Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

r""" 

The set `\mathbb{P}^1(K)` of cusps of a number field K 

 

AUTHORS: 

 

- Maite Aranes (2009): Initial version 

 

EXAMPLES: 

 

The space of cusps over a number field k: 

 

:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 5 

sage: kCusps is NFCusps(k) 

True 

 

Define a cusp over a number field: 

 

:: 

 

sage: NFCusp(k, a, 2/(a+1)) 

Cusp [a - 5: 2] of Number Field in a with defining polynomial x^2 + 5 

sage: kCusps((a,2)) 

Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 

sage: NFCusp(k,oo) 

Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 

 

Different operations with cusps over a number field: 

 

:: 

 

sage: alpha = NFCusp(k, 3, 1/a + 2); alpha 

Cusp [a + 10: 7] of Number Field in a with defining polynomial x^2 + 5 

sage: alpha.numerator() 

a + 10 

sage: alpha.denominator() 

7 

sage: alpha.ideal() 

Fractional ideal (7, a + 3) 

sage: alpha.ABmatrix() 

[a + 10, 2*a + 6, 7, a + 5] 

sage: alpha.apply([0, 1, -1,0]) 

Cusp [7: -a - 10] of Number Field in a with defining polynomial x^2 + 5 

 

Check Gamma0(N)-equivalence of cusps: 

 

:: 

 

sage: N = k.ideal(3) 

sage: alpha = NFCusp(k, 3, a + 1) 

sage: beta = kCusps((2, a - 3)) 

sage: alpha.is_Gamma0_equivalent(beta, N) 

True 

 

Obtain transformation matrix for equivalent cusps: 

 

:: 

 

sage: t, M = alpha.is_Gamma0_equivalent(beta, N, Transformation=True) 

sage: M[2] in N 

True 

sage: M[0]*M[3] - M[1]*M[2] == 1 

True 

sage: alpha.apply(M) == beta 

True 

 

List representatives for Gamma_0(N) - equivalence classes of cusps: 

 

:: 

 

sage: Gamma0_NFCusps(N) 

[Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5, 

Cusp [1: 3] of Number Field in a with defining polynomial x^2 + 5, 

...] 

""" 

#***************************************************************************** 

# Copyright (C) 2009, Maite Aranes <M.T.Aranes@warwick.ac.uk> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six import integer_types 

 

from sage.structure.parent_base import ParentWithBase 

from sage.structure.element import Element, is_InfinityElement 

from sage.structure.richcmp import richcmp, rich_to_bool 

 

from sage.misc.cachefunc import cached_method 

from sage.misc.superseded import deprecated_function_alias 

 

_nfcusps_cache = {} 

 

_list_reprs_cache = {} 

 

 

def NFCusps_clear_list_reprs_cache(): 

""" 

Clear the global cache of lists of representatives for ideal classes. 

 

EXAMPLES:: 

 

sage: sage.modular.cusps_nf.NFCusps_clear_list_reprs_cache() 

sage: k.<a> = NumberField(x^3 + 11) 

sage: N = k.ideal(a+1) 

sage: sage.modular.cusps_nf.list_of_representatives(N) 

(Fractional ideal (1), Fractional ideal (17, a - 5)) 

sage: sage.modular.cusps_nf._list_reprs_cache.keys() 

[Fractional ideal (a + 1)] 

sage: sage.modular.cusps_nf.NFCusps_clear_list_reprs_cache() 

sage: sage.modular.cusps_nf._list_reprs_cache.keys() 

[] 

""" 

global _list_reprs_cache 

_list_reprs_cache = {} 

 

def list_of_representatives(N): 

""" 

Returns a list of ideals, coprime to the ideal ``N``, representatives of 

the ideal classes of the corresponding number field. 

 

Note: This list, used every time we check `\\Gamma_0(N)` - equivalence of 

cusps, is cached. 

 

INPUT: 

 

- ``N`` -- an ideal of a number field. 

 

OUTPUT: 

 

A list of ideals coprime to the ideal ``N``, such that they are 

representatives of all the ideal classes of the number field. 

 

EXAMPLES:: 

 

sage: sage.modular.cusps_nf.NFCusps_clear_list_reprs_cache() 

sage: sage.modular.cusps_nf._list_reprs_cache.keys() 

[] 

 

:: 

 

sage: from sage.modular.cusps_nf import list_of_representatives 

sage: k.<a> = NumberField(x^4 + 13*x^3 - 11) 

sage: N = k.ideal(713, a + 208) 

sage: L = list_of_representatives(N); L 

(Fractional ideal (1), 

Fractional ideal (47, a - 9), 

Fractional ideal (53, a - 16)) 

 

The output of ``list_of_representatives`` has been cached:: 

 

sage: sage.modular.cusps_nf._list_reprs_cache.keys() 

[Fractional ideal (713, a + 208)] 

sage: sage.modular.cusps_nf._list_reprs_cache[N] 

(Fractional ideal (1), 

Fractional ideal (47, a - 9), 

Fractional ideal (53, a - 16)) 

""" 

if N in _list_reprs_cache: 

lreps = _list_reprs_cache[N] 

if not (lreps is None): return lreps 

lreps = NFCusps_ideal_reps_for_levelN(N)[0] 

_list_reprs_cache[N] = lreps 

return lreps 

 

def NFCusps_clear_cache(): 

""" 

Clear the global cache of sets of cusps over number fields. 

