Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

# -*- coding: utf-8 -*- 

""" 

Hypergeometric motives 

 

This is largely a port of the corresponding package in Magma. One 

important conventional difference: the motivic parameter `t` has been replaced 

with `1/t` to match the classical literature on hypergeometric series. 

(E.g., see [BeukersHeckman]_) 

 

The computation of Euler factors is currently only supported for primes `p` 

of good reduction. That is, it is required that `v_p(t) = v_p(t-1) = 0`. 

 

AUTHORS: 

 

- Frédéric Chapoton 

- Kiran S. Kedlaya 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(cyclotomic=([30], [1,2,3,5])) 

sage: H.alpha_beta() 

([1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30], 

[0, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 4/5]) 

sage: H.M_value() == 30**30 / (15**15 * 10**10 * 6**6) 

True 

sage: H.euler_factor(2, 7) 

T^8 + T^5 + T^3 + 1 

 

REFERENCES: 

 

- [BeukersHeckman]_ 

 

- [Benasque2009]_ 

 

- [Kat1991]_ 

 

- [MagmaHGM]_ 

 

- [Fedorov2015]_ 

 

- [Roberts2017]_ 

 

- [Roberts2015]_ 

 

- [BeCoMe]_ 

 

- [Watkins]_ 

 

""" 

#***************************************************************************** 

# Copyright (C) 2017 Frédéric Chapoton 

# Kiran S. Kedlaya <kskedl@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from collections import defaultdict 

from itertools import combinations 

 

from sage.arith.misc import divisors, gcd, euler_phi, moebius, is_prime 

from sage.arith.misc import gauss_sum, kronecker_symbol 

from sage.combinat.integer_vector_weighted import WeightedIntegerVectors 

from sage.functions.generalized import sgn 

from sage.functions.other import floor 

from sage.misc.cachefunc import cached_method 

from sage.misc.functional import cyclotomic_polynomial 

from sage.misc.misc_c import prod 

from sage.rings.fraction_field import FractionField 

from sage.rings.finite_rings.integer_mod_ring import IntegerModRing 

from sage.rings.integer_ring import ZZ 

from sage.rings.padics.factory import Zp 

from sage.rings.padics.misc import gauss_sum as padic_gauss_sum 

from sage.rings.polynomial.polynomial_ring import polygen 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.rings.power_series_ring import PowerSeriesRing 

from sage.rings.rational_field import QQ 

from sage.schemes.generic.spec import Spec 

from sage.rings.finite_rings.finite_field_constructor import GF 

from sage.rings.universal_cyclotomic_field import UniversalCyclotomicField 

 

 

def characteristic_polynomial_from_traces(traces, d, q, i, sign): 

r""" 

Given a sequence of traces `t_1, \dots, t_k`, return the 

corresponding characteristic polynomial with Weil numbers as roots. 

 

The characteristic polynomial is defined by the generating series 

 

.. MATH:: 

 

P(T) = \exp\left(- \sum_{k\geq 1} t_k \frac{T^k}{k}\right) 

 

and should have the property that reciprocals of all roots have 

absolute value `q^{i/2}`. 

 

INPUT: 

 

- ``traces`` -- a list of integers `t_1, \dots, t_k` 

 

- ``d`` -- the degree of the characteristic polynomial 

 

- ``q`` -- power of a prime number 

 

- ``i`` -- integer, the weight in the motivic sense 

 

- ``sign`` -- integer, the sign 

 

OUTPUT: 

 

a polynomial 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import characteristic_polynomial_from_traces 

sage: characteristic_polynomial_from_traces([1, 1], 1, 3, 0, -1) 

-T + 1 

sage: characteristic_polynomial_from_traces([25], 1, 5, 4, -1) 

-25*T + 1 

 

sage: characteristic_polynomial_from_traces([3], 2, 5, 1, 1) 

5*T^2 - 3*T + 1 

sage: characteristic_polynomial_from_traces([1], 2, 7, 1, 1) 

7*T^2 - T + 1 

 

sage: characteristic_polynomial_from_traces([20], 3, 29, 2, 1) 

24389*T^3 - 580*T^2 - 20*T + 1 

sage: characteristic_polynomial_from_traces([12], 3, 13, 2, -1) 

-2197*T^3 + 156*T^2 - 12*T + 1 

 

sage: characteristic_polynomial_from_traces([36,7620], 4, 17, 3, 1) 

24137569*T^4 - 176868*T^3 - 3162*T^2 - 36*T + 1 

sage: characteristic_polynomial_from_traces([-4,276], 4, 5, 3, 1) 

15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 

sage: characteristic_polynomial_from_traces([4,-276], 4, 5, 3, 1) 

15625*T^4 - 500*T^3 + 146*T^2 - 4*T + 1 

sage: characteristic_polynomial_from_traces([22, 484], 4, 31, 2, -1) 

-923521*T^4 + 21142*T^3 - 22*T + 1 

 

TESTS:: 

 

sage: characteristic_polynomial_from_traces([-36], 4, 17, 3, 1) 

Traceback (most recent call last): 

... 

