Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

""" 

Graded Rings of Modular Forms 

 

This module contains functions to find generators for the graded ring of 

modular forms of given level. 

 

AUTHORS: 

 

- William Stein (2007-08-24): first version 

""" 

#***************************************************************************** 

# Copyright (C) 2007 William Stein 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

from six.moves import range 

from six import integer_types 

 

from sage.structure.richcmp import richcmp_method, richcmp 

from sage.rings.all import Integer, QQ, ZZ, PowerSeriesRing 

from sage.misc.all import prod, verbose 

from sage.misc.cachefunc import cached_method 

from sage.modular.arithgroup.all import Gamma0, is_CongruenceSubgroup 

from .constructor import ModularForms 

from sage.structure.sage_object import SageObject 

from random import shuffle 

 

def _span_of_forms_in_weight(forms, weight, prec, stop_dim=None, use_random=False): 

r""" 

Utility function. Given a nonempty list of pairs ``(k,f)``, where `k` is an 

integer and `f` is a power series, and a weight l, return all weight l 

forms obtained by multiplying together the given forms. 

 

INPUT: 

 

- ``forms`` -- list of pairs `(k, f)` with k an integer and f a power 

series (all over the same base ring) 

- ``weight`` -- an integer 

- ``prec`` -- an integer (less than or equal to the precision of all the 

forms in ``forms``) -- precision to use in power series computations. 

- ``stop_dim`` -- an integer: stop as soon as we have enough forms to span 

a submodule of this rank (a saturated one if the base ring is `\ZZ`). 

Ignored if ``use_random`` is False. 

- ``use_random`` -- which algorithm to use. If True, tries random products 

of the generators of the appropriate weight until a large enough 

submodule is found (determined by ``stop_dim``). If False, just tries 

everything. 

 

Note that if the given forms do generate the whole space, then 

``use_random=True`` will often be quicker (particularly if the weight is 

large); but if the forms don't generate, the randomized algorithm is no 

help and will actually be substantially slower, because it needs to do 

repeated echelon form calls to check if vectors are in a submodule, while 

the non-randomized algorithm just echelonizes one enormous matrix at the 

end. 

 

EXAMPLES:: 

 

sage: import sage.modular.modform.find_generators as f 

sage: forms = [(4, 240*eisenstein_series_qexp(4,5)), (6,504*eisenstein_series_qexp(6,5))] 

sage: f._span_of_forms_in_weight(forms, 12, prec=5) 

Vector space of degree 5 and dimension 2 over Rational Field 

Basis matrix: 

[ 1 0 196560 16773120 398034000] 

[ 0 1 -24 252 -1472] 

sage: f._span_of_forms_in_weight(forms, 24, prec=5) 

Vector space of degree 5 and dimension 3 over Rational Field 

Basis matrix: 

[ 1 0 0 52416000 39007332000] 

[ 0 1 0 195660 12080128] 

[ 0 0 1 -48 1080] 

sage: ModularForms(1, 24).q_echelon_basis(prec=5) 

[ 

1 + 52416000*q^3 + 39007332000*q^4 + O(q^5), 

q + 195660*q^3 + 12080128*q^4 + O(q^5), 

q^2 - 48*q^3 + 1080*q^4 + O(q^5) 

] 

 

Test the alternative randomized algorithm:: 

 

sage: f._span_of_forms_in_weight(forms, 24, prec=5, use_random=True, stop_dim=3) 

Vector space of degree 5 and dimension 3 over Rational Field 

Basis matrix: 

[ 1 0 0 52416000 39007332000] 

[ 0 1 0 195660 12080128] 

[ 0 0 1 -48 1080] 

""" 

t = verbose('multiplying forms up to weight %s'%weight) 

# Algorithm: run through the monomials of the appropriate weight, and build 

# up the vector space they span. 

 

n = len(forms) 

R = forms[0][1].base_ring() 

V = R ** prec 

W = V.zero_submodule() 

shortforms = [f[1].truncate_powerseries(prec) for f in forms] 

 

# List of weights 

from sage.combinat.integer_vector_weighted import WeightedIntegerVectors 

wts = list(WeightedIntegerVectors(weight, [f[0] for f in forms])) 

t = verbose("calculated weight list", t) 