 

EXAMPLES:: 

 

sage: sage.modular.cusps_nf.NFCusps_clear_cache() 

sage: k.<a> = NumberField(x^3 + 51) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^3 + 51 

sage: sage.modular.cusps_nf._nfcusps_cache.keys() 

[Number Field in a with defining polynomial x^3 + 51] 

sage: NFCusps_clear_cache() 

sage: sage.modular.cusps_nf._nfcusps_cache.keys() 

[] 

""" 

global _nfcusps_cache 

_nfcusps_cache = {} 

 

def NFCusps(number_field, use_cache=True): 

r""" 

The set of cusps of a number field `K`, i.e. `\mathbb{P}^1(K)`. 

 

INPUT: 

 

- ``number_field`` -- a number field 

 

- ``use_cache`` -- bool (default=True) - to set a cache of number fields 

and their associated sets of cusps 

 

OUTPUT: 

 

The set of cusps over the given number field. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 5 

sage: kCusps is NFCusps(k) 

True 

 

Saving and loading works: 

 

:: 

 

sage: loads(kCusps.dumps()) == kCusps 

True 

 

We test use_cache: 

 

:: 

 

sage: NFCusps_clear_cache() 

sage: k.<a> = NumberField(x^2 + 11) 

sage: kCusps = NFCusps(k, use_cache=False) 

sage: sage.modular.cusps_nf._nfcusps_cache 

{} 

sage: kCusps = NFCusps(k, use_cache=True) 

sage: sage.modular.cusps_nf._nfcusps_cache 

{Number Field in a with defining polynomial x^2 + 11: ...} 

sage: kCusps is NFCusps(k, use_cache=False) 

False 

sage: kCusps is NFCusps(k, use_cache=True) 

True 

""" 

if use_cache: 

key = number_field 

if key in _nfcusps_cache: 

C = _nfcusps_cache[key] 

if not (C is None): return C 

 

C = NFCuspsSpace(number_field) 

if use_cache: 

_nfcusps_cache[key] = C 

return C 

 

#************************************************************************** 

#* NFCuspsSpace class * 

#************************************************************************** 

class NFCuspsSpace(ParentWithBase): 

""" 

The set of cusps of a number field. See ``NFCusps`` for full documentation. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 5 

""" 

 

def __init__(self, number_field): 

""" 

See ``NFCusps`` for full documentation. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^3 + x^2 + 13) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^3 + x^2 + 13 

""" 

self.__number_field = number_field 

ParentWithBase.__init__(self, self) 

 

def __eq__(self, right): 

""" 

Return equality only if right is the set of cusps for the same field. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: L.<a> = NumberField(x^2 + 23) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 5 

sage: LCusps = NFCusps(L); LCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 23 

sage: kCusps == NFCusps(k) 

True 

sage: LCusps == NFCusps(L) 

True 

sage: LCusps == kCusps 

False 

""" 

if not isinstance(right, NFCuspsSpace): 

return False 

return self.number_field() == right.number_field() 

 

def __ne__(self, right): 

""" 

Check that ``self`` is not equal to ``right``. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: L.<a> = NumberField(x^2 + 23) 

sage: kCusps = NFCusps(k); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 5 

sage: LCusps = NFCusps(L); LCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 23 

sage: kCusps != NFCusps(k) 

False 

sage: LCusps != NFCusps(L) 

False 

sage: LCusps != kCusps 

True 

""" 

return not (self == right) 

 

def _repr_(self): 

""" 

String representation of the set of cusps of a number field. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 2) 

sage: kCusps = NFCusps(k) 

sage: kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 2 

sage: kCusps._repr_() 

'Set of all cusps of Number Field in a with defining polynomial x^2 + 2' 

sage: kCusps.rename('Number Field Cusps'); kCusps 

Number Field Cusps 

sage: kCusps.rename(); kCusps 

Set of all cusps of Number Field in a with defining polynomial x^2 + 2 

 

""" 

return "Set of all cusps of %s" % self.number_field() 

 

def _latex_(self): 

""" 

Return latex representation of self. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: kCusps = NFCusps(k) 

sage: latex(kCusps) # indirect doctest 

\mathbf{P}^1(\Bold{Q}[a]/(a^{2} + 5)) 

""" 

return "\\mathbf{P}^1(%s)" % self.number_field()._latex_() 

 

def __call__(self, x): 

""" 

Convert x into the set of cusps of a number field. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: kCusps = NFCusps(k) 

sage: c = kCusps(a,2) 

Traceback (most recent call last): 

... 

TypeError: __call__() takes exactly 2 arguments (3 given) 

 

:: 

 

sage: c = kCusps((a,2)); c 

Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 

sage: kCusps(2/a) 

Cusp [-2*a: 5] of Number Field in a with defining polynomial x^2 + 5 

sage: kCusps(oo) 

Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 

""" 

return NFCusp(self.number_field(), x, parent=self) 

 

@cached_method 

def zero(self): 

""" 

Return the zero cusp. 