ValueError: not enough traces were given 

""" 

if len(traces) < d // 2: 

raise ValueError('not enough traces were given') 

if i % 2 and d % 2: 

raise ValueError('i and d may not both be odd') 

t = PowerSeriesRing(QQ, 't').gen() 

ring = PolynomialRing(ZZ, 'T') 

 

series = sum(- api * t**(i + 1) / (i + 1) for i, api in enumerate(traces)) 

series = series.O(d // 2 + 1).exp() 

coeffs = list(series) 

coeffs += [0] * max(0, d // 2 + 1 - len(coeffs)) 

 

data = [0 for _ in range(d + 1)] 

for k in range(d // 2 + 1): 

data[k] = coeffs[k] 

for k in range(d // 2 + 1, d + 1): 

data[k] = sign * coeffs[d - k] * q**(i * (k - d / 2)) 

return ring(data) 

 

 

def enumerate_hypergeometric_data(d, weight=None): 

r""" 

Return an iterator over parameters of hypergeometric motives (up to swapping). 

 

INPUT: 

 

- ``d`` -- the degree 

 

- ``weight`` -- optional integer, to specify the motivic weight 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import enumerate_hypergeometric_data as enum 

sage: l = [H for H in enum(6, weight=2) if H.hodge_numbers()[0] == 1] 

sage: len(l) 

112 

""" 

bound = 2 * d * d # to make sure that phi(n) <= d 

possible = [(i, euler_phi(i)) for i in range(1, bound + 1) 

if euler_phi(i) <= d] 

poids = [z[1] for z in possible] 

N = len(poids) 

vectors = WeightedIntegerVectors(d, poids) 

 

def formule(u): 

return [possible[j][0] for j in range(N) for _ in range(u[j])] 

 

for a,b in combinations(vectors, 2): 

if not any(a[j] and b[j] for j in range(N)): 

H = HypergeometricData(cyclotomic=(formule(a), formule(b))) 

if weight is None or H.weight() == weight: 

yield H 

 

def possible_hypergeometric_data(d, weight=None): 

""" 

Return the list of possible parameters of hypergeometric motives (up to swapping). 

 

INPUT: 

 

- ``d`` -- the degree 

 

- ``weight`` -- optional integer, to specify the motivic weight 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import possible_hypergeometric_data as P 

sage: [len(P(i,weight=2)) for i in range(1, 7)] 

[0, 0, 10, 30, 93, 234] 

""" 

return list(enumerate_hypergeometric_data(d, weight)) 

 

def cyclotomic_to_alpha(cyclo): 

""" 

Convert a list of indices of cyclotomic polynomials 

to a list of rational numbers. 

 

The input represents a product of cyclotomic polynomials. 

 

The output is the list of arguments of the roots of the 

given product of cyclotomic polynomials. 

 

This is the inverse of :func:`alpha_to_cyclotomic`. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import cyclotomic_to_alpha 

sage: cyclotomic_to_alpha([1]) 

[0] 

sage: cyclotomic_to_alpha([2]) 

[1/2] 

sage: cyclotomic_to_alpha([5]) 

[1/5, 2/5, 3/5, 4/5] 

sage: cyclotomic_to_alpha([1,2,3,6]) 

[0, 1/6, 1/3, 1/2, 2/3, 5/6] 

sage: cyclotomic_to_alpha([2,3]) 

[1/3, 1/2, 2/3] 

""" 

alpha = [] 

for d in cyclo: 

if d == 1: 

alpha.append(QQ.zero()) 

else: 

for k in ZZ(d).coprime_integers(d): 

alpha.append(QQ((k, d))) 

return sorted(alpha) 

 

 

def alpha_to_cyclotomic(alpha): 

""" 

Convert from a list of rationals arguments to a list of integers. 

 

The input represents arguments of some roots of unity. 

 

The output represent a product of cyclotomic polynomials with exactly 

the given roots. Note that the multiplicity of `r/s` in the list 

must be independent of `r`; otherwise, a ``ValueError`` will be raised. 

 

This is the inverse of :func:`cyclotomic_to_alpha`. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import alpha_to_cyclotomic 

sage: alpha_to_cyclotomic([0]) 

[1] 

sage: alpha_to_cyclotomic([1/2]) 

[2] 

sage: alpha_to_cyclotomic([1/5,2/5,3/5,4/5]) 

[5] 

sage: alpha_to_cyclotomic([1/6, 1/3, 1/2, 2/3, 5/6, 1]) 

[1, 2, 3, 6] 

sage: alpha_to_cyclotomic([1/3,2/3,1/2]) 

[2, 3] 

""" 

cyclo = [] 

Alpha = list(alpha) 

while Alpha: 

q = QQ(Alpha.pop()) 

n = q.numerator() 

d = q.denominator() 

for k in d.coprime_integers(d): 

if k != n: 

try: 

Alpha.remove(QQ((k, d))) 

except ValueError: 

raise ValueError("multiplicities not balanced") 

cyclo.append(d) 

return sorted(cyclo) 

 

 

def capital_M(n): 

""" 

Auxiliary function, used to describe the canonical scheme. 

