Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

""" 

`L`-series of modular abelian varieties 

 

AUTHOR: 

 

- William Stein (2007-03) 

 

TESTS:: 

 

sage: L = J0(37)[0].padic_lseries(5) 

sage: loads(dumps(L)) == L 

True 

sage: L = J0(37)[0].lseries() 

sage: loads(dumps(L)) == L 

True 

""" 

 

########################################################################### 

# Copyright (C) 2007 William Stein <wstein@gmail.com> # 

# Distributed under the terms of the GNU General Public License (GPL) # 

# http://www.gnu.org/licenses/ # 

########################################################################### 

 

from sage.structure.sage_object import SageObject 

from sage.rings.all import Integer, infinity, ZZ, QQ, CC 

from sage.modules.free_module import span 

from sage.modular.modform.constructor import Newform, CuspForms 

from sage.modular.arithgroup.congroup_gamma0 import is_Gamma0 

from sage.misc.misc_c import prod 

 

 

class Lseries(SageObject): 

""" 

Base class for `L`-series attached to modular abelian varieties. 

 

This is a common base class for complex and `p`-adic `L`-series 

of modular abelian varieties. 

""" 

def __init__(self, abvar): 

""" 

Called when creating an L-series. 

 

INPUT: 

 

- ``abvar`` -- a modular abelian variety 

 

EXAMPLES:: 

 

sage: J0(11).lseries() 

Complex L-series attached to Abelian variety J0(11) of dimension 1 

sage: J0(11).padic_lseries(7) 

7-adic L-series attached to Abelian variety J0(11) of dimension 1 

""" 

self.__abvar = abvar 

 

def abelian_variety(self): 

""" 

Return the abelian variety that this `L`-series is attached to. 

 

OUTPUT: 

 

a modular abelian variety 

 

EXAMPLES:: 

 

sage: J0(11).padic_lseries(7).abelian_variety() 

Abelian variety J0(11) of dimension 1 

""" 

return self.__abvar 

 

 

class Lseries_complex(Lseries): 

""" 

A complex `L`-series attached to a modular abelian variety. 

 

EXAMPLES:: 

 

sage: A = J0(37) 

sage: A.lseries() 

Complex L-series attached to Abelian variety J0(37) of dimension 2 

""" 

def __call__(self, s, prec=53): 

""" 

Evaluate this complex `L`-series at `s`. 

 

INPUT: 

 

- ``s`` -- complex number 

 

- ``prec`` -- integer (default: 53) the number of bits of precision 

used in computing the lseries of the newforms. 

 

OUTPUT: 

 

a complex number L(A, s). 

 

EXAMPLES:: 

 

sage: L = J0(23).lseries() 

sage: L(1) 

0.248431866590600 

sage: L(1, prec=100) 

0.24843186659059968120725033931 

 

sage: L = J0(389)[0].lseries() 

sage: L(1) # long time (2s) abstol 1e-10 

-1.33139759782370e-19 

sage: L(1, prec=100) # long time (2s) abstol 1e-20 

6.0129758648142797032650287762e-39 

sage: L.rational_part() 

0 

 

sage: L = J1(23)[0].lseries() 

sage: L(1) 

0.248431866590600 

 

sage: J = J0(11) * J1(11) 

sage: J.lseries()(1) 

0.0644356903227915 

 

sage: L = JH(17,[2]).lseries() 

sage: L(1) 

0.386769938387780 

 

""" 

abelian_variety = self.abelian_variety() 

# Check for easy dimension zero case 

if abelian_variety.dimension() == 0: 

return CC(1) 

try: 

factors = self.__factors[prec] 

return prod(L(s) for L in factors) 

except AttributeError: 

self.__factors = {} 

except KeyError: 

pass 

abelian_variety = self.abelian_variety() 

newforms = abelian_variety.newform_decomposition('a') 

 

factors = [newform.lseries(embedding=i, prec=prec) 

for newform in newforms 

for i in range(newform.base_ring().degree())] 

self.__factors[prec] = factors 

 

return prod(L(s) for L in factors) 

 

def __eq__(self, other): 

""" 

Compare this complex `L`-series to another one. 