 

NOTE: 

 

This method just exists to make some general algorithms work. 

It is not intended that the returned cusp is an additive 

neutral element. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: kCusps = NFCusps(k) 

sage: kCusps.zero() 

Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5 

 

""" 

return self(0) 

 

zero_element = deprecated_function_alias(17694, zero) 

 

def number_field(self): 

""" 

Return the number field that this set of cusps is attached to. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 1) 

sage: kCusps = NFCusps(k) 

sage: kCusps.number_field() 

Number Field in a with defining polynomial x^2 + 1 

""" 

return self.__number_field 

 

#************************************************************************** 

#* NFCusp class * 

#************************************************************************** 

 

class NFCusp(Element): 

r""" 

Creates a number field cusp, i.e., an element of `\mathbb{P}^1(k)`. 

 

A cusp on a number field is either an element of the field or infinity, 

i.e., an element of the projective line over the number field. It is 

stored as a pair (a,b), where a, b are integral elements of the number 

field. 

 

INPUT: 

 

- ``number_field`` -- the number field over which the cusp is defined. 

 

- ``a`` -- it can be a number field element (integral or not), or 

a number field cusp. 

 

- ``b`` -- (optional) when present, it must be either Infinity or 

coercible to an element of the number field. 

 

- ``lreps`` -- (optional) a list of chosen representatives for all the 

ideal classes of the field. When given, the representative of the cusp 

will be changed so its associated ideal is one of the ideals in the list. 

 

OUTPUT: 

 

``[a: b]`` -- a number field cusp. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: NFCusp(k, a, 2) 

Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 

sage: NFCusp(k, (a,2)) 

Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 

sage: NFCusp(k, a, 2/(a+1)) 

Cusp [a - 5: 2] of Number Field in a with defining polynomial x^2 + 5 

 

Cusp Infinity: 

 

:: 

 

sage: NFCusp(k, 0) 

Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5 

sage: NFCusp(k, oo) 

Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 

sage: NFCusp(k, 3*a, oo) 

Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5 

sage: NFCusp(k, a + 5, 0) 

Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 

 

Saving and loading works: 

 

:: 

 

sage: alpha = NFCusp(k, a, 2/(a+1)) 

sage: loads(dumps(alpha))==alpha 

True 

 

Some tests: 

 

:: 

 

sage: I*I 

-1 

sage: NFCusp(k, I) 

Traceback (most recent call last): 

... 

TypeError: unable to convert I to a cusp of the number field 

 

:: 

 

sage: NFCusp(k, oo, oo) 

Traceback (most recent call last): 

... 

TypeError: unable to convert (+Infinity, +Infinity) to a cusp of the number field 

 

:: 

 

sage: NFCusp(k, 0, 0) 

Traceback (most recent call last): 

... 

TypeError: unable to convert (0, 0) to a cusp of the number field 

 

:: 

 

sage: NFCusp(k, "a + 2", a) 

Cusp [-2*a + 5: 5] of Number Field in a with defining polynomial x^2 + 5 

 

:: 

 

sage: NFCusp(k, NFCusp(k, oo)) 

Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 

sage: c = NFCusp(k, 3, 2*a) 

sage: NFCusp(k, c, a + 1) 

Cusp [-a - 5: 20] of Number Field in a with defining polynomial x^2 + 5 

sage: L.<b> = NumberField(x^2 + 2) 

sage: NFCusp(L, c) 

Traceback (most recent call last): 

... 

ValueError: Cannot coerce cusps from one field to another 

""" 

def __init__(self, number_field, a, b=None, parent=None, lreps=None): 

""" 

Constructor of number field cusps. See ``NFCusp`` for full 

documentation. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 1) 

sage: c = NFCusp(k, 3, a+1); c 

Cusp [3: a + 1] of Number Field in a with defining polynomial x^2 + 1 

sage: c.parent() 

Set of all cusps of Number Field in a with defining polynomial x^2 + 1 

sage: kCusps = NFCusps(k) 

sage: c.parent() is kCusps 

True 

""" 

if parent is None: 

parent = NFCusps(number_field) 

Element.__init__(self, parent) 

R = number_field.maximal_order() 

if b is None: 

if not a:#that is cusp "0" 

self.__a = R.zero() 

self.__b = R.one() 

return 

if isinstance(a, NFCusp): 

if a.parent() == parent: 

self.__a = R(a.__a) 

self.__b = R(a.__b) 

else: 

raise ValueError("Cannot coerce cusps from one field to another") 

elif a in R: 

self.__a = R(a) 

self.__b = R.one() 

elif a in number_field: 

self.__b = R(a.denominator()) 

self.__a = R(a * self.__b) 

elif is_InfinityElement(a): 

self.__a = R.one() 

self.__b = R.zero() 

elif isinstance(a, integer_types): 

self.__a = R(a) 

self.__b = R.one() 

elif isinstance(a, (tuple, list)): 

if len(a) != 2: 

raise TypeError("unable to convert %r to a cusp \ 

of the number field"%a) 

