Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

r""" 

Local components of modular forms 

 

If `f` is a (new, cuspidal, normalised) modular eigenform, then one can 

associate to `f` an *automorphic representation* `\pi_f` of the group 

`\operatorname{GL}_2(\mathbf{A})` (where `\mathbf{A}` is the adele ring of 

`\QQ`). This object factors as a restricted tensor product of components 

`\pi_{f, v}` for each place of `\QQ`. These are infinite-dimensional 

representations, but they are specified by a finite amount of data, and this 

module provides functions which determine a description of the local factor 

`\pi_{f, p}` at a finite prime `p`. 

 

The functions in this module are based on the algorithms described in 

[LW2012]_. 

 

AUTHORS: 

 

- David Loeffler 

- Jared Weinstein 

""" 

from __future__ import absolute_import 

 

import operator 

from sage.structure.sage_object import SageObject 

from sage.rings.all import QQ, ZZ, Zmod, QQbar, PolynomialRing, polygen 

from sage.modular.modform.element import Newform 

from sage.modular.dirichlet import DirichletGroup 

from sage.misc.cachefunc import cached_method 

from sage.misc.abstract_method import abstract_method 

from sage.structure.sequence import Sequence 

 

from .type_space import TypeSpace 

from .smoothchar import SmoothCharacterGroupQp, SmoothCharacterGroupUnramifiedQuadratic, SmoothCharacterGroupRamifiedQuadratic 

 

def LocalComponent(f, p, twist_factor=None): 

r""" 

Calculate the local component at the prime `p` of the automorphic 

representation attached to the newform `f`. 

 

INPUT: 

 

- ``f`` (:class:`~sage.modular.modform.element.Newform`) a newform of weight `k \ge 2` 

- ``p`` (integer) a prime 

- ``twist_factor`` (integer) an integer congruent to `k` modulo 2 (default: `k - 2`) 

 

.. note:: 

 

The argument ``twist_factor`` determines the choice of normalisation: if it is 

set to `j \in \ZZ`, then the central character of `\pi_{f, \ell}` maps `\ell` 

to `\ell^j \varepsilon(\ell)` for almost all `\ell`, where `\varepsilon` is the 

Nebentypus character of `f`. 

 

In the analytic theory it is conventional to take `j = 0` (the "Langlands 

normalisation"), so the representation `\pi_f` is unitary; however, this is 

inconvenient for `k` odd, since in this case one needs to choose a square root of `p` 

and thus the map `f \to \pi_{f}` is not Galois-equivariant. Hence we use, by default, the 

"Hecke normalisation" given by `j = k - 2`. This is also the most natural normalisation 

from the perspective of modular symbols. 

 

We also adopt a slightly unusual definition of the principal series: we 

define `\pi(\chi_1, \chi_2)` to be the induction from the Borel subgroup of 

the character of the maximal torus `\begin{pmatrix} x & \\ & y 

\end{pmatrix} \mapsto \chi_1(a) \chi_2(b) |b|`, so its central character is 

`z \mapsto \chi_1(z) \chi_2(z) |z|`. Thus `\chi_1 \chi_2` is the 

restriction to `\QQ_p^\times` of the unique character of the id\'ele class 

group mapping `\ell` to `\ell^{k-1} \varepsilon(\ell)` for almost all `\ell`. 

This has the property that the *set* `\{\chi_1, \chi_2\}` also depends 

Galois-equivariantly on `f`. 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newform('49a'), 7); Pi 

Smooth representation of GL_2(Q_7) with conductor 7^2 

sage: Pi.central_character() 

Character of Q_7*, of level 0, mapping 7 |--> 1 

sage: Pi.species() 

'Supercuspidal' 

sage: Pi.characters() 

[ 

Character of unramified extension Q_7(s)* (s^2 + 6*s + 3 = 0), of level 1, mapping s |--> d, 7 |--> 1, 

Character of unramified extension Q_7(s)* (s^2 + 6*s + 3 = 0), of level 1, mapping s |--> -d, 7 |--> 1 

] 

""" 

p = ZZ(p) 

if not p.is_prime(): 

raise ValueError( "p must be prime" ) 

if not isinstance(f, Newform): 

raise TypeError( "f (=%s of type %s) should be a Newform object" % (f, type(f)) ) 