N = len(wts) 

 

if use_random: 

if stop_dim is None: 

raise ValueError("stop_dim must be provided if use_random is True") 

shuffle(wts) 

 

for c in range(N): 

w = V(prod(shortforms[i]**wts[c][i] for i in range(n)).padded_list(prec)) 

if w in W: continue 

W = V.span(list(W.gens()) + [w]) 

if stop_dim and W.rank() == stop_dim: 

if R != ZZ or W.index_in_saturation() == 1: 

verbose("Succeeded after %s of %s" % (c, N), t) 

return W 

verbose("Nothing worked", t) 

return W 

else: 

G = [V(prod(forms[i][1]**c[i] for i in range(n)).padded_list(prec)) for c in wts] 

t = verbose('found %s candidates' % N, t) 

W = V.span(G) 

verbose('span has dimension %s' % W.rank(), t) 

return W 

 

def find_generators(*args): 

r""" 

This function, which existed in earlier versions of Sage, has now been 

replaced by the :meth:`~ModularFormsRing.generators` method of 

ModularFormsRing objects. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform.find_generators import find_generators 

sage: find_generators() 

Traceback (most recent call last): 

... 

NotImplementedError: find_generators has been removed -- use ModularFormsRing.generators() 

""" 

raise NotImplementedError("find_generators has been removed -- use ModularFormsRing.generators()") 

 

def basis_for_modform_space(*args): 

r""" 

This function, which existed in earlier versions of Sage, has now been 

replaced by the :meth:`~ModularFormsRing.q_expansion_basis` method of 

ModularFormsRing objects. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform.find_generators import basis_for_modform_space 

sage: basis_for_modform_space() 

Traceback (most recent call last): 

... 

NotImplementedError: basis_for_modform_space has been removed -- use ModularFormsRing.q_expansion_basis() 

""" 

raise NotImplementedError("basis_for_modform_space has been removed -- use ModularFormsRing.q_expansion_basis()") 

 

 

@richcmp_method 

class ModularFormsRing(SageObject): 

 

def __init__(self, group, base_ring=QQ): 

r""" 

The ring of modular forms (of weights 0 or at least 2) for a congruence 

subgroup of `{\rm SL}_2(\ZZ)`, with coefficients in a specified base ring. 

 

INPUT: 

 

- ``group`` -- a congruence subgroup of `{\rm SL}_2(\ZZ)`, or a 

positive integer `N` (interpreted as `\Gamma_0(N)`) 

 

- ``base_ring`` (ring, default: `\QQ`) -- a base ring, which should be 

`\QQ`, `\ZZ`, or the integers mod `p` for some prime `p`. 

 

EXAMPLES:: 

 

sage: ModularFormsRing(Gamma1(13)) 

Ring of modular forms for Congruence Subgroup Gamma1(13) with coefficients in Rational Field 

sage: m = ModularFormsRing(4); m 

Ring of modular forms for Congruence Subgroup Gamma0(4) with coefficients in Rational Field 

sage: m.modular_forms_of_weight(2) 

Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(4) of weight 2 over Rational Field 

sage: m.modular_forms_of_weight(10) 

Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(4) of weight 10 over Rational Field 

sage: m == loads(dumps(m)) 

True 

sage: m.generators() 

[(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^10)), 

(2, q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^10))] 

sage: m.q_expansion_basis(2,10) 

[1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^10), 

q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^10)] 

sage: m.q_expansion_basis(3,10) 

[] 

sage: m.q_expansion_basis(10,10) 

[1 + 10560*q^6 + 3960*q^8 + O(q^10), 

q - 8056*q^7 - 30855*q^9 + O(q^10), 

q^2 - 796*q^6 - 8192*q^8 + O(q^10), 

q^3 + 66*q^7 + 832*q^9 + O(q^10), 

q^4 + 40*q^6 + 528*q^8 + O(q^10), 

q^5 + 20*q^7 + 190*q^9 + O(q^10)] 

 

TESTS: 

 

Check that :trac:`15037` is fixed:: 

 

sage: ModularFormsRing(3.4) 

Traceback (most recent call last): 

... 