 

INPUT: 

 

- ``n`` -- an integer 

 

OUTPUT: 

 

a rational 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import capital_M 

sage: [capital_M(i) for i in range(1,8)] 

[1, 4, 27, 64, 3125, 432, 823543] 

""" 

n = ZZ(n) 

return QQ.prod(d ** (d * moebius(n / d)) for d in divisors(n)) 

 

 

def cyclotomic_to_gamma(cyclo_up, cyclo_down): 

""" 

Convert a quotient of products of cyclotomic polynomials 

to a quotient of products of polynomials `x^n - 1`. 

 

INPUT: 

 

- ``cyclo_up`` -- list of indices of cyclotomic polynomials in the numerator 

- ``cyclo_down`` -- list of indices of cyclotomic polynomials in the denominator 

 

OUTPUT: 

 

a dictionary mapping an integer `n` to the power of `x^n - 1` that 

appears in the given product 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import cyclotomic_to_gamma 

sage: cyclotomic_to_gamma([6], [1]) 

{2: -1, 3: -1, 6: 1} 

""" 

dico = defaultdict(int) 

for d in cyclo_up: 

dico[d] += 1 

for d in cyclo_down: 

dico[d] -= 1 

 

resu = defaultdict(int) 

for n in dico: 

for d in divisors(n): 

resu[d] += moebius(n / d) * dico[n] 

 

return {d: resu[d] for d in resu if resu[d]} 

 

 

def gamma_list_to_cyclotomic(galist): 

r""" 

Convert a quotient of products of polynomials `x^n - 1` 

to a quotient of products of cyclotomic polynomials. 

 

INPUT: 

 

- ``galist`` -- a list of integers, where an integer `n` represents 

the power `(x^{|n|} - 1)^{\operatorname{sgn}(n)}` 

 

OUTPUT: 

 

a pair of list of integers, where `k` represents the cyclotomic 

polynomial `\Phi_k` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import gamma_list_to_cyclotomic 

sage: gamma_list_to_cyclotomic([-1, -1, 2]) 

([2], [1]) 

 

sage: gamma_list_to_cyclotomic([-1, -1, -1, -3, 6]) 

([2, 6], [1, 1, 1]) 

 

sage: gamma_list_to_cyclotomic([-1, 2, 3, -4]) 

([3], [4]) 

 

sage: gamma_list_to_cyclotomic([8,2,2,2,-6,-4,-3,-1]) 

([2, 2, 8], [3, 3, 6]) 

""" 

resu = defaultdict(int) 

for n in galist: 

eps = sgn(n) 

for d in divisors(abs(n)): 

resu[d] += eps 

 

return (sorted(d for d in resu for k in range(resu[d])), 

sorted(d for d in resu for k in range(-resu[d]))) 

 

 

class HypergeometricData(object): 

def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None): 

r""" 

Creation of hypergeometric motives. 

 

INPUT: 

 

three possibilities are offered, each describing a quotient 

of products of cyclotomic polynomials. 

 

- ``cyclotomic`` -- a pair of lists of nonnegative integers, 

each integer `k` represents a cyclotomic polynomial `\Phi_k` 

 

- ``alpha_beta`` -- a pair of lists of rationals, 

each rational represents a root of unity 

 

- ``gamma_list`` -- a pair of lists of nonnegative integers, 

each integer `n` represents a polynomial `x^n - 1` 

 

In the last case, it is also allowed to send just one list of signed 

integers where signs indicate to which part the integer belongs to. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(cyclotomic=([2],[1])) 

Hypergeometric data for [1/2] and [0] 

 

sage: Hyp(alpha_beta=([1/2],[0])) 

Hypergeometric data for [1/2] and [0] 

sage: Hyp(alpha_beta=([1/5,2/5,3/5,4/5],[0,0,0,0])) 

Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] 

 

sage: Hyp(gamma_list=([5],[1,1,1,1,1])) 

Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] 

sage: Hyp(gamma_list=([5,-1,-1,-1,-1,-1])) 

Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] 