 

r = f.level().valuation(p) 

if twist_factor is None: 

twist_factor = ZZ(f.weight() - 2) 

else: 

twist_factor = ZZ(twist_factor) 

if r == 0: 

return UnramifiedPrincipalSeries(f, p, twist_factor) 

c = ZZ(f.character().conductor()).valuation(p) 

if f[p] != 0: 

if c == r: 

return PrimitivePrincipalSeries(f, p, twist_factor) 

if c == 0 and r == 1: 

return PrimitiveSpecial(f, p, twist_factor) 

Xf = TypeSpace(f, p) 

if Xf.is_minimal(): 

return PrimitiveSupercuspidal(f, p, twist_factor) 

else: 

raise NotImplementedError( "Form %s is not %s-primitive" % (f, p) ) 

 

class LocalComponentBase(SageObject): 

r""" 

Base class for local components of newforms. Not to be directly instantiated; use the :func:`~LocalComponent` constructor function. 

""" 

 

def __init__(self, newform, prime, twist_factor): 

r""" 

Standard initialisation function. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('49a'), 7) # indirect doctest 

Smooth representation of GL_2(Q_7) with conductor 7^2 

""" 

self._p = prime 

self._f = newform 

self._twist_factor = twist_factor 

 

@abstract_method 

def species(self): 

r""" 

The species of this local component, which is either 'Principal 

Series', 'Special' or 'Supercuspidal'. 

 

EXAMPLES:: 

 

sage: from sage.modular.local_comp.local_comp import LocalComponentBase 

sage: LocalComponentBase(Newform('50a'), 3, 0).species() 

Traceback (most recent call last): 

... 

NotImplementedError: <abstract method species at ...> 

""" 

pass 

 

@abstract_method 

def check_tempered(self): 

r""" 

Check that this representation is quasi-tempered, i.e. `\pi \otimes 

|\det|^{j/2}` is tempered. It is well known that local components of 

modular forms are *always* tempered, so this serves as a useful check 

on our computations. 

 

EXAMPLES:: 

 

sage: from sage.modular.local_comp.local_comp import LocalComponentBase 

sage: LocalComponentBase(Newform('50a'), 3, 0).check_tempered() 

Traceback (most recent call last): 

... 

NotImplementedError: <abstract method check_tempered at ...> 

""" 

pass 

 

def _repr_(self): 

r""" 

String representation of self. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('50a'), 5)._repr_() 

'Smooth representation of GL_2(Q_5) with conductor 5^2' 

""" 

return "Smooth representation of GL_2(Q_%s) with conductor %s^%s" % (self.prime(), self.prime(), self.conductor()) 

 

def newform(self): 

r""" 

The newform of which this is a local component. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('50a'), 5).newform() 

q - q^2 + q^3 + q^4 + O(q^6) 

""" 

return self._f 

 

def prime(self): 

r""" 

The prime at which this is a local component. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('50a'), 5).prime() 

5 

""" 

return self._p 

 

def conductor(self): 

r""" 

The smallest `r` such that this representation has a nonzero vector fixed by the subgroup 

`\begin{pmatrix} * & * \\ 0 & 1\end{pmatrix} \pmod{p^r}`. This is equal to the power of `p` dividing the level of the corresponding newform. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('50a'), 5).conductor() 

2 

""" 

return self.newform().level().valuation(self.prime()) 

 

def coefficient_field(self): 

r""" 

The field `K` over which this representation is defined. This is the field generated by the Hecke eigenvalues of the corresponding newform (over whatever base ring the newform is created). 

 

EXAMPLES:: 

 

sage: LocalComponent(Newforms(50)[0], 3).coefficient_field() 

Rational Field 

sage: LocalComponent(Newforms(Gamma1(10), 3, base_ring=QQbar)[0], 5).coefficient_field() 

Algebraic Field 

sage: LocalComponent(Newforms(DirichletGroup(5).0, 7,names='c')[0], 5).coefficient_field() 

Number Field in c0 with defining polynomial x^2 + (5*zeta4 + 5)*x - 88*zeta4 over its base field 

""" 

return self.newform().hecke_eigenvalue_field() 

 

def twist_factor(self): 

r""" 

The unique `j` such that `\begin{pmatrix} p & 0 \\ 0 & p\end{pmatrix}` 

acts as multiplication by `p^j` times a root of unity. 