ValueError: Group (=3.40000000000000) should be a congruence subgroup 

sage: ModularFormsRing(Gamma0(2), base_ring=PolynomialRing(ZZ,x)) 

Traceback (most recent call last): 

... 

ValueError: Base ring (=Univariate Polynomial Ring in x over Integer Ring) should be QQ, ZZ or a finite prime field 

""" 

if isinstance(group, integer_types + (Integer,)): 

group = Gamma0(group) 

elif not is_CongruenceSubgroup(group): 

raise ValueError("Group (=%s) should be a congruence subgroup" % group) 

 

if base_ring != ZZ and not base_ring.is_prime_field(): 

raise ValueError("Base ring (=%s) should be QQ, ZZ or a finite prime field" % base_ring) 

 

self.__group = group 

self.__base_ring = base_ring 

self.__cached_maxweight = ZZ(-1) 

self.__cached_gens = [] 

self.__cached_cusp_maxweight = ZZ(-1) 

self.__cached_cusp_gens = [] 

 

def group(self): 

r""" 

Return the congruence subgroup for which this is the ring of modular forms. 

 

EXAMPLES:: 

 

sage: R = ModularFormsRing(Gamma1(13)) 

sage: R.group() is Gamma1(13) 

True 

""" 

return self.__group 

 

def base_ring(self): 

r""" 

Return the coefficient ring of this modular forms ring. 

 

EXAMPLES:: 

 

sage: ModularFormsRing(Gamma1(13)).base_ring() 

Rational Field 

sage: ModularFormsRing(Gamma1(13), base_ring = ZZ).base_ring() 

Integer Ring 

""" 

return self.__base_ring 

 

def __richcmp__(self, other, op): 

r""" 

Compare self to other. 

 

Rings are equal if and only if their groups and base rings are. 

 

EXAMPLES:: 

 

sage: ModularFormsRing(3) == 3 

False 

sage: ModularFormsRing(Gamma0(3)) == ModularFormsRing(Gamma0(7)) 

False 

sage: ModularFormsRing(Gamma0(3)) == ModularFormsRing(Gamma0(3)) 

True 

""" 

if not isinstance(other, ModularFormsRing): 

return NotImplemented 

 

return richcmp((self.group(), self.base_ring()), 

(other.group(), other.base_ring()), op) 

 

def _repr_(self): 

r""" 

String representation of self. 

 

EXAMPLES:: 

 

sage: ModularFormsRing(Gamma0(13))._repr_() 

'Ring of modular forms for Congruence Subgroup Gamma0(13) with coefficients in Rational Field' 

sage: ModularFormsRing(Gamma1(13), base_ring=ZZ)._repr_() 

'Ring of modular forms for Congruence Subgroup Gamma1(13) with coefficients in Integer Ring' 

""" 

return "Ring of modular forms for %s with coefficients in %s" % (self.group(), self.base_ring()) 

 

def modular_forms_of_weight(self, weight): 

""" 

Return the space of modular forms on this group of the given weight. 

 

EXAMPLES:: 

 

sage: R = ModularFormsRing(13) 

sage: R.modular_forms_of_weight(10) 

Modular Forms space of dimension 11 for Congruence Subgroup Gamma0(13) of weight 10 over Rational Field 

sage: ModularFormsRing(Gamma1(13)).modular_forms_of_weight(3) 

Modular Forms space of dimension 20 for Congruence Subgroup Gamma1(13) of weight 3 over Rational Field 

""" 

return ModularForms(self.group(), weight) 

 

def generators(self, maxweight=8, prec=10, start_gens=[], start_weight=2): 

r""" 

If `R` is the base ring of self, then this function calculates a set of 

modular forms which generate the `R`-algebra of all modular forms of 

weight up to ``maxweight`` with coefficients in `R`. 

 

INPUT: 

 

- ``maxweight`` (integer, default: 8) -- check up to this weight for 

generators 

 

- ``prec`` (integer, default: 10) -- return `q`-expansions to this 

precision 

 

- ``start_gens`` (list, default: ``[]``) -- list of pairs `(k, f)`, or 

triples `(k, f, F)`, where: 

 

- `k` is an integer, 

- `f` is the `q`-expansion of a modular form of weight `k`, as a power series over the base ring of self, 

- `F` (if provided) is a modular form object corresponding to F. 