""" 

if gamma_list is not None: 

if isinstance(gamma_list[0], (list, tuple)): 

pos, neg = gamma_list 

gamma_list = pos + [-u for u in neg] 

cyclotomic = gamma_list_to_cyclotomic(gamma_list) 

if cyclotomic is not None: 

cyclo_up, cyclo_down = cyclotomic 

if any(x in cyclo_up for x in cyclo_down): 

raise ValueError('overlapping parameters not allowed') 

deg = sum(euler_phi(x) for x in cyclo_down) 

up_deg = sum(euler_phi(x) for x in cyclo_up) 

if up_deg != deg: 

msg = 'not the same degree: {} != {}'.format(up_deg, deg) 

raise ValueError(msg) 

cyclo_up.sort() 

cyclo_down.sort() 

alpha = cyclotomic_to_alpha(cyclo_up) 

beta = cyclotomic_to_alpha(cyclo_down) 

elif alpha_beta is not None: 

alpha, beta = alpha_beta 

if len(alpha) != len(beta): 

raise ValueError('alpha and beta not of the same length') 

alpha = sorted(u - floor(u) for u in alpha) 

beta = sorted(u - floor(u) for u in beta) 

cyclo_up = alpha_to_cyclotomic(alpha) 

cyclo_down = alpha_to_cyclotomic(beta) 

deg = sum(euler_phi(x) for x in cyclo_down) 

 

self._cyclo_up = cyclo_up 

self._cyclo_down = cyclo_down 

self._alpha = alpha 

self._beta = beta 

self._deg = deg 

if self.weight() % 2: 

self._sign_param = 1 

else: 

if deg % 2: 

self._sign_param = prod(cyclotomic_polynomial(v).disc() 

for v in cyclo_down) 

else: 

self._sign_param = prod(cyclotomic_polynomial(v).disc() 

for v in cyclo_up) 

 

def __repr__(self): 

""" 

Return the string representation. 

 

This displays the rational arguments of the roots of unity. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])) 

Hypergeometric data for [1/2] and [0] 

""" 

txt = "Hypergeometric data for {} and {}" 

return txt.format(self._alpha, self._beta) 

 

def twist(self): 

r""" 

Return the twist of this data. 

 

This is defined by adding `1/2` to each rational in `\alpha` 

and `\beta`. 

 

This is an involution. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/2],[0])) 

sage: H.twist() 

Hypergeometric data for [0] and [1/2] 

 

sage: Hyp(cyclotomic=([6],[1,2])).twist().cyclotomic_data() 

([3], [1, 2]) 

""" 

alpha = [x + QQ((1, 2)) for x in self._alpha] 

beta = [x + QQ((1, 2)) for x in self._beta] 

return HypergeometricData(alpha_beta=(alpha, beta)) 

 

def swap_alpha_beta(self): 

""" 

Return the hypergeometric data with ``alpha`` and ``beta`` exchanged. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/2],[0])) 

sage: H.swap_alpha_beta() 

Hypergeometric data for [0] and [1/2] 

""" 

alpha, beta = self.alpha_beta() 

return HypergeometricData(alpha_beta=(beta, alpha)) 

 

def primitive_data(self): 

""" 

Return a primitive version. 

 

.. SEEALSO:: 

 

:meth:`is_primitive`, :meth:`primitive_index`, 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(cyclotomic=([3],[4])) 

sage: H2 = Hyp(gamma_list=[-2, 4, 6, -8]) 

sage: H2.primitive_data() == H 

True 

""" 

g = self.gamma_list() 

d = gcd(g) 

return HypergeometricData(gamma_list=[x / d for x in g]) 

 

def zigzag(self, x, flip_beta=False): 

r""" 

Count ``alpha``'s at most ``x`` minus ``beta``'s at most ``x``. 

 

This function is used to compute the weight and the Hodge numbers. 

With `flip_beta` set to True, replace each `b` in `\beta` with `1-b`. 

 

.. SEEALSO:: 

 

:meth:`weight`, :meth:`hodge_numbers` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) 

sage: [H.zigzag(x) for x in [0, 1/3, 1/2]] 

[0, 1, 0] 

sage: H = Hyp(cyclotomic=([5],[1,1,1,1])) 

sage: [H.zigzag(x) for x in [0,1/6,1/4,1/2,3/4,5/6]] 

[-4, -4, -3, -2, -1, 0] 

 

""" 

alpha = self._alpha 

beta = self._beta 

if flip_beta: 

return(sum(1 for a in alpha if a <= x) - 

sum(1 for b in beta if 1 - b <= x)) 

else: 

return(sum(1 for a in alpha if a <= x) - 

sum(1 for b in beta if b <= x)) 

 

def weight(self): 

""" 

Return the motivic weight of this motivic data. 

 

EXAMPLES: 

 

With rational inputs:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])).weight() 

0 

sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).weight() 

1 

sage: Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[0,0,1/4,3/4])).weight() 

1 

sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) 

sage: H.weight() 

1 

 

With cyclotomic inputs:: 

 

sage: Hyp(cyclotomic=([6,2],[1,1,1])).weight() 

2 

sage: Hyp(cyclotomic=([6],[1,2])).weight() 

0 

sage: Hyp(cyclotomic=([8],[1,2,3])).weight() 

0 

sage: Hyp(cyclotomic=([5],[1,1,1,1])).weight() 

3 

sage: Hyp(cyclotomic=([5,6],[1,1,2,2,3])).weight() 

1 

sage: Hyp(cyclotomic=([3,8],[1,1,1,2,6])).weight() 

2 

sage: Hyp(cyclotomic=([3,3],[2,2,4])).weight() 

1 

 

With gamma list input:: 

 

sage: Hyp(gamma_list=([8,2,2,2],[6,4,3,1])).weight() 

3 

""" 

alpha = self._alpha 

beta = self._beta 

D = [self.zigzag(x) for x in alpha + beta] 

return ZZ(max(D) - min(D) - 1) 

 

def degree(self): 

""" 

Return the degree. 