 

There are various conventions for this; see the documentation of the 

:func:`~LocalComponent` constructor function for more information. 

 

The twist factor should have the same parity as the weight of the form, 

since otherwise the map sending `f` to its local component won't be 

Galois equivariant. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newforms(50)[0], 3).twist_factor() 

0 

sage: LocalComponent(Newforms(50)[0], 3, twist_factor=173).twist_factor() 

173 

""" 

return self._twist_factor 

 

def central_character(self): 

r""" 

Return the central character of this representation. This is the 

restriction to `\QQ_p^\times` of the unique smooth character `\omega` 

of `\mathbf{A}^\times / \QQ^\times` such that `\omega(\varpi_\ell) = 

\ell^j \varepsilon(\ell)` for all primes `\ell \nmid Np`, where 

`\varpi_\ell` is a uniformiser at `\ell`, `\varepsilon` is the 

Nebentypus character of the newform `f`, and `j` is the twist factor 

(see the documentation for :func:`~LocalComponent`). 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('27a'), 3).central_character() 

Character of Q_3*, of level 0, mapping 3 |--> 1 

 

sage: LocalComponent(Newforms(Gamma1(5), 5, names='c')[0], 5).central_character() 

Character of Q_5*, of level 1, mapping 2 |--> c0 + 1, 5 |--> 125 

 

sage: LocalComponent(Newforms(DirichletGroup(24)([1, -1,-1]), 3, names='a')[0], 2).central_character() 

Character of Q_2*, of level 3, mapping 7 |--> 1, 5 |--> -1, 2 |--> -2 

""" 

from sage.arith.all import crt 

chi = self.newform().character() 

f = self.prime() ** self.conductor() 

N = self.newform().level() // f 

G = DirichletGroup(f, self.coefficient_field()) 

chip = G([chi(crt(ZZ(x), 1, f, N)) for x in G.unit_gens()]).primitive_character() 

a = crt(1, self.prime(), f, N) 

 

if chip.conductor() == 1: 

return SmoothCharacterGroupQp(self.prime(), self.coefficient_field()).character(0, [chi(a) * self.prime()**self.twist_factor()]) 

else: 

return SmoothCharacterGroupQp(self.prime(), self.coefficient_field()).character(chip.conductor().valuation(self.prime()), list((~chip).values_on_gens()) + [chi(a) * self.prime()**self.twist_factor()]) 

 

def __eq__(self, other): 

r""" 

Comparison function. 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newform("50a"), 5) 

sage: Pi == LocalComponent(Newform("50a"), 3) 

False 

sage: Pi == LocalComponent(Newform("50b"), 5) 

False 

sage: Pi == QQ 

False 

sage: Pi == None 

False 

sage: Pi == loads(dumps(Pi)) 

True 

""" 

return (isinstance(other, LocalComponentBase) 

and self.prime() == other.prime() 

and self.newform() == other.newform() 

and self.twist_factor() == other.twist_factor()) 

 

def __ne__(self, other): 

""" 

Return True if ``self != other``. 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newform("50a"), 5) 

sage: Pi != LocalComponent(Newform("50a"), 3) 

True 

sage: Pi != LocalComponent(Newform("50b"), 5) 

True 

sage: Pi != QQ 

True 

sage: Pi != None 

True 

sage: Pi != loads(dumps(Pi)) 

False 

""" 

return not (self == other) 

 

 

class PrincipalSeries(LocalComponentBase): 

r""" 

A principal series representation. This is an abstract base class, not to 

be instantiated directly; see the subclasses 

:class:`~UnramifiedPrincipalSeries` and :class:`~PrimitivePrincipalSeries`. 