 

If this list is nonempty, we find a minimal generating set containing 

these forms. If `F` is not supplied, then `f` needs to have 

sufficiently large precision (an error will be raised if this is not 

the case); otherwise, more terms will be calculated from the modular 

form object `F`. 

 

- ``start_weight`` (integer, default: 2) -- calculate the graded 

subalgebra of forms of weight at least ``start_weight``. 

 

OUTPUT: 

 

a list of pairs (k, f), where f is the q-expansion to precision 

``prec`` of a modular form of weight k. 

 

.. SEEALSO:: 

 

:meth:`gen_forms`, which does exactly the same thing, but returns 

Sage modular form objects rather than bare power series, and keeps 

track of a lifting to characteristic 0 when the base ring is a 

finite field. 

 

.. note:: 

 

If called with the default values of ``start_gens`` (an empty list) 

and ``start_weight`` (2), the values will be cached for re-use on 

subsequent calls to this function. (This cache is shared with 

:meth:`gen_forms`). If called with non-default values for these 

parameters, caching will be disabled. 

 

EXAMPLES:: 

 

sage: ModularFormsRing(SL2Z).generators() 

[(4, 1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + 60480*q^6 + 82560*q^7 + 140400*q^8 + 181680*q^9 + O(q^10)), (6, 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 - 4058208*q^6 - 8471232*q^7 - 17047800*q^8 - 29883672*q^9 + O(q^10))] 

sage: s = ModularFormsRing(SL2Z).generators(maxweight=5, prec=3); s 

[(4, 1 + 240*q + 2160*q^2 + O(q^3))] 

sage: s[0][1].parent() 

Power Series Ring in q over Rational Field 

 

sage: ModularFormsRing(1).generators(prec=4) 

[(4, 1 + 240*q + 2160*q^2 + 6720*q^3 + O(q^4)), (6, 1 - 504*q - 16632*q^2 - 122976*q^3 + O(q^4))] 

sage: ModularFormsRing(2).generators(prec=12) 

[(2, 1 + 24*q + 24*q^2 + 96*q^3 + 24*q^4 + 144*q^5 + 96*q^6 + 192*q^7 + 24*q^8 + 312*q^9 + 144*q^10 + 288*q^11 + O(q^12)), (4, 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10 + O(q^12))] 

sage: ModularFormsRing(4).generators(maxweight=2, prec=20) 

[(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 144*q^10 + 96*q^12 + 192*q^14 + 24*q^16 + 312*q^18 + O(q^20)), (2, q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + 20*q^19 + O(q^20))] 

 

Here we see that for ``\Gamma_0(11)`` taking a basis of forms in weights 2 

and 4 is enough to generate everything up to weight 12 (and probably 

everything else).:: 

 

sage: v = ModularFormsRing(11).generators(maxweight=12) 

sage: len(v) 

3 

sage: [k for k, _ in v] 

[2, 2, 4] 

sage: dimension_modular_forms(11,2) 

2 

sage: dimension_modular_forms(11,4) 

4 

 

For congruence subgroups not containing -1, we miss out some forms since we 

can't calculate weight 1 forms at present, but we can still find generators 

for the ring of forms of weight `\ge 2`:: 

 

sage: ModularFormsRing(Gamma1(4)).generators(prec=10, maxweight=10) 

[(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^10)), 

(2, q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^10)), 

(3, 1 + 12*q^2 + 64*q^3 + 60*q^4 + 160*q^6 + 384*q^7 + 252*q^8 + O(q^10)), 

(3, q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + 32*q^6 + 48*q^7 + 64*q^8 + 73*q^9 + O(q^10))] 

 

Using different base rings will change the generators:: 

 

sage: ModularFormsRing(Gamma0(13)).generators(maxweight=12, prec=4) 

[(2, 1 + 2*q + 6*q^2 + 8*q^3 + O(q^4)), (4, 1 + O(q^4)), (4, q + O(q^4)), (4, q^2 + O(q^4)), (4, q^3 + O(q^4)), (6, 1 + O(q^4)), (6, q + O(q^4))] 

sage: ModularFormsRing(Gamma0(13),base_ring=ZZ).generators(maxweight=12, prec=4) 