 

INPUT: 

 

- ``other`` -- object 

 

OUTPUT: 

 

boolean 

 

EXAMPLES:: 

 

sage: L = J0(37)[0].lseries() 

sage: M = J0(37)[1].lseries() 

sage: L == M 

False 

sage: L == L 

True 

""" 

if not isinstance(other, Lseries_complex): 

return False 

return self.abelian_variety() == other.abelian_variety() 

 

def __ne__(self, other): 

""" 

Check whether ``self`` is not equal to ``other``. 

 

INPUT: 

 

- ``other`` -- object 

 

OUTPUT: 

 

boolean 

 

EXAMPLES:: 

 

sage: L = J0(37)[0].lseries() 

sage: M = J0(37)[1].lseries() 

sage: L != M 

True 

sage: L != L 

False 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

String representation of `L`-series. 

 

OUTPUT: 

 

a string 

 

EXAMPLES:: 

 

sage: L = J0(37).lseries() 

sage: L._repr_() 

'Complex L-series attached to Abelian variety J0(37) of dimension 2' 

""" 

return "Complex L-series attached to %s" % self.abelian_variety() 

 

def vanishes_at_1(self): 

""" 

Return True if `L(1)=0` and return False otherwise. 

 

OUTPUT: 

 

a boolean 

 

EXAMPLES: 

 

Numerically, the `L`-series for `J_0(389)` appears to vanish 

at 1. This is confirmed by this algebraic computation:: 

 

sage: L = J0(389)[0].lseries(); L 

Complex L-series attached to Simple abelian subvariety 389a(1,389) of dimension 1 of J0(389) 

sage: L(1) # long time (2s) abstol 1e-10 

-1.33139759782370e-19 

sage: L.vanishes_at_1() 

True 

 

Numerically, one might guess that the `L`-series for `J_1(23)` 

and `J_1(31)` vanish at 1. This algebraic computation shows 

otherwise:: 

 

sage: L = J1(23).lseries(); L 

Complex L-series attached to Abelian variety J1(23) of dimension 12 

sage: L(1) # long time (about 3 s) 

0.000129519861426989 + 1.14001148377577e-19*I 

sage: L.vanishes_at_1() 

False 

sage: L(1, prec=100) # long time (about 3 s) 

0.00012951986142702571478817757149 - 2.9734441752025676942763838067e-33*I 

 

sage: L = J1(31).lseries(); L 

Complex L-series attached to Abelian variety J1(31) of dimension 26 

sage: abs(L(1) - 3.45014267547611e-7) < 1e-15 # long time (about 8 s) 

True 

sage: L.vanishes_at_1() # long time (about 6 s) 

False 

""" 

abelian_variety = self.abelian_variety() 

# Check for easy dimension zero case 

if abelian_variety.dimension() == 0: 

return False 

if not abelian_variety.is_simple(): 

from .constructor import AbelianVariety 

decomp = (AbelianVariety(f) for f in 

abelian_variety.newform_decomposition('a')) 

return any(S.lseries().vanishes_at_1() for S in decomp) 

modular_symbols = abelian_variety.modular_symbols() 

Phi = modular_symbols.rational_period_mapping() 

ambient_module = modular_symbols.ambient_module() 

 

e = ambient_module([0, infinity]) 

return Phi(e).is_zero() 

 

def rational_part(self): 

""" 

Return the rational part of this `L`-function at the central critical 

value 1. 