if a[1].is_zero(): 

self.__a = R.one() 

self.__b = R.zero() 

elif a[0] in R and a[1] in R: 

self.__a = R(a[0]) 

self.__b = R(a[1]) 

elif isinstance(a[0], NFCusp):#we know that a[1] is not zero 

if a[1] == 1: 

self.__a = a[0].__a 

self.__b = a[0].__b 

else: 

r = a[0].__a / (a[0].__b * a[1]) 

self.__b = R(r.denominator()) 

self.__a = R(r*self.__b) 

else: 

try: 

r = number_field(a[0]/a[1]) 

self.__b = R(r.denominator()) 

self.__a = R(r * self.__b) 

except (ValueError, TypeError): 

raise TypeError("unable to convert %r to a cusp \ 

of the number field"%a) 

else: 

try: 

r = number_field(a) 

self.__b = R(r.denominator()) 

self.__a = R(r * self.__b) 

except (ValueError, TypeError): 

raise TypeError("unable to convert %r to a cusp \ 

of the number field"%a) 

else:#'b' is given 

if is_InfinityElement(b): 

if is_InfinityElement(a) or (isinstance(a, NFCusp) and a.is_infinity()): 

raise TypeError("unable to convert (%r, %r) \ 

to a cusp of the number field" % (a, b)) 

self.__a = R.zero() 

self.__b = R.one() 

return 

elif not b: 

if not a: 

raise TypeError("unable to convert (%r, %r) \ 

to a cusp of the number field" % (a, b)) 

self.__a = R.one() 

self.__b = R.zero() 

return 

if not a: 

self.__a = R.zero() 

self.__b = R.one() 

return 

if (b in R or isinstance(b, integer_types)) and (a in R or isinstance(a, integer_types)): 

self.__a = R(a) 

self.__b = R(b) 

else: 

if a in R or a in number_field: 

r = a / b 

elif is_InfinityElement(a): 

self.__a = R.one() 

self.__b = R.zero() 

return 

elif isinstance(a, NFCusp): 

if a.is_infinity(): 

self.__a = R.one() 

self.__b = R.zero() 

return 

r = a.__a / (a.__b * b) 

elif isinstance(a, integer_types): 

r = R(a) / b 

elif isinstance(a, (tuple, list)): 

if len(a) != 2: 

raise TypeError("unable to convert (%r, %r) \ 

to a cusp of the number field" % (a, b)) 

r = R(a[0]) / (R(a[1]) * b) 

else: 

try: 

r = number_field(a) / b 

except (ValueError, TypeError): 

raise TypeError("unable to convert (%r, %r) \ 

to a cusp of the number field" % (a, b)) 

self.__b = R(r.denominator()) 

self.__a = R(r * self.__b) 

if not lreps is None: 

# Changes the representative of the cusp so the ideal associated 

# to the cusp is one of the ideals of the given list lreps. 

# Note: the trivial class is always represented by (1). 

I = self.ideal() 

for J in lreps: 

if (J/I).is_principal(): 

newI = J 

l = (newI/I).gens_reduced()[0] 

self.__a = R(l * self.__a) 

self.__b = R(l * self.__b) 

 

def _repr_(self): 

""" 

String representation of this cusp. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 1) 

sage: c = NFCusp(k, a, 2); c 

Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 1 

sage: c._repr_() 

'Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 1' 

sage: c.rename('[a:2](cusp of a number field)');c 

[a:2](cusp of a number field) 

sage: c.rename();c 

Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 1 

""" 

if self.__b.is_zero(): 

return "Cusp Infinity of %s" % self.parent().number_field() 

else: 

return "Cusp [%s: %s] of %s" % (self.__a, self.__b, 

self.parent().number_field()) 

 

 

def number_field(self): 

""" 

Returns the number field of definition of the cusp ``self`` 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 2) 

sage: alpha = NFCusp(k, 1, a + 1) 

sage: alpha.number_field() 

Number Field in a with defining polynomial x^2 + 2 

""" 

return self.parent().number_field() 

 

def is_infinity(self): 

""" 

Returns ``True`` if this is the cusp infinity. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 1) 

sage: NFCusp(k, a, 2).is_infinity() 

False 

sage: NFCusp(k, 2, 0).is_infinity() 

True 

sage: NFCusp(k, oo).is_infinity() 

True 

""" 

return self.__b == 0 

 

def numerator(self): 

""" 

Return the numerator of the cusp ``self``. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 1) 

sage: c = NFCusp(k, a, 2) 

sage: c.numerator() 

a 

sage: d = NFCusp(k, 1, a) 

sage: d.numerator() 

1 

sage: NFCusp(k, oo).numerator() 

1 

""" 

return self.__a 

 

 

def denominator(self): 

""" 

Return the denominator of the cusp ``self``. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 1) 

sage: c = NFCusp(k, a, 2) 

sage: c.denominator() 

2 

sage: d = NFCusp(k, 1, a + 1);d 

Cusp [1: a + 1] of Number Field in a with defining polynomial x^2 + 1 

sage: d.denominator() 

a + 1 

sage: NFCusp(k, oo).denominator() 