""" 

 

def species(self): 

r""" 

The species of this local component, which is either 'Principal 

Series', 'Special' or 'Supercuspidal'. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('50a'), 3).species() 

'Principal Series' 

""" 

return "Principal Series" 

 

def check_tempered(self): 

r""" 

Check that this representation is tempered (after twisting by 

`|\det|^{j/2}`), i.e. that `|\chi_1(p)| = |\chi_2(p)| = p^{(j + 1)/2}`. 

This follows from the Ramanujan--Petersson conjecture, as proved by 

Deligne. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('49a'), 3).check_tempered() 

""" 

c1, c2 = self.characters() 

K = c1.base_ring() 

p = self.prime() 

w = QQbar(p)**((1 + self.twist_factor()) / 2) 

for sigma in K.embeddings(QQbar): 

assert sigma(c1(p)).abs() == sigma(c2(p)).abs() == w 

 

@abstract_method 

def characters(self): 

r""" 

Return the two characters `(\chi_1, \chi_2)` such this representation 

`\pi_{f, p}` is equal to the principal series `\pi(\chi_1, \chi_2)`. 

 

EXAMPLES:: 

 

sage: from sage.modular.local_comp.local_comp import PrincipalSeries 

sage: PrincipalSeries(Newform('50a'), 3, 0).characters() 

Traceback (most recent call last): 

... 

NotImplementedError: <abstract method characters at ...> 

""" 

pass 

 

class UnramifiedPrincipalSeries(PrincipalSeries): 

r""" 

An unramified principal series representation of `{\rm GL}_2(\QQ_p)` 

(corresponding to a form whose level is not divisible by `p`). 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newform('50a'), 3) 

sage: Pi.conductor() 

0 

sage: type(Pi) 

<class 'sage.modular.local_comp.local_comp.UnramifiedPrincipalSeries'> 

sage: TestSuite(Pi).run() 

""" 

 

def satake_polynomial(self): 

r""" 

Return the Satake polynomial of this representation, i.e.~the polynomial whose roots are `\chi_1(p), \chi_2(p)` 

where this representation is `\pi(\chi_1, \chi_2)`. Concretely, this is the polynomial 

 

.. MATH:: 

 

X^2 - p^{(j - k + 2)/2} a_p(f) X + p^{j + 1} \varepsilon(p)`. 

 

An error will be raised if `j \ne k \bmod 2`. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('11a'), 17).satake_polynomial() 

X^2 + 2*X + 17 

sage: LocalComponent(Newform('11a'), 17, twist_factor = -2).satake_polynomial() 

X^2 + 2/17*X + 1/17 

""" 

p = self.prime() 

return PolynomialRing(self.coefficient_field(), 'X')([ 

self.central_character()(p)*p, 

-self.newform()[p] * p**((self.twist_factor() - self.newform().weight() + 2)/2), 

1 

]) 

 

def characters(self): 

r""" 

Return the two characters `(\chi_1, \chi_2)` such this representation 

`\pi_{f, p}` is equal to the principal series `\pi(\chi_1, \chi_2)`. 

These are the unramified characters mapping `p` to the roots of the Satake polynomial, 

so in most cases (but not always) they will be defined over an 

extension of the coefficient field of self. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('11a'), 17).characters() 

[ 

Character of Q_17*, of level 0, mapping 17 |--> d, 

Character of Q_17*, of level 0, mapping 17 |--> -d - 2 

] 

sage: LocalComponent(Newforms(Gamma1(5), 6, names='a')[1], 3).characters() 

[ 

Character of Q_3*, of level 0, mapping 3 |--> -3/2*a1 + 12, 

Character of Q_3*, of level 0, mapping 3 |--> -3/2*a1 - 12 

] 

""" 

f = self.satake_polynomial() 

if not f.is_irreducible(): 

# This can happen; see the second example above 

d = f.roots()[0][0] 

else: 

d = self.coefficient_field().extension(f, 'd').gen() 

G = SmoothCharacterGroupQp(self.prime(), d.parent()) 

return Sequence([G.character(0, [d]), G.character(0, [self.newform()[self.prime()] - d])], cr=True, universe=G) 

 

class PrimitivePrincipalSeries(PrincipalSeries): 

r""" 

A ramified principal series of the form `\pi(\chi_1, \chi_2)` 

where `\chi_1` is unramified but `\chi_2` is not. 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newforms(Gamma1(13), 2, names='a')[0], 13) 

sage: type(Pi) 

