Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

""" 

Torsion points on modular abelian varieties 

 

AUTHORS: 

 

- William Stein (2007-03) 

 

- Peter Bruin (2014-12): move TorsionPoint to a separate file 

""" 

# **************************************************************************** 

# Copyright (C) 2007 William Stein <wstein@gmail.com> 

# Copyright (C) 2014 Peter Bruin <P.J.Bruin@math.leidenuniv.nl> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

# **************************************************************************** 

 

from sage.structure.element import ModuleElement 

from sage.structure.richcmp import richcmp, rich_to_bool 

 

 

class TorsionPoint(ModuleElement): 

r""" 

An element of a finite subgroup of a modular abelian variety. 

 

INPUT: 

 

- ``parent`` -- a finite subgroup of a modular abelian variety 

 

- ``element`` -- a `\QQ`-vector space element that represents 

this element in terms of the ambient rational homology 

 

- ``check`` -- bool (default: ``True``): whether to check that 

element is in the appropriate vector space 

 

EXAMPLES: 

 

The following calls the :class:`TorsionPoint` constructor implicitly:: 

 

sage: J = J0(11) 

sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G 

Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1 

sage: type(G.0) 

<class 'sage.modular.abvar.finite_subgroup.FiniteSubgroup_lattice_with_category.element_class'> 

""" 

def __init__(self, parent, element, check=True): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: J = J0(11) 

sage: G = J.finite_subgroup([[1/2,0], [0,1/2]]) 

sage: TestSuite(G).run() # long time 

""" 

ModuleElement.__init__(self, parent) 

if check: 

if element not in parent.abelian_variety().vector_space(): 

raise TypeError("element must be a vector in the abelian variety's rational homology (embedded in the ambient Jacobian product)") 

if element.denominator() == 1: 

element = element.parent().zero_vector() 

self.__element = element 

 

def element(self): 

r""" 

Return a vector over `\QQ` defining ``self``. 

 

OUTPUT: 

 

- A vector in the rational homology of the ambient modular 

Jacobian variety. 

 

EXAMPLES: 

 

We create some elements of `J_0(11)`:: 

 

sage: J = J0(11) 

sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G 

Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1 

sage: G.0.element() 

(1/3, 0) 

 

The underlying element is a vector over the rational numbers:: 

 

sage: v = (G.0-G.1).element(); v 

(1/3, -1/5) 

sage: type(v) 

<type 'sage.modules.vector_rational_dense.Vector_rational_dense'> 

""" 

return self.__element 

 

def _repr_(self): 

r""" 

Return a string representation of ``self``. 

 

.. note:: 

 

Since they are represented as equivalences classes of 

rational homology modulo integral homology, we represent 

an element corresponding to `v` in the rational homology 

by ``[v]``. 

 

EXAMPLES:: 

 

sage: J = J0(11) 

sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G 

Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1 

sage: G.0._repr_() 

'[(1/3, 0)]' 

""" 

return '[%s]' % self.__element 

 

def _add_(self, other): 

""" 

Add two finite subgroup elements with the same parent. This is 

called implicitly by +. 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0._add_(G.1) 

[(1/3, 1/5)] 

sage: G.0 + G.1 

[(1/3, 1/5)] 

""" 

P = self.parent() 

return P.element_class(P, self.__element + other.__element, check=False) 

 

def _sub_(self, other): 

""" 

Subtract two finite subgroup elements with the same parent. This is 

called implicitly by +. 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0._sub_(G.1) 

[(1/3, -1/5)] 

sage: G.0 - G.1 

[(1/3, -1/5)] 

""" 

P = self.parent() 

return P.element_class(P, self.__element - other.__element, check=False) 

 

def _neg_(self): 

""" 

Negate a finite subgroup element. 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0._neg_() 

[(-1/3, 0)] 

""" 

P = self.parent() 

return P.element_class(P, -self.__element, check=False) 

 

def _rmul_(self, left): 

""" 

Left multiply a finite subgroup element by an integer. 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0._rmul_(2) 

[(2/3, 0)] 

sage: 2*G.0 

[(2/3, 0)] 

""" 

P = self.parent() 

return P.element_class(P, left * self.__element, check=False) 

 

def _lmul_(self, right): 

""" 

Right multiply a finite subgroup element by an integer. 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0._lmul_(2) 

[(2/3, 0)] 

sage: G.0 * 2 

[(2/3, 0)] 

""" 

P = self.parent() 

return P.element_class(P, self.__element * right, check=False) 

 

def _richcmp_(self, right, op): 

""" 

Compare ``self`` and ``right``. 

 

INPUT: 

 

- ``self, right`` -- elements of the same finite abelian 

variety subgroup. 

 

- ``op`` -- comparison operator (see :mod:`sage.structure.richcmp`) 

 

OUTPUT: boolean 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0 > G.1 

True 

sage: G.0 == G.0 

True 

sage: 3*G.0 == 0 

True 

sage: 3*G.0 == 5*G.1 

True 

 

We make sure things that should not be equal are not:: 

 

sage: H = J0(14).finite_subgroup([[1/3,0]]) 

sage: G.0 == H.0 

False 

sage: G.0 

[(1/3, 0)] 

sage: H.0 

[(1/3, 0)] 

""" 

A = self.parent().abelian_variety() 

from sage.rings.all import QQ 

if self.__element.change_ring(QQ) - right.__element.change_ring(QQ) in A.lattice(): 

return rich_to_bool(op, 0) 

return richcmp(self.__element, right.__element, op) 

 

def additive_order(self): 

""" 

Return the additive order of ``self``. 

 

EXAMPLES:: 

 

sage: J = J0(11); G = J.finite_subgroup([[1/3,0], [0,1/5]]) 

sage: G.0.additive_order() 

3 

sage: G.1.additive_order() 

5 

sage: (G.0 + G.1).additive_order() 

15 

sage: (3*G.0).additive_order() 

1 

""" 

return self._relative_element().denominator() 

 

def _relative_element(self): 

""" 

Return coordinates of ``self`` on a basis for the integral 

homology of the containing abelian variety. 

 

OUTPUT: vector 

 

EXAMPLES:: 

 

sage: A = J0(43)[1]; A 

Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43) 

sage: C = A.cuspidal_subgroup(); C 

Finite subgroup with invariants [7] over QQ of Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43) 

sage: x = C.0; x 

[(0, 1/7, 0, 6/7, 0, 5/7)] 

sage: x._relative_element() 

(0, 1/7, 6/7, 5/7) 

""" 

# check=False prevents testing that the element is really in 

# the lattice, not just in the corresponding QQ-vector space. 

return self.parent().abelian_variety().lattice().coordinate_vector(self.__element, check=False)