[(2, 1 + 2*q + 6*q^2 + 8*q^3 + O(q^4)), (4, O(q^4)), (4, q^3 + O(q^4)), (4, q^2 + O(q^4)), (4, q + O(q^4)), (6, O(q^4)), (6, O(q^4)), (12, O(q^4))] 

 

sage: [k for k,f in ModularFormsRing(1, QQ).generators(maxweight=12)] 

[4, 6] 

sage: [k for k,f in ModularFormsRing(1, ZZ).generators(maxweight=12)] 

[4, 6, 12] 

sage: [k for k,f in ModularFormsRing(1, Zmod(5)).generators(maxweight=12)] 

[4, 6] 

sage: [k for k,f in ModularFormsRing(1, Zmod(2)).generators(maxweight=12)] 

[4, 6, 12] 

 

An example where ``start_gens`` are specified:: 

 

sage: M = ModularForms(11, 2); f = (M.0 + M.1).qexp(8) 

sage: ModularFormsRing(11).generators(start_gens = [(2, f)]) 

Traceback (most recent call last): 

... 

ValueError: Requested precision cannot be higher than precision of approximate starting generators! 

sage: f = (M.0 + M.1).qexp(10); f 

1 + 17/5*q + 26/5*q^2 + 43/5*q^3 + 94/5*q^4 + 77/5*q^5 + 154/5*q^6 + 86/5*q^7 + 36*q^8 + 146/5*q^9 + O(q^10) 

sage: ModularFormsRing(11).generators(start_gens = [(2, f)]) 

[(2, 1 + 17/5*q + 26/5*q^2 + 43/5*q^3 + 94/5*q^4 + 77/5*q^5 + 154/5*q^6 + 86/5*q^7 + 36*q^8 + 146/5*q^9 + O(q^10)), (2, 1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10)), (4, 1 + O(q^10))] 

""" 

sgs = [] 

for x in start_gens: 

if len(x) == 2: 

if x[1].prec() < prec: 

raise ValueError("Requested precision cannot be higher than precision of approximate starting generators!") 

sgs.append((x[0], x[1], None)) 

else: 

sgs.append(x) 

 

G = self._find_generators(maxweight, tuple(sgs), start_weight) 

 

ret = [] 

# Returned generators may be a funny mixture of precisions if start_gens has been used. 

for k, f, F in G: 

if f.prec() < prec: 

f = F.qexp(prec).change_ring(self.base_ring()) 

else: 

f = f.truncate_powerseries(prec) 

ret.append((k, f)) 

 

return ret 

 

 

def gen_forms(self, maxweight=8, start_gens=[], start_weight=2): 

r""" 

This function calculates a list of modular forms generating this ring 

(as an algebra over the appropriate base ring). It differs from 

:meth:`generators` only in that it returns Sage modular form objects, 

rather than bare `q`-expansions; and if the base ring is a finite 

field, the modular forms returned will be forms in characteristic 0 

with integral `q`-expansions whose reductions modulo `p` generate the 

ring of modular forms mod `p`. 

 

INPUT: 

 

- ``maxweight`` (integer, default: 8) -- calculate forms generating all 

forms up to this weight. 

 

- ``start_gens`` (list, default: ``[]``) -- a list of modular forms. If 

this list is nonempty, we find a minimal generating set containing 

these forms. 

 

- ``start_weight`` (integer, default: 2) -- calculate the graded 

subalgebra of forms of weight at least ``start_weight``. 

 

.. note:: 

 

If called with the default values of ``start_gens`` (an empty list) 

and ``start_weight`` (2), the values will be cached for re-use on 

subsequent calls to this function. (This cache is shared with 

:meth:`generators`). If called with non-default values for these 

parameters, caching will be disabled. 