0 

""" 

return self.__b 

 

def _number_field_element_(self): 

""" 

Coerce to an element of the number field. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 2) 

sage: NFCusp(k, a, 2)._number_field_element_() 

1/2*a 

sage: NFCusp(k, 1, a + 1)._number_field_element_() 

-1/3*a + 1/3 

""" 

if self.__b.is_zero(): 

raise TypeError("%s is not an element of %s" % (self, 

self.number_field())) 

k = self.number_field() 

return k(self.__a / self.__b) 

 

 

def _ring_of_integers_element_(self): 

""" 

Coerce to an element of the ring of integers of the number field. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 2) 

sage: NFCusp(k, a+1)._ring_of_integers_element_() 

a + 1 

sage: NFCusp(k, 1, a + 1)._ring_of_integers_element_() 

Traceback (most recent call last): 

... 

TypeError: Cusp [1: a + 1] of Number Field in a with defining polynomial x^2 + 2 is not an integral element 

""" 

if self.__b.is_one(): 

return self.__a 

if self.__b.is_zero(): 

raise TypeError("%s is not an element of %s" % (self, 

self.number_field.ring_of_integers())) 

R = self.number_field().ring_of_integers() 

try: 

return R(self.__a/self.__b) 

except (ValueError, TypeError): 

raise TypeError("%s is not an integral element"%self) 

 

def _latex_(self): 

r""" 

Latex representation of this cusp. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 11) 

sage: latex(NFCusp(k, 3*a, a + 1)) # indirect doctest 

\[3 a: a + 1\] 

sage: latex(NFCusp(k, 3*a, a + 1)) == NFCusp(k, 3*a, a + 1)._latex_() 

True 

sage: latex(NFCusp(k, oo)) 

\infty 

""" 

if self.__b.is_zero(): 

return "\\infty" 

else: 

return "\\[%s: %s\\]" % (self.__a._latex_(), 

self.__b._latex_()) 

 

def _richcmp_(self, right, op): 

""" 

Compare the cusps ``self`` and ``right``. 

 

Comparison is as for elements in the number field, except with 

the cusp oo which is greater than everything but itself. 

 

The ordering in comparison is only really meaningful for infinity. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^3 + x + 1) 

sage: kCusps = NFCusps(k) 

 

Comparing with infinity:: 

 

sage: c = kCusps((a,2)) 

sage: d = kCusps(oo) 

sage: c < d 

True 

sage: kCusps(oo) < d 

False 

 

Comparison as elements of the number field:: 

 

sage: kCusps(2/3) < kCusps(5/2) 

False 

sage: k(2/3) < k(5/2) 

False 

""" 

if self.__b.is_zero(): 

if right.__b.is_zero(): 

return rich_to_bool(op, 0) 

else: 

return rich_to_bool(op, 1) 

else: 

if right.__b.is_zero(): 

return rich_to_bool(op, -1) 

else: 

return richcmp(self._number_field_element_(), 

right._number_field_element_(), op) 

 

def __neg__(self): 

""" 

The negative of this cusp. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 23) 

sage: c = NFCusp(k, a, a+1); c 

Cusp [a: a + 1] of Number Field in a with defining polynomial x^2 + 23 

sage: -c 

Cusp [-a: a + 1] of Number Field in a with defining polynomial x^2 + 23 

""" 

return NFCusp(self.parent().number_field(), -self.__a, self.__b) 

 

def apply(self, g): 

""" 

Return g(``self``), where ``g`` is a 2x2 matrix, which we view as a 

linear fractional transformation. 

 

INPUT: 

 

- ``g`` -- a list of integral elements [a, b, c, d] that are the 

entries of a 2x2 matrix. 

 

OUTPUT: 

 

A number field cusp, obtained by the action of ``g`` on the cusp 

``self``. 

 

EXAMPLES: 

 

:: 

 

sage: k.<a> = NumberField(x^2 + 23) 

sage: beta = NFCusp(k, 0, 1) 

sage: beta.apply([0, -1, 1, 0]) 

Cusp Infinity of Number Field in a with defining polynomial x^2 + 23 

sage: beta.apply([1, a, 0, 1]) 

Cusp [a: 1] of Number Field in a with defining polynomial x^2 + 23 

""" 

k = self.number_field() 

return NFCusp(k, g[0]*self.__a + g[1]*self.__b, \ 

g[2]*self.__a + g[3]*self.__b) 

 

def ideal(self): 

""" 

Returns the ideal associated to the cusp ``self``. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^2 + 23) 

sage: alpha = NFCusp(k, 3, a-1) 

sage: alpha.ideal() 

Fractional ideal (3, 1/2*a - 1/2) 

sage: NFCusp(k, oo).ideal() 

Fractional ideal (1) 

""" 

k = self.number_field() 

return k.ideal(self.__a, self.__b) 

 

def ABmatrix(self): 

""" 

Returns AB-matrix associated to the cusp ``self``. 

 

Given R a Dedekind domain and A, B ideals of R in inverse classes, an 

AB-matrix is a matrix realizing the isomorphism between R+R and A+B. 