 

This is the sum of the Hodge numbers. 

 

.. SEEALSO:: 

 

:meth:`hodge_numbers` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])).degree() 

1 

sage: Hyp(gamma_list=([2,2,4],[8])).degree() 

4 

sage: Hyp(cyclotomic=([5,6],[1,1,2,2,3])).degree() 

6 

sage: Hyp(cyclotomic=([3,8],[1,1,1,2,6])).degree() 

6 

sage: Hyp(cyclotomic=([3,3],[2,2,4])).degree() 

4 

""" 

return self._deg 

 

def defining_polynomials(self): 

""" 

Return the pair of products of cyclotomic polynomials. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).defining_polynomials() 

(x^2 + 1, x^2 - 2*x + 1) 

""" 

up = prod(cyclotomic_polynomial(d) for d in self._cyclo_up) 

down = prod(cyclotomic_polynomial(d) for d in self._cyclo_down) 

return (up, down) 

 

def cyclotomic_data(self): 

""" 

Return the pair of lists of indices of cyclotomic polynomials. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])).cyclotomic_data() 

([2], [1]) 

""" 

return (self._cyclo_up, self._cyclo_down) 

 

def alpha_beta(self): 

""" 

Return the pair of lists of rational arguments. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])).alpha_beta() 

([1/2], [0]) 

""" 

return (self._alpha, self._beta) 

 

def M_value(self): 

""" 

Return the `M` coefficient that appears in the trace formula. 

 

OUTPUT: 

 

a rational 

 

.. SEEALSO:: :meth:`canonical_scheme` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) 

sage: H.M_value() 

729/4096 

sage: Hyp(alpha_beta=(([1/2,1/2,1/2,1/2],[0,0,0,0]))).M_value() 

256 

sage: Hyp(cyclotomic=([5],[1,1,1,1])).M_value() 

3125 

""" 

up = QQ.prod(capital_M(d) for d in self._cyclo_up) 

down = QQ.prod(capital_M(d) for d in self._cyclo_down) 

return up / down 

 

def gamma_array(self): 

r""" 

Return the dictionary `\{v: \gamma_v\}` for the expression 

 

.. MATH:: 

 

\prod_v (T^v - 1)^{\gamma_v} 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])).gamma_array() 

{1: -2, 2: 1} 

sage: Hyp(cyclotomic=([6,2],[1,1,1])).gamma_array() 

{1: -3, 3: -1, 6: 1} 

""" 

return cyclotomic_to_gamma(self._cyclo_up, self._cyclo_down) 

 

def gamma_list(self): 

r""" 

Return a list of integers describing the `x^n - 1` factors. 

 

Each integer `n` stands for `(x^{|n|} - 1)^{\operatorname{sgn}(n)}`. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=([1/2],[0])).gamma_list() 

[-1, -1, 2] 

 

sage: Hyp(cyclotomic=([6,2],[1,1,1])).gamma_list() 

[-1, -1, -1, -3, 6] 

 

sage: Hyp(cyclotomic=([3],[4])).gamma_list() 

[-1, 2, 3, -4] 

""" 

gamma = self.gamma_array() 

resu = [] 

for v, n in gamma.items(): 

resu += [sgn(n) * v] * abs(n) 

return resu 

 

def __eq__(self, other): 

""" 

Return whether two data are equal. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H1 = Hyp(alpha_beta=([1/2],[0])) 

sage: H2 = Hyp(cyclotomic=([6,2],[1,1,1])) 

sage: H1 == H1 

True 

sage: H1 == H2 

False 

""" 

return (self._alpha == other._alpha and 

self._beta == other._beta) 

 

def __ne__(self, other): 

""" 

Return whether two data are unequal. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H1 = Hyp(alpha_beta=([1/2],[0])) 

sage: H2 = Hyp(cyclotomic=([6,2],[1,1,1])) 

sage: H1 != H1 

False 

sage: H1 != H2 

True 

""" 

return not (self == other) 

 

def is_primitive(self): 

""" 

Return whether this data is primitive. 

 

.. SEEALSO:: 

 

:meth:`primitive_index`, :meth:`primitive_data` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(cyclotomic=([3],[4])).is_primitive() 

True 

sage: Hyp(gamma_list=[-2, 4, 6, -8]).is_primitive() 

False 

sage: Hyp(gamma_list=[-3, 6, 9, -12]).is_primitive() 

False 

""" 

return self.primitive_index() == 1 

 

def primitive_index(self): 

""" 

Return the primitive index. 

