokens) 

op = tokens.next() 

if op == NAME and self.implicit_multiplication: 

op = '*' 

tokens.backtrack() 

while op == '*' or op == '/': 

operand2 = self.p_factor(tokens) 

if op == '*': 

operand1 = operand1 * operand2 

else: 

operand1 = operand1 / operand2 

op = tokens.next() 

if op == NAME and self.implicit_multiplication: 

op = '*' 

tokens.backtrack() 

tokens.backtrack() 

return operand1 

  

# factor ::= '+' factor | '-' factor | power 

cpdef p_factor(self, Tokenizer tokens): 

""" 

Parse a single factor, which consists of any number of unary +/- 

and a power. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: R.<t> = ZZ[['t']] 

sage: p = Parser(make_var={'t': t}) 

sage: p.p_factor(Tokenizer("- -t")) 

t 

sage: p.p_factor(Tokenizer("- + - -t^2")) 

-t^2 

sage: p.p_factor(Tokenizer("t^11 * x")) 

t^11 

""" 

cdef int token = tokens.next() 

if token == '+': 

return self.p_factor(tokens) 

elif token == '-': 

return -self.p_factor(tokens) 

else: 

tokens.backtrack() 

return self.p_power(tokens) 

  

# power ::= (atom | atom!) ^ factor | atom | atom! 

cpdef p_power(self, Tokenizer tokens): 

""" 

Parses a power. Note that exponentiation groups right to left. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: R.<t> = ZZ[['t']] 

sage: p = Parser(make_var={'t': t}) 

sage: p.p_factor(Tokenizer("-(1+t)^-1")) 

-1 + t - t^2 + t^3 - t^4 + t^5 - t^6 + t^7 - t^8 + t^9 - t^10 + t^11 - t^12 + t^13 - t^14 + t^15 - t^16 + t^17 - t^18 + t^19 + O(t^20) 

sage: p.p_factor(Tokenizer("t**2")) 

t^2 

sage: p.p_power(Tokenizer("2^3^2")) == 2^9 

True 

  

sage: p = Parser(make_var=var) 

sage: p.p_factor(Tokenizer('x!')) 

factorial(x) 

sage: p.p_factor(Tokenizer('(x^2)!')) 

factorial(x^2) 

sage: p.p_factor(Tokenizer('x!^2')) 

factorial(x)^2 

  

""" 

operand1 = self.p_atom(tokens) 

cdef int token = tokens.next() 

if token == '^': 

operand2 = self.p_factor(tokens) 

return operand1 ** operand2 

elif token == "!": 

from sage.functions.all import factorial 

operand1 = factorial(operand1) 

if tokens.peek() == '^': 

tokens.next() 

operand2 = self.p_factor(tokens) 

return operand1 ** operand2 

else: 

return operand1 

else: 

tokens.backtrack() 

return operand1 

  

# atom ::= int | float | name | '(' expr ')' | name '(' args ')' 

cpdef p_atom(self, Tokenizer tokens): 

""" 

Parse an atom. This is either a parenthesized expression, a function call, or a literal name/int/float. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var, make_function={'sin': sin}) 

sage: p.p_atom(Tokenizer("1")) 

1 

sage: p.p_atom(Tokenizer("12")) 

12 

sage: p.p_atom(Tokenizer("12.5")) 

12.5 

sage: p.p_atom(Tokenizer("(1+a)")) 

a + 1 

sage: p.p_atom(Tokenizer("(1+a)^2")) 

a + 1 

sage: p.p_atom(Tokenizer("sin(1+a)")) 

sin(a + 1) 

sage: p = Parser(make_var=var, make_function={'foo': sage.misc.parser.foo}) 

sage: p.p_atom(Tokenizer("foo(a, b, key=value)")) 

((a, b), {'key': value}) 

sage: p.p_atom(Tokenizer("foo()")) 

((), {}) 

""" 

cdef int token = tokens.next() 

if token == INT: 

return self.integer_constructor(tokens.last_token_string()) 

elif token == FLOAT: 

return self.float_constructor(tokens.last_token_string()) 

elif token == NAME: 

name = tokens.last_token_string() 

token = tokens.next() 

if token == '(': 

func = self.callable_constructor(name) 

args, kwds = self.p_args(tokens) 

token = tokens.next() 

if token != ')': 

self.parse_error(tokens, "Bad function call") 

return func(*args, **kwds) 

else: 

tokens.backtrack() 

return self.variable_constructor(name) 

elif token == '(': 

expr = self.p_expr(tokens) 

token = tokens.next() 

if token != ')': 

self.parse_error(tokens, "Mismatched parentheses") 

return expr 

else: 

self.parse_error(tokens) 

  

# args = arg (',' arg)* | EMPTY 

cpdef p_args(self, Tokenizer tokens): 

""" 

Returns a list, dict pair. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser() 

sage: p.p_args(Tokenizer("1,2,a=3")) 

([1, 2], {'a': 3}) 

sage: p.p_args(Tokenizer("1, 2, a = 1+5^2")) 

([1, 2], {'a': 26}) 

""" 

args = [] 

kwds = {} 

if tokens.peek() == ')': 

return args, kwds 

cdef int token = ',' 

while token == ',': 

arg = self.p_arg(tokens) 

if isinstance(arg, tuple): 

name, value = arg 

kwds[name] = value 

else: 

args.append(arg) 

token = tokens.next() 

tokens.backtrack() 

return args, kwds 

  

# arg = expr | name '=' expr 

cpdef p_arg(self, Tokenizer tokens): 

""" 

Returns an expr, or a (name, expr) tuple corresponding to a single 

function call argument. 

  

EXAMPLES: 

  

Parsing a normal expression:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_arg(Tokenizer("a+b")) 

a + b 

  

A keyword expression argument:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_arg(Tokenizer("val=a+b")) 

('val', a + b) 

  

A lone list:: 

  

sage: from sage.misc.parser import Parser, Tokenizer 

sage: p = Parser(make_var=var) 

sage: p.p_arg(Tokenizer("[x]")) 

[x] 

  

""" 

cdef int token = tokens.next() 

if token == NAME and tokens.peek() == '=': 

name = tokens.last_token_string() 

tokens.next() 

return name, self.p_expr(tokens) 

if token == "[" : 

tokens.backtrack() 

return self.p_list(tokens) 

else: 

tokens.backtrack() 

return self.p_expr(tokens) 

  

cdef parse_error(self, Tokenizer tokens, msg="Malformed expression"): 

raise SyntaxError(msg, tokens.s, tokens.pos) 

  

  

cdef class LookupNameMaker: 

cdef object names 

cdef object fallback 

def __init__(self, names, fallback=None): 

""" 

This class wraps a dictionary as a callable for use in creating names. 

It takes a dictionary of names, and an (optional) callable to use 

when the given name is not found in the dictionary. 

  

EXAMPLES:: 

  

sage: from sage.misc.parser import LookupNameMaker 

sage: maker = LookupNameMaker({'pi': pi}, var) 

sage: maker('pi') 

pi 

sage: maker('pi') is pi 

True 

sage: maker('a') 

a 

""" 

self.names = names 

self.fallback = fallback 

  

def __call__(self, name): 

""" 

TESTS:: 

  

sage: from sage.misc.parser import LookupNameMaker 

sage: maker = LookupNameMaker({'a': x}, str) 

sage: maker('a') 

x 

sage: maker('a') is x 

True 

sage: maker('b') 

'b' 

""" 

try: 

return self.names[name] 

except KeyError: 

if self.fallback is not None: 

return self.fallback(name) 

raise NameError("Unknown variable: '{}'".format(name))