An AB-matrix associated to a cusp [a1: a2] is an AB-matrix with A the 

ideal associated to the cusp (A=<a1, a2>) and first column given by 

the coefficients of the cusp. 

 

EXAMPLES: 

 

:: 

 

sage: k.<a> = NumberField(x^3 + 11) 

sage: alpha = NFCusp(k, oo) 

sage: alpha.ABmatrix() 

[1, 0, 0, 1] 

 

:: 

 

sage: alpha = NFCusp(k, 0) 

sage: alpha.ABmatrix() 

[0, -1, 1, 0] 

 

Note that the AB-matrix associated to a cusp is not unique, and the 

output of the ``ABmatrix`` function may change. 

 

:: 

 

sage: alpha = NFCusp(k, 3/2, a-1) 

sage: M = alpha.ABmatrix() 

sage: M # random 

[-a^2 - a - 1, -3*a - 7, 8, -2*a^2 - 3*a + 4] 

sage: M[0] == alpha.numerator() and M[2]==alpha.denominator() 

True 

 

 

An AB-matrix associated to a cusp alpha will send Infinity to alpha: 

 

:: 

 

sage: alpha = NFCusp(k, 3, a-1) 

sage: M = alpha.ABmatrix() 

sage: (k.ideal(M[1], M[3])*alpha.ideal()).is_principal() 

True 

sage: M[0] == alpha.numerator() and M[2]==alpha.denominator() 

True 

sage: NFCusp(k, oo).apply(M) == alpha 

True 

""" 

k = self.number_field() 

A = self.ideal() 

 

if self.is_infinity(): 

return [1, 0, 0, 1] 

if not self: 

return [0, -1, 1, 0] 

 

if A.is_principal(): 

B = k.ideal(1) 

else: 

B = k.ideal(A.gens_reduced()[1])/A 

assert (A*B).is_principal() 

 

a1 = self.__a 

a2 = self.__b 

 

g = (A*B).gens_reduced()[0] 

Ainv = A**(-1) 

A1 = a1*Ainv 

A2 = a2*Ainv 

r = A1.element_1_mod(A2) 

b1 = -(1-r)/a2*g 

b2 = (r/a1)*g 

ABM = [a1, b1, a2, b2] 

 

return ABM 

 

def is_Gamma0_equivalent(self, other, N, Transformation=False): 

r""" 

Checks if cusps ``self`` and ``other`` are `\Gamma_0(N)`- equivalent. 

 

INPUT: 

 

- ``other`` -- a number field cusp or a list of two number field 

elements which define a cusp. 

 

- ``N`` -- an ideal of the number field (level) 

 

OUTPUT: 

 

- bool -- ``True`` if the cusps are equivalent. 

 

- a transformation matrix -- (if ``Transformation=True``) a list of 

integral elements [a, b, c, d] which are the entries of a 2x2 matrix 

M in `\Gamma_0(N)` such that M * ``self`` = ``other`` if ``other`` 

and ``self`` are `\Gamma_0(N)`- equivalent. If ``self`` and ``other`` 

are not equivalent it returns zero. 

 

EXAMPLES: 

 

:: 

 

sage: K.<a> = NumberField(x^3-10) 

sage: N = K.ideal(a-1) 

sage: alpha = NFCusp(K, 0) 

sage: beta = NFCusp(K, oo) 

sage: alpha.is_Gamma0_equivalent(beta, N) 

False 

sage: alpha.is_Gamma0_equivalent(beta, K.ideal(1)) 

True 

sage: b, M = alpha.is_Gamma0_equivalent(beta, K.ideal(1),Transformation=True) 

sage: alpha.apply(M) 

Cusp Infinity of Number Field in a with defining polynomial x^3 - 10 

 

:: 

 

sage: k.<a> = NumberField(x^2+23) 

sage: N = k.ideal(3) 

sage: alpha1 = NFCusp(k, a+1, 4) 

sage: alpha2 = NFCusp(k, a-8, 29) 

sage: alpha1.is_Gamma0_equivalent(alpha2, N) 

True 

sage: b, M = alpha1.is_Gamma0_equivalent(alpha2, N, Transformation=True) 

sage: alpha1.apply(M) == alpha2 

True 

sage: M[2] in N 

True 

""" 

k = self.number_field() 

other = NFCusp(k, other) 

if not (self.ideal()/other.ideal()).is_principal(): 

if not Transformation: 

return False 

else: 

return False, 0 

 

reps = list_of_representatives(N) 

alpha1 = NFCusp(k, self, lreps=reps) 

alpha2 = NFCusp(k, other, lreps=reps) 

 

delta = k.ideal(alpha1.__b) + N 

if (k.ideal(alpha2.__b) + N)!= delta: 

if not Transformation: 

return False 

else: 

return False, 0 

 

M1 = alpha1.ABmatrix() 

M2 = alpha2.ABmatrix() 

 

A = alpha1.ideal() 

B = k.ideal(M1[1], M1[3]) 

 

ABdelta = A*B*delta*delta 

 

units = units_mod_ideal(ABdelta) 

for u in units: 

if (M2[2]*M1[3] - u*M1[2]*M2[3]) in ABdelta: 

if not Transformation: 

return True 

else: 