 

.. SEEALSO:: 

 

:meth:`is_primitive`, :meth:`primitive_data` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(cyclotomic=([3],[4])).primitive_index() 

1 

sage: Hyp(gamma_list=[-2, 4, 6, -8]).primitive_index() 

2 

sage: Hyp(gamma_list=[-3, 6, 9, -12]).primitive_index() 

3 

""" 

return gcd(self.gamma_list()) 

 

def has_symmetry_at_one(self): 

""" 

If ``True``, the motive H(t=1) is a direct sum of two motives. 

 

Note that simultaneous exchange of (t,1/t) and (alpha,beta) 

always gives the same motive. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: Hyp(alpha_beta=[[1/2]*16,[0]*16]).has_symmetry_at_one() 

True 

 

REFERENCES: 

 

- [Roberts2017]_ 

""" 

_, beta_twist = self.twist().alpha_beta() 

return self.degree() % 2 == 0 and self._alpha == beta_twist 

 

def hodge_numbers(self): 

""" 

Return the Hodge numbers. 

 

.. SEEALSO:: 

 

:meth:`degree`, :meth:`hodge_polynomial` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(cyclotomic=([3],[6])) 

sage: H.hodge_numbers() 

[1, 1] 

 

sage: H = Hyp(cyclotomic=([4],[1,2])) 

sage: H.hodge_numbers() 

[2] 

 

sage: H = Hyp(gamma_list=([8,2,2,2],[6,4,3,1])) 

sage: H.hodge_numbers() 

[1, 2, 2, 1] 

 

sage: H = Hyp(gamma_list=([5],[1,1,1,1,1])) 

sage: H.hodge_numbers() 

[1, 1, 1, 1] 

 

sage: H = Hyp(gamma_list=[6,1,-4,-3]) 

sage: H.hodge_numbers() 

[1, 1] 

 

sage: H = Hyp(gamma_list=[-3]*4 + [1]*12) 

sage: H.hodge_numbers() 

[1, 1, 1, 1, 1, 1, 1, 1] 

 

REFERENCES: 

 

- [Fedorov2015]_ 

""" 

alpha = [(x, 'a') for x in self._alpha] 

beta = [(x, 'b') for x in self._beta] 

height = 0 

hodge = defaultdict(int) 

for x, letter in sorted(alpha + beta): 

if letter == 'a': 

hodge[height] += 1 

height += 1 

else: 

height -= 1 

return [hodge[i] for i in sorted(hodge)] 

 

def hodge_polynomial(self): 

""" 

Return the Hodge polynomial. 

 

.. SEEALSO:: 

 

:meth:`hodge_numbers` 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(cyclotomic=([6,10],[3,12])) 

sage: H.hodge_polynomial() 

(T^3 + 2*T^2 + 2*T + 1)/T^2 

sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6],[1,1,4,5,9])) 

sage: H.hodge_polynomial() 

(T^5 + 3*T^4 + 3*T^3 + 3*T^2 + 3*T + 1)/T^2 

""" 

alpha = self._alpha 

 

def z(x): 

return alpha.count(x) 

 

T = polygen(ZZ, 'T') 

return sum(T ** (self.zigzag(a, flip_beta=True) - z(a)) * 

(T**z(a) - 1) // (T - 1) 

for a in set(alpha)) 

 

@cached_method 

def padic_H_value(self, p, f, t, prec=20): 

""" 

Return the `p`-adic trace of Frobenius, computed using the 

Gross-Koblitz formula. 

 

INPUT: 

 

- `p` -- a prime number 

 

- `f` -- an integer such that `q = p^f` 

 

- `t` -- a rational parameter 

 

- ``prec`` -- precision (optional, default 20) 

 

OUTPUT: 

 

an integer 

 

EXAMPLES: 

 

From Benasque report [Benasque2009]_, page 8:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) 

sage: [H.padic_H_value(3,i,-1) for i in range(1,3)] 

[0, -12] 

sage: [H.padic_H_value(5,i,-1) for i in range(1,3)] 

[-4, 276] 

sage: [H.padic_H_value(7,i,-1) for i in range(1,3)] 

[0, -476] 

sage: [H.padic_H_value(11,i,-1) for i in range(1,3)] 

[0, -4972] 

 

From [Roberts2015]_ (but note conventions regarding `t`):: 

 

sage: H = Hyp(gamma_list=[-6,-1,4,3]) 

sage: t = 189/125 

sage: H.padic_H_value(13,1,1/t) 

0 

 

REFERENCES: 

 

- [MagmaHGM]_ 

""" 

alpha = self._alpha 

beta = self._beta 

if 0 in alpha: 

H = self.swap_alpha_beta() 

return(H.padic_H_value(p, f, ~t, prec)) 

t = QQ(t) 

gamma = self.gamma_array() 

q = p ** f 

 

m = {r: beta.count(QQ((r, q - 1))) for r in range(q - 1)} 

M = self.M_value() 

D = -min(self.zigzag(x, flip_beta=True) for x in alpha + beta) 