 

OUTPUT: 

 

a rational number 

 

EXAMPLES:: 

 

sage: A, B = J0(43).decomposition() 

sage: A.lseries().rational_part() 

0 

sage: B.lseries().rational_part() 

2/7 

""" 

abelian_variety = self.abelian_variety() 

modular_symbols = abelian_variety.modular_symbols() 

Phi = modular_symbols.rational_period_mapping() 

ambient_module = modular_symbols.ambient_module() 

 

if self.vanishes_at_1(): 

return QQ(0) 

else: 

s = ambient_module.sturm_bound() 

I = ambient_module.hecke_images(0, range(1, s+1)) 

PhiTe = span([Phi(ambient_module(I[n])) 

for n in range(I.nrows())], ZZ) 

 

ambient_plus = ambient_module.sign_submodule(1) 

ambient_plus_cusp = ambient_plus.cuspidal_submodule() 

PhiH1plus = span([Phi(x) for 

x in ambient_plus_cusp.integral_basis()], ZZ) 

 

return PhiTe.index_in(PhiH1plus) 

 

lratio = rational_part 

 

 

class Lseries_padic(Lseries): 

""" 

A `p`-adic `L`-series attached to a modular abelian variety. 

""" 

def __init__(self, abvar, p): 

""" 

Create a `p`-adic `L`-series. 

 

EXAMPLES:: 

 

sage: J0(37)[0].padic_lseries(389) 

389-adic L-series attached to Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37) 

""" 

Lseries.__init__(self, abvar) 

p = Integer(p) 

if not p.is_prime(): 

raise ValueError("p (=%s) must be prime"%p) 

self.__p = p 

 

def __eq__(self, other): 

""" 

Compare this `p`-adic `L`-series to another one. 

 

First the abelian varieties are compared; if they are the same, 

then the primes are compared. 

 

INPUT: 

 

other -- object 

 

OUTPUT: 

 

boolean 

 

EXAMPLES:: 

 

sage: L = J0(37)[0].padic_lseries(5) 

sage: M = J0(37)[1].padic_lseries(5) 

sage: K = J0(37)[0].padic_lseries(3) 

sage: L == K 

False 

sage: L == M 

False 

sage: L == L 

True 

""" 

if not isinstance(other, Lseries_padic): 

return False 

return (self.abelian_variety() == other.abelian_variety() and 

self.__p == other.__p) 

 

def __ne__(self, other): 

""" 

Check whether ``self`` is not equal to ``other``. 

 

INPUT: 

 

other -- object 

 

OUTPUT: 

 

boolean 

 

EXAMPLES:: 

 

sage: L = J0(37)[0].padic_lseries(5) 

sage: M = J0(37)[1].padic_lseries(5) 

sage: K = J0(37)[0].padic_lseries(3) 

sage: L != K 

True 

sage: L != M 

True 

sage: L != L 

False 

""" 

return not (self == other) 

 

def prime(self): 

""" 

Return the prime `p` of this `p`-adic `L`-series. 

 

EXAMPLES:: 

 

sage: J0(11).padic_lseries(7).prime() 

7 

""" 

return self.__p 

 

def power_series(self, n=2, prec=5): 

""" 

Return the `n`-th approximation to this `p`-adic `L`-series as 

a power series in `T`. 

 

Each coefficient is a `p`-adic number 

whose precision is provably correct. 

 

NOTE: This is not yet implemented. 

 

EXAMPLES:: 

 

sage: L = J0(37)[0].padic_lseries(5) 

sage: L.power_series() 

Traceback (most recent call last): 

... 

NotImplementedError 

sage: L.power_series(3,7) 

Traceback (most recent call last): 

... 

NotImplementedError 

""" 

raise NotImplementedError 

 

def _repr_(self): 

""" 

String representation of this `p`-adic `L`-series. 

 

EXAMPLES:: 

 

sage: L = J0(37)[0].padic_lseries(5) 

sage: L._repr_() 

'5-adic L-series attached to Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37)' 

""" 

return "%s-adic L-series attached to %s" % (self.__p, 

self.abelian_variety())