AuxCoeff = [1, 0, 0, 1] 

Aux = M2[2]*M1[3] - u*M1[2]*M2[3] 

if Aux in A*B*N: 

if not u==1: 

AuxCoeff[3] = u 

else: 

A1 = (A*B*N)/ABdelta 

A2 = B*k.ideal(M1[2]*M2[2])/(A*ABdelta) 

f = A1.element_1_mod(A2) 

w = ((1 - f)*Aux)/(M1[2]*M2[2]) 

AuxCoeff[3] = u 

AuxCoeff[1] = w 

from sage.matrix.all import Matrix 

Maux = Matrix(k, 2, AuxCoeff) 

M1inv = Matrix(k, 2, M1).inverse() 

Mtrans = Matrix(k, 2, M2)*Maux*M1inv 

assert Mtrans[1][0] in N 

return True, Mtrans.list() 

if not Transformation: 

return False 

else: 

return False, 0 

 

#************************************************************************** 

# Global functions: 

# - Gamma0_NFCusps --compute list of inequivalent cusps 

# Internal use only: 

# - number_of_Gamma0_NFCusps -- useful to test Gamma0_NFCusps 

# - NFCusps_ideal_reps_for_levelN -- lists of reps for ideal classes 

# - units_mod_ideal -- needed to check Gamma0(N)-equiv of cusps 

#************************************************************************** 

 

def Gamma0_NFCusps(N): 

r""" 

Returns a list of inequivalent cusps for `\Gamma_0(N)`, i.e., a set of 

representatives for the orbits of ``self`` on `\mathbb{P}^1(k)`. 

 

INPUT: 

 

- ``N`` -- an integral ideal of the number field k (the level). 

 

OUTPUT: 

 

A list of inequivalent number field cusps. 

 

EXAMPLES: 

 

:: 

 

sage: k.<a> = NumberField(x^2 + 5) 

sage: N = k.ideal(3) 

sage: L = Gamma0_NFCusps(N) 

 

The cusps in the list are inequivalent: 

 

:: 

 

sage: all([not L[i].is_Gamma0_equivalent(L[j], N) for i, j in \ 

mrange([len(L), len(L)]) if i<j]) 

True 

 

We test that we obtain the right number of orbits: 

 

:: 

 

sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps 

sage: len(L) == number_of_Gamma0_NFCusps(N) 

True 

 

Another example: 

 

:: 

 

sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133) 

sage: N = k.ideal(5) 

sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps 

sage: len(Gamma0_NFCusps(N)) == number_of_Gamma0_NFCusps(N) # long time (over 1 sec) 

True 

""" 

# We create L a list of three lists, which are different and each a list of 

# prime ideals, coprime to N, representing the ideal classes of k 

L = NFCusps_ideal_reps_for_levelN(N, nlists=3) 

Laux = L[1]+L[2] 

Lreps = list_of_representatives(N) 

Lcusps = [] 

 

k = N.number_field() 

 

for A in L[0]: 

#find B in inverse class: 

if A.is_trivial(): 

B = k.ideal(1) 

#B = k.unit_ideal() produces an error because we need fract ideal 

g = 1 

else: 

Lbs = [P for P in Laux if (P*A).is_principal()] 

B = Lbs[0] 

g = (A*B).gens_reduced()[0] 

 

#for every divisor of N we have to find cusps 

from sage.arith.all import divisors 

for d in divisors(N): 

#find delta prime coprime to B in inverse class of d*A 

#by searching in our list of auxiliary prime ideals 

Lds = [P for P in Laux if (P*d*A).is_principal() and P.is_coprime(B)] 

deltap = Lds[0] 

a = (deltap*d*A).gens_reduced()[0] 

I = d + N/d 

#especial case: A=B=d=<1>: 

if a.is_one() and I.is_trivial(): 

Lcusps.append(NFCusp(k, 0, 1, lreps=Lreps)) 

else: 

u = k.unit_group().gens() 

for b in I.invertible_residues_mod(u): 

#Note: if I trivial, invertible_residues_mod returns [1] 

#lift b to (R/a)star 

#we need the part of d which is coprime to I, call it M 

M = d.prime_to_idealM_part(I) 

deltAM = deltap*A*M 

u = (B*deltAM).element_1_mod(I) 

v = (I*B).element_1_mod(deltAM) 

newb = u*b + v 

#build AB-matrix: 

#----> extended gcd for k.ideal(a), k.ideal(newb) 

Y = k.ideal(newb).element_1_mod(k.ideal(a)) 

# if xa + yb = 1, cusp = y*g /a 

Lcusps.append(NFCusp(k, Y*g, a, lreps=Lreps)) 

return Lcusps 

 

def number_of_Gamma0_NFCusps(N): 

""" 

Returns the total number of orbits of cusps under the action of the 

congruence subgroup `\\Gamma_0(N)`. 

 

INPUT: 

 

- ``N`` -- a number field ideal. 