# also: D = (self.weight() + 1 - m[0]) // 2 

 

gauss_table = [padic_gauss_sum(r, p, f, prec, factored=True) for r in range(q - 1)] 

 

p_ring = Zp(p, prec=prec) 

teich = p_ring.teichmuller(M / t) 

sigma = sum(q**(D + m[0] - m[r]) * 

(-p)**(sum(gauss_table[(v * r) % (q - 1)][0] * gv 

for v, gv in gamma.items()) // (p - 1)) * 

prod(gauss_table[(v * r) % (q - 1)][1] ** gv 

for v, gv in gamma.items()) * 

teich ** r 

for r in range(q - 1)) 

resu = ZZ(-1) ** m[0] / (1 - q) * sigma 

return IntegerModRing(p**prec)(resu).lift_centered() 

 

@cached_method 

def H_value(self, p, f, t, ring=None): 

""" 

Return the trace of the Frobenius, computed in terms of Gauss sums 

using the hypergeometric trace formula. 

 

INPUT: 

 

- `p` -- a prime number 

 

- `f` -- an integer such that `q = p^f` 

 

- `t` -- a rational parameter 

 

- ``ring`` -- optional (default ``UniversalCyclotomicfield``) 

 

The ring could be also ``ComplexField(n)`` or ``QQbar``. 

 

OUTPUT: 

 

an integer 

 

.. WARNING:: 

 

This is apparently working correctly as can be tested 

using ComplexField(70) as value ring. 

 

Using instead UniversalCyclotomicfield, this is much 

slower than the `p`-adic version :meth:`padic_H_value`. 

 

EXAMPLES: 

 

With values in the UniversalCyclotomicField (slow):: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) 

sage: [H.H_value(3,i,-1) for i in range(1,3)] 

[0, -12] 

sage: [H.H_value(5,i,-1) for i in range(1,3)] 

[-4, 276] 

sage: [H.H_value(7,i,-1) for i in range(1,3)] # not tested 

[0, -476] 

sage: [H.H_value(11,i,-1) for i in range(1,3)] # not tested 

[0, -4972] 

sage: [H.H_value(13,i,-1) for i in range(1,3)] # not tested 

[-84, -1420] 

 

With values in ComplexField:: 

 

sage: [H.H_value(5,i,-1, ComplexField(60)) for i in range(1,3)] 

[-4, 276] 

 

REFERENCES: 

 

- [BeCoMe]_ (Theorem 1.3) 

- [Benasque2009]_ 

""" 

alpha = self._alpha 

beta = self._beta 

if 0 in alpha: 

H = self.swap_alpha_beta() 

return(H.H_value(p, f, ~t, ring)) 

if ring is None: 

ring = UniversalCyclotomicField() 

t = QQ(t) 

gamma = self.gamma_array() 

q = p ** f 

 

m = {r: beta.count(QQ((r, q - 1))) for r in range(q - 1)} 

D = -min(self.zigzag(x, flip_beta=True) for x in alpha + beta) 

# also: D = (self.weight() + 1 - m[0]) // 2 

M = self.M_value() 

 

Fq = GF(q) 

gen = Fq.multiplicative_generator() 

zeta_q = ring.zeta(q - 1) 

 

tM = Fq(M / t) 

for k in range(q - 1): 

if gen ** k == tM: 

teich = zeta_q ** k 

break 

 

gauss_table = [gauss_sum(zeta_q ** r, Fq) for r in range(q - 1)] 

 

sigma = sum(q**(D + m[0] - m[r]) * 

prod(gauss_table[(-v * r) % (q - 1)] ** gv 

for v, gv in gamma.items()) * 

teich ** r 

for r in range(q - 1)) 

resu = ZZ(-1) ** m[0] / (1 - q) * sigma 

if not ring.is_exact(): 

resu = resu.real_part().round() 

return resu 

 

@cached_method 

def euler_factor(self, t, p, degree=0): 

""" 

Return the Euler factor of the motive `H_t` at prime `p`. 

 

INPUT: 

 

- `t` -- rational number, not 0 or 1 

 

- `p` -- prime number of good reduction 

 

- ``degree`` -- optional integer (default 0) 

 

OUTPUT: 

 

a polynomial 

 

See [Benasque2009]_ for explicit examples of Euler factors. 