<class 'sage.modular.local_comp.local_comp.PrimitivePrincipalSeries'> 

sage: TestSuite(Pi).run() 

""" 

 

def characters(self): 

r""" 

Return the two characters `(\chi_1, \chi_2)` such that the local component `\pi_{f, p}` is the induction of the character `\chi_1 \times \chi_2` of the Borel subgroup. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newforms(Gamma1(13), 2, names='a')[0], 13).characters() 

[ 

Character of Q_13*, of level 0, mapping 13 |--> 3*a0 + 2, 

Character of Q_13*, of level 1, mapping 2 |--> a0 + 2, 13 |--> -3*a0 - 7 

] 

""" 

G = SmoothCharacterGroupQp(self.prime(), self.coefficient_field()) 

chi1 = G.character(0, [self.newform()[self.prime()]]) 

chi2 = G.character(0, [self.prime()]) * self.central_character() / chi1 

return Sequence([chi1, chi2], cr=True, universe=G) 

 

class PrimitiveSpecial(LocalComponentBase): 

r""" 

A primitive special representation: that is, the Steinberg representation 

twisted by an unramified character. All such representations have conductor 

1. 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newform('37a'), 37) 

sage: Pi.species() 

'Special' 

sage: Pi.conductor() 

1 

sage: type(Pi) 

<class 'sage.modular.local_comp.local_comp.PrimitiveSpecial'> 

sage: TestSuite(Pi).run() 

""" 

 

def species(self): 

r""" 

The species of this local component, which is either 'Principal 

Series', 'Special' or 'Supercuspidal'. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('37a'), 37).species() 

'Special' 

""" 

return "Special" 

 

def characters(self): 

r""" 

Return the defining characters of this representation. In this case, it 

will return the unique unramified character `\chi` of `\QQ_p^\times` 

such that this representation is equal to `\mathrm{St} \otimes \chi`, 

where `\mathrm{St}` is the Steinberg representation (defined as the 

quotient of the parabolic induction of the trivial character by its 

trivial subrepresentation). 

 

EXAMPLES: 

 

Our first example is the newform corresponding to an elliptic curve of 

conductor `37`. This is the nontrivial quadratic twist of Steinberg, 

corresponding to the fact that the elliptic curve has non-split 

multiplicative reduction at 37:: 

 

sage: LocalComponent(Newform('37a'), 37).characters() 

[Character of Q_37*, of level 0, mapping 37 |--> -1] 

 

We try an example in odd weight, where the central character isn't 

trivial:: 

 

sage: Pi = LocalComponent(Newforms(DirichletGroup(21)([-1, 1]), 3, names='j')[0], 7); Pi.characters() 

[Character of Q_7*, of level 0, mapping 7 |--> -1/2*j0^2 - 7/2] 

sage: Pi.characters()[0] ^2 == Pi.central_character() 

True 

 

An example using a non-standard twist factor:: 

 

sage: Pi = LocalComponent(Newforms(DirichletGroup(21)([-1, 1]), 3, names='j')[0], 7, twist_factor=3); Pi.characters() 

[Character of Q_7*, of level 0, mapping 7 |--> -7/2*j0^2 - 49/2] 

sage: Pi.characters()[0]^2 == Pi.central_character() 

True 

""" 

 

return [SmoothCharacterGroupQp(self.prime(), self.coefficient_field()).character(0, [self.newform()[self.prime()] * self.prime() ** ((self.twist_factor() - self.newform().weight() + 2)/2)])] 

 

def check_tempered(self): 

r""" 

Check that this representation is tempered (after twisting by 

`|\det|^{j/2}` where `j` is the twist factor). Since local components 

of modular forms are always tempered, this is a useful check on our 

calculations. 

 

EXAMPLES:: 

 

sage: Pi = LocalComponent(Newforms(DirichletGroup(21)([-1, 1]), 3, names='j')[0], 7) 

sage: Pi.check_tempered() 

""" 

c1 = self.characters()[0] 

K = c1.base_ring() 

p = self.prime() 

w = QQbar(p)**(self.twist_factor() / ZZ(2)) 

for sigma in K.embeddings(QQbar): 

assert sigma(c1(p)).abs() == w 

 

class PrimitiveSupercuspidal(LocalComponentBase): 

r""" 

A primitive supercuspidal representation. 