 

EXAMPLES:: 

 

sage: A = ModularFormsRing(Gamma0(11), Zmod(5)).gen_forms(); A 

[1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + O(q^6), q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6), q - 9*q^4 - 10*q^5 + O(q^6)] 

sage: A[0].parent() 

Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field 

""" 

sgs = tuple( (F.weight(), None, F) for F in start_gens ) 

G = self._find_generators(maxweight, sgs, start_weight) 

return [F for k,f,F in G] 

 

def _find_generators(self, maxweight, start_gens, start_weight): 

r""" 

For internal use. This function is called by :meth:`generators` and 

:meth:`gen_forms`: it returns a list of triples `(k, f, F)` where `F` 

is a modular form of weight `k` and `f` is its `q`-expansion coerced 

into the base ring of self. 

 

INPUT: 

 

- maxweight: maximum weight to try 

- start_weight: minimum weight to try 

- start_gens: a sequence of tuples of the form `(k, f, F)`, where `F` is a 

modular form of weight `k` and `f` is its `q`-expansion coerced into 

``self.base_ring()`. Either (but not both) of `f` and `F` may be 

None. 

 

OUTPUT: 

 

a list of tuples, formatted as with ``start_gens``. 

 

EXAMPLES:: 

 

sage: R = ModularFormsRing(Gamma1(4)) 

sage: R._find_generators(8, (), 2) 

[(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^9), 1 + 24*q^2 + 24*q^4 + O(q^6)), (2, q + 4*q^3 + 6*q^5 + 8*q^7 + O(q^9), q + 4*q^3 + 6*q^5 + O(q^6)), (3, 1 + 12*q^2 + 64*q^3 + 60*q^4 + 160*q^6 + 384*q^7 + 252*q^8 + O(q^9), 1 + 12*q^2 + 64*q^3 + 60*q^4 + O(q^6)), (3, q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + 32*q^6 + 48*q^7 + 64*q^8 + O(q^9), q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + O(q^6))] 

""" 

default_params = (start_gens == () and start_weight == 2) 

 

if default_params and self.__cached_maxweight != -1: 

verbose("Already know generators up to weight %s -- using those" % self.__cached_maxweight) 

 

if self.__cached_maxweight >= maxweight: 

return [(k, f, F) for k, f, F in self.__cached_gens if k <= maxweight] 

 

start_gens = self.__cached_gens 

start_weight = self.__cached_maxweight + 1 

 

if self.group().is_even(): 

increment = 2 

else: 

increment = 1 

 

working_prec = self.modular_forms_of_weight(maxweight).sturm_bound() 

 

# parse the list of start gens 

G = [] 

for x in start_gens: 

k, f, F = x 

if F is None and f.prec() < working_prec: 

raise ValueError("Need start gens to precision at least %s" % working_prec) 

elif f is None or f.prec() < working_prec: 

f = F.qexp(working_prec).change_ring(self.base_ring()) 

G.append((k, f, F)) 

 

k = start_weight 

if increment == 2 and (k % 2) == 1: k += 1 

 

while k <= maxweight: 

 

if self.modular_forms_of_weight(k).dimension() == 0: 

k += increment 

continue 

 

verbose('Looking at k = %s'%k) 

M = self.modular_forms_of_weight(k) 

 

# 1. Multiply together all forms in G that give an element 

# of M. 

if G != []: 

F = _span_of_forms_in_weight(G, k, M.sturm_bound(), None, False) 

else: 

F = (self.base_ring() ** M.sturm_bound()).zero_submodule() 

 

# 2. If the dimension of the span of the result is equal 

# to the dimension of M, increment k. 

if F.rank() == M.dimension(): 

if self.base_ring().is_field() or F.index_in_saturation() == 1: 

# TODO: Do something clever if the submodule's of the right 

# rank but not saturated -- avoid triggering needless 

# modular symbol computations. 

verbose('Nothing new in weight %s' % k) 

k += increment 

continue 

 

# 3. If the dimension is less, compute a basis for G, and 

# try adding basis elements of M into G. 

 

verbose("Known generators span a subspace of dimension %s of space of dimension %s" % (F.dimension(), M.dimension())) 

if self.base_ring() == ZZ: verbose("saturation index is %s" % F.index_in_saturation()) 

 

t = verbose("Computing more modular forms at weight %s" % k) 

kprec = M.sturm_bound() 

if self.base_ring() == QQ: 

B = M.q_echelon_basis(working_prec) 

else: 