 

OUTPUT: 

 

ingeter -- the number of orbits of cusps under Gamma0(N)-action. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^3 + 11) 

sage: N = k.ideal(2, a+1) 

sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps 

sage: number_of_Gamma0_NFCusps(N) 

4 

sage: L = Gamma0_NFCusps(N) 

sage: len(L) == number_of_Gamma0_NFCusps(N) 

True 

sage: k.<a> = NumberField(x^2 + 7) 

sage: N = k.ideal(9) 

sage: number_of_Gamma0_NFCusps(N) 

6 

sage: N = k.ideal(a*9 + 7) 

sage: number_of_Gamma0_NFCusps(N) 

24 

""" 

k = N.number_field() 

# The number of Gamma0(N)-sub-orbits for each Gamma-orbit: 

from sage.arith.all import divisors 

Ugens = [k(u) for u in k.unit_group().gens()] 

s = sum([len((d+N/d).invertible_residues_mod(Ugens)) for d in divisors(N)]) 

# There are h Gamma-orbits, with h class number of underlying number field. 

return s*k.class_number() 

 

def NFCusps_ideal_reps_for_levelN(N, nlists=1): 

""" 

Returns a list of lists (``nlists`` different lists) of prime ideals, 

coprime to ``N``, representing every ideal class of the number field. 

 

INPUT: 

 

- ``N`` -- number field ideal. 

 

- ``nlists`` -- optional (default 1). The number of lists of prime ideals 

we want. 

 

OUTPUT: 

 

A list of lists of ideals representatives of the ideal classes, all coprime 

to ``N``, representing every ideal. 

 

EXAMPLES:: 

 

sage: k.<a> = NumberField(x^3 + 11) 

sage: N = k.ideal(5, a + 1) 

sage: from sage.modular.cusps_nf import NFCusps_ideal_reps_for_levelN 

sage: NFCusps_ideal_reps_for_levelN(N) 

[(Fractional ideal (1), Fractional ideal (2, a + 1))] 

sage: L = NFCusps_ideal_reps_for_levelN(N, 3) 

sage: all([len(L[i])==k.class_number() for i in range(len(L))]) 

True 

 

:: 

 

sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133) 

sage: N = k.ideal(6) 

sage: from sage.modular.cusps_nf import NFCusps_ideal_reps_for_levelN 

sage: NFCusps_ideal_reps_for_levelN(N) 

[(Fractional ideal (1), 

Fractional ideal (67, a + 17), 

Fractional ideal (127, a + 48), 

Fractional ideal (157, a - 19))] 

sage: L = NFCusps_ideal_reps_for_levelN(N, 5) 

sage: all([len(L[i])==k.class_number() for i in range(len(L))]) 

True 

""" 

k = N.number_field() 

G = k.class_group() 

L = [] 

for i in range(nlists): 

L.append([k.ideal(1)]) 

it = k.primes_of_degree_one_iter() 

for I in G.list(): 

check = 0 

if not I.is_principal(): 

Iinv = (I.ideal())**(-1) 

while check<nlists: 

J = next(it) 

if (J*Iinv).is_principal() and J.is_coprime(N): 

L[check].append(J) 

check = check + 1 

return [tuple(l) for l in L] 

 

def units_mod_ideal(I): 

""" 

Returns integral elements of the number field representing the images of 

the global units modulo the ideal ``I``. 

 

INPUT: 

 

- ``I`` -- number field ideal. 

 

OUTPUT: 

 

A list of integral elements of the number field representing the images of 

the global units modulo the ideal ``I``. Elements of the list might be 

equivalent to each other mod ``I``. 

 

EXAMPLES:: 

 

sage: from sage.modular.cusps_nf import units_mod_ideal 

sage: k.<a> = NumberField(x^2 + 1) 

sage: I = k.ideal(a + 1) 

sage: units_mod_ideal(I) 

[1] 

sage: I = k.ideal(3) 

sage: units_mod_ideal(I) 

[1, a, -1, -a] 

 

:: 

 

sage: from sage.modular.cusps_nf import units_mod_ideal 

sage: k.<a> = NumberField(x^3 + 11) 

sage: k.unit_group() 

Unit group with structure C2 x Z of Number Field in a with defining polynomial x^3 + 11 

sage: I = k.ideal(5, a + 1) 

sage: units_mod_ideal(I) 

[1, 

2*a^2 + 4*a - 1, 

...] 

 

:: 

 

sage: from sage.modular.cusps_nf import units_mod_ideal 

sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133) 

sage: k.unit_group() 

Unit group with structure C6 x Z of Number Field in a with defining polynomial x^4 - x^3 - 21*x^2 + 17*x + 133 

sage: I = k.ideal(3) 

sage: U = units_mod_ideal(I) 

sage: all([U[j].is_unit() and not (U[j] in I) for j in range(len(U))]) 

True 

""" 

k = I.number_field() 

Uk = k.unit_group() 

Istar = I.idealstar(2) 

ulist = Uk.gens_values() 

elist = [Istar(I.ideallog(u)).order() for u in ulist] 

 

from sage.misc.mrange import xmrange 

from sage.misc.all import prod 

 

return [k.prod(u**e for u, e in zip(ulist, ei)) for ei in xmrange(elist)]