 

Except for some exceptional cases 

when `p = 2` which we do not implement here, such representations are 

parametrized by smooth characters of tamely ramified quadratic extensions 

of `\QQ_p`. 

 

EXAMPLES:: 

 

sage: f = Newform("50a") 

sage: Pi = LocalComponent(f, 5) 

sage: type(Pi) 

<class 'sage.modular.local_comp.local_comp.PrimitiveSupercuspidal'> 

sage: Pi.species() 

'Supercuspidal' 

sage: TestSuite(Pi).run() 

""" 

 

def species(self): 

r""" 

The species of this local component, which is either 'Principal 

Series', 'Special' or 'Supercuspidal'. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('49a'), 7).species() 

'Supercuspidal' 

""" 

return "Supercuspidal" 

 

@cached_method 

def type_space(self): 

r""" 

Return a :class:`~sage.modular.local_comp.type_space.TypeSpace` object 

describing the (homological) type space of this newform, which we know 

is dual to the type space of the local component. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform('49a'), 7).type_space() 

6-dimensional type space at prime 7 of form q + q^2 - q^4 + O(q^6) 

""" 

return TypeSpace(self.newform(), self.prime()) 

 

def characters(self): 

r""" 

Return the two conjugate characters of `K^\times`, where `K` is some 

quadratic extension of `\QQ_p`, defining this representation. This is 

fully implemented only in the case where the power of `p` dividing the 

level of the form is even, in which case `K` is the unique unramified 

quadratic extension of `\QQ_p`. 

 

EXAMPLES: 

 

The first example from [LW2012]_:: 

 

sage: f = Newform('50a') 

sage: Pi = LocalComponent(f, 5) 

sage: chars = Pi.characters(); chars 

[ 

Character of unramified extension Q_5(s)* (s^2 + 4*s + 2 = 0), of level 1, mapping s |--> d, 5 |--> 1, 

Character of unramified extension Q_5(s)* (s^2 + 4*s + 2 = 0), of level 1, mapping s |--> -d - 1, 5 |--> 1 

] 

sage: chars[0].base_ring() 

Number Field in d with defining polynomial x^2 + x + 1 

 

These characters are interchanged by the Frobenius automorphism of `\mathbb{F}_{25}`:: 

 

sage: chars[0] == chars[1]**5 

True 

 

A more complicated example (higher weight and nontrivial central character):: 

 

sage: f = Newforms(GammaH(25, [6]), 3, names='j')[0]; f 

q + j0*q^2 + 1/3*j0^3*q^3 - 1/3*j0^2*q^4 + O(q^6) 

sage: Pi = LocalComponent(f, 5) 

sage: Pi.characters() 

[ 

Character of unramified extension Q_5(s)* (s^2 + 4*s + 2 = 0), of level 1, mapping s |--> d, 5 |--> 5, 

Character of unramified extension Q_5(s)* (s^2 + 4*s + 2 = 0), of level 1, mapping s |--> -d - 1/3*j0^3, 5 |--> 5 

] 

sage: Pi.characters()[0].base_ring() 

Number Field in d with defining polynomial x^2 + 1/3*j0^3*x - 1/3*j0^2 over its base field 

 

.. warning:: 

 

The above output isn't actually the same as in Example 2 of 

[LW2012]_, due to an error in the published paper (correction 

pending) -- the published paper has the inverses of the above 

characters. 