 

For odd weight, the sign of the functional equation is +1. For even 

weight, the sign is computed by a recipe found in 11.1 of [Watkins]_. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) 

sage: H.euler_factor(-1, 5) 

15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 

 

sage: H = Hyp(gamma_list=[-6,-1,4,3]) 

sage: H.weight(), H.degree() 

(1, 2) 

sage: t = 189/125 

sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] 

[11*T^2 + 4*T + 1, 

13*T^2 + 1, 

17*T^2 + 1, 

19*T^2 + 1, 

23*T^2 + 8*T + 1, 

29*T^2 + 2*T + 1] 

 

sage: H = Hyp(cyclotomic=([6,2],[1,1,1])) 

sage: H.weight(), H.degree() 

(2, 3) 

sage: [H.euler_factor(1/4,p) for p in [5,7,11,13,17,19]] 

[125*T^3 + 20*T^2 + 4*T + 1, 

343*T^3 - 42*T^2 - 6*T + 1, 

-1331*T^3 - 22*T^2 + 2*T + 1, 

-2197*T^3 - 156*T^2 + 12*T + 1, 

4913*T^3 + 323*T^2 + 19*T + 1, 

6859*T^3 - 57*T^2 - 3*T + 1] 

 

sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12],[0,1/2,1/2,1/2])) 

sage: H.weight(), H.degree() 

(2, 4) 

sage: t = -5 

sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] 

[-14641*T^4 - 1210*T^3 + 10*T + 1, 

-28561*T^4 - 2704*T^3 + 16*T + 1, 

-83521*T^4 - 4046*T^3 + 14*T + 1, 

130321*T^4 + 14440*T^3 + 969*T^2 + 40*T + 1, 

279841*T^4 - 25392*T^3 + 1242*T^2 - 48*T + 1, 

707281*T^4 - 7569*T^3 + 696*T^2 - 9*T + 1] 

 

TESTS:: 

 

sage: H1 = Hyp(alpha_beta=([1,1,1],[1/2,1/2,1/2])) 

sage: H2 = H1.swap_alpha_beta() 

sage: H1.euler_factor(-1, 3) 

27*T^3 + 3*T^2 + T + 1 

sage: H2.euler_factor(-1, 3) 

27*T^3 + 3*T^2 + T + 1 

sage: H = Hyp(alpha_beta=([0,0,0,1/3,2/3],[1/2,1/5,2/5,3/5,4/5])) 

sage: H.euler_factor(5,7) 

16807*T^5 - 686*T^4 - 105*T^3 - 15*T^2 - 2*T + 1 

 

REFERENCES: 

 

- [Roberts2015]_ 

- [Watkins]_ 

""" 

alpha = self._alpha 

if 0 in alpha: 

H = self.swap_alpha_beta() 

return(H.euler_factor(~t, p, degree)) 

 

if t not in QQ or t in [0, 1]: 

raise ValueError('wrong t') 

if not is_prime(p): 

raise ValueError('p not prime') 

if not all(x.denominator() % p for x in self._alpha + self._beta): 

raise NotImplementedError('p is wild') 

if (t.valuation(p) or (t - 1).valuation(p) > 0): 

raise NotImplementedError('p is tame') 

# now p is good 

if degree == 0: 

d = self.degree() 

bound = d // 2 

traces = [self.padic_H_value(p, i + 1, t) for i in range(bound)] 

 

w = self.weight() 

 

if w % 2: # sign is always +1 for odd weight 

sign = 1 

elif d % 2: 

sign = -kronecker_symbol((1 - t) * self._sign_param, p) 

else: 

sign = kronecker_symbol(t * (t - 1) * self._sign_param, p) 

 

return characteristic_polynomial_from_traces(traces, d, p, w, sign) 

 

def canonical_scheme(self, t=None): 

""" 

Return the canonical scheme. 

 

This is a scheme that contains this hypergeometric motive in its cohomology. 

 

EXAMPLES:: 

 

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp 

sage: H = Hyp(cyclotomic=([3],[4])) 

sage: H.gamma_list() 

[-1, 2, 3, -4] 

sage: H.canonical_scheme() 

Spectrum of Quotient of Multivariate Polynomial Ring 

in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring 

in t over Rational Field by the ideal 

(X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4) 

 

sage: H = Hyp(gamma_list=[-2, 3, 4, -5]) 

sage: H.canonical_scheme() 

Spectrum of Quotient of Multivariate Polynomial Ring 

in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring 

in t over Rational Field by the ideal 

(X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5) 

 

REFERENCES: 

 

[Kat1991]_, section 5.4 

""" 

if t is None: 

t = FractionField(QQ['t']).gen() 

basering = t.parent() 

gamma_pos = [u for u in self.gamma_list() if u > 0] 

gamma_neg = [u for u in self.gamma_list() if u < 0] 

N_pos = len(gamma_pos) 

N_neg = len(gamma_neg) 

varX = ['X{}'.format(i) for i in range(N_pos)] 

varY = ['Y{}'.format(i) for i in range(N_neg)] 

ring = PolynomialRing(basering, varX + varY) 

gens = ring.gens() 

X = gens[:N_pos] 

Y = gens[N_pos:] 

eq0 = ring.sum(X) - 1 

eq1 = ring.sum(Y) - 1 

eq2_pos = ring.prod(X[i] ** gamma_pos[i] for i in range(N_pos)) 

eq2_neg = ring.prod(Y[j] ** -gamma_neg[j] for j in range(N_neg)) 

 

ideal = ring.ideal([eq0, eq1, self.M_value() * eq2_neg - t * eq2_pos]) 

return Spec(ring.quotient(ideal))