 

A higher level example:: 

 

sage: f = Newform('81a', names='j'); f 

q + j0*q^2 + q^4 - j0*q^5 + O(q^6) 

sage: LocalComponent(f, 3).characters() # long time (12s on sage.math, 2012) 

[ 

Character of unramified extension Q_3(s)* (s^2 + 2*s + 2 = 0), of level 2, mapping -2*s |--> -2*d - j0, 4 |--> 1, 3*s + 1 |--> -j0*d - 2, 3 |--> 1, 

Character of unramified extension Q_3(s)* (s^2 + 2*s + 2 = 0), of level 2, mapping -2*s |--> 2*d + j0, 4 |--> 1, 3*s + 1 |--> j0*d + 1, 3 |--> 1 

] 

 

In the ramified case, it's not fully implemented, and just returns a 

string indicating which ramified extension is being considered:: 

 

sage: Pi = LocalComponent(Newform('27a'), 3) 

sage: Pi.characters() 

'Character of Q_3(sqrt(-3))' 

sage: Pi = LocalComponent(Newform('54a'), 3) 

sage: Pi.characters() 

'Character of Q_3(sqrt(3))' 

""" 

T = self.type_space() 

if self.conductor() % 2 == 0: 

 

G = SmoothCharacterGroupUnramifiedQuadratic(self.prime(), self.coefficient_field()) 

n = self.conductor() // 2 

g = G.quotient_gen(n) 

m = g.matrix().change_ring(ZZ).list() 

tr = (~T.rho(m)).trace() 

 

# The inverse is needed here because T is the *homological* type space, 

# which is dual to the cohomological one that defines the local component. 

 

X = polygen(self.coefficient_field()) 

theta_poly = X**2 - (-1)**n*tr*X + self.central_character()(g.norm()) 

if theta_poly.is_irreducible(): 

F = self.coefficient_field().extension(theta_poly, "d") 

G = G.base_extend(F) 

chi1, chi2 = [G.extend_character(n, self.central_character(), x[0]) for x in theta_poly.roots(G.base_ring())] 

 

# Consistency checks 

assert chi1.restrict_to_Qp() == chi2.restrict_to_Qp() == self.central_character() 

assert chi1*chi2 == chi1.parent().compose_with_norm(self.central_character()) 

 

return Sequence([chi1, chi2], check=False, cr=True) 

 

else: 

# The ramified case. 

 

p = self.prime() 

 

if p == 2: 

# The ramified 2-adic representations aren't classified by admissible pairs. Die. 

raise NotImplementedError( "Computation with ramified 2-adic representations not implemented" ) 

 

if p % 4 == 3: 

a = ZZ(-1) 

else: 

a = ZZ(Zmod(self.prime()).quadratic_nonresidue()) 

 

tr1 = (~T.rho([0,1,a*p, 0])).trace() 

tr2 = (~T.rho([0,1,p,0])).trace() 

 

if tr1 == tr2 == 0: 

# This *can* happen. E.g. if the central character satisfies 

# chi(-1) = -1, then we have theta(pi) + theta(-pi) = theta(pi) 

# * (1 + -1) = 0. In this case, one can presumably identify 

# the character and the extension by some more subtle argument 

# but I don't know of a good way to automate the process. 

raise NotImplementedError( "Can't identify ramified quadratic extension -- both traces zero" ) 

elif tr1 == 0: 

return "Character of Q_%s(sqrt(%s))" % (p, p) 

 

elif tr2 == 0: 

return "Character of Q_%s(sqrt(%s))" % (p, a*p) 

 

else: 

# At least one of the traces is *always* 0, since the type 

# space has to be isomorphic to its twist by the (ramified 

# quadratic) character corresponding to the quadratic 

# extension. 

raise RuntimeError( "Can't get here!" ) 

 

def check_tempered(self): 

r""" 

Check that this representation is tempered (after twisting by 

`|\det|^{j/2}` where `j` is the twist factor). Since local components 

of modular forms are always tempered, this is a useful check on our 

calculations. 

 

Since the computation of the characters attached to this representation 

is not implemented in the odd-conductor case, a NotImplementedError 

will be raised for such representations. 

 

EXAMPLES:: 

 

sage: LocalComponent(Newform("50a"), 5).check_tempered() 

sage: LocalComponent(Newform("27a"), 3).check_tempered() # not tested 

""" 

if self.conductor() % 2: 

raise NotImplementedError 

c1, c2 = self.characters() 

K = c1.base_ring() 

p = self.prime() 

w = QQbar(p)**(self.twist_factor() / ZZ(2)) 

for sigma in K.embeddings(QQbar): 

assert c1(p).abs() == c2(p).abs() == w