B = M.q_integral_basis(working_prec) 

t = verbose("done computing forms", t) 

V = F.ambient_module().submodule_with_basis([f.padded_list(kprec) for f in B]) 

Q = V / F 

for q in Q.gens(): 

try: 

qc = V.coordinates(Q.lift(q)) 

except AttributeError: 

# work around a silly free module bug 

qc = V.coordinates(q.lift()) 

qcZZ = [ZZ(_) for _ in qc] # lift to ZZ so we can define F 

f = sum([B[i] * qcZZ[i] for i in range(len(B))]) 

F = M(f) 

G.append((k, f.change_ring(self.base_ring()), F)) 

 

verbose('added %s new generators' % Q.ngens(), t) 

k += increment 

 

if default_params: 

self.__cached_maxweight = maxweight 

self.__cached_gens = G 

 

return G 

 

@cached_method 

def q_expansion_basis(self, weight, prec=None, use_random=True): 

r""" 

Calculate a basis of q-expansions for the space of modular forms of the 

given weight for this group, calculated using the ring generators given 

by ``find_generators``. 

 

INPUT: 

 

- ``weight`` (integer) -- the weight 

- ``prec`` (integer or ``None``, default: ``None``) -- power series 

precision. If ``None``, the precision defaults to the Sturm bound for 

the requested level and weight. 

- ``use_random`` (boolean, default: True) -- whether or not to use a 

randomized algorithm when building up the space of forms at the given 

weight from known generators of small weight. 

 

EXAMPLES:: 

 

sage: m = ModularFormsRing(Gamma0(4)) 

sage: m.q_expansion_basis(2,10) 

[1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^10), 

q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^10)] 

sage: m.q_expansion_basis(3,10) 

[] 

 

sage: X = ModularFormsRing(SL2Z) 

sage: X.q_expansion_basis(12, 10) 

[1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + 34417656000*q^6 + 187489935360*q^7 + 814879774800*q^8 + 2975551488000*q^9 + O(q^10), 

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 + O(q^10)] 

 

We calculate a basis of a massive modular forms space, in two ways. 

Using this module is about twice as fast as Sage's generic code. :: 

 

sage: A = ModularFormsRing(11).q_expansion_basis(30, prec=40) # long time (5s) 

sage: B = ModularForms(Gamma0(11), 30).q_echelon_basis(prec=40) # long time (9s) 

sage: A == B # long time 

True 

 

Check that absurdly small values of ``prec`` don't mess things up:: 

 

sage: ModularFormsRing(11).q_expansion_basis(10, prec=5) 

[1 + O(q^5), q + O(q^5), q^2 + O(q^5), q^3 + O(q^5), q^4 + O(q^5), O(q^5), O(q^5), O(q^5), O(q^5), O(q^5)] 

""" 

d = self.modular_forms_of_weight(weight).dimension() 

if d == 0: return [] 

 

if prec is None: 

prec=self.modular_forms_of_weight(weight).sturm_bound() 

 

working_prec = max(prec, self.modular_forms_of_weight(weight).sturm_bound()) 

 

gen_weight = min(6, weight) 

 

while True: 

verbose("Trying to generate the %s-dimensional space at weight %s using generators of weight up to %s" % (d, weight, gen_weight)) 

G = self.generators(maxweight=gen_weight, prec=working_prec) 

V = _span_of_forms_in_weight(G, weight, prec=working_prec, use_random=use_random, stop_dim=d) 

if V.rank() == d and (self.base_ring().is_field() or V.index_in_saturation() == 1): 

break 

else: 

gen_weight += 1 

verbose("Need more generators: trying again with generators of weight up to %s" % gen_weight) 

 

R = G[0][1].parent() 

return [R(list(x), prec=prec) for x in V.gens()] 

 

def cuspidal_ideal_generators(self, maxweight=8, prec=None): 

r""" 

Calculate generators for the ideal of cuspidal forms in this ring, as a 

module over the whole ring. 

 

EXAMPLES:: 

 

sage: ModularFormsRing(Gamma0(3)).cuspidal_ideal_generators(maxweight=12) 

[(6, q - 6*q^2 + 9*q^3 + 4*q^4 + O(q^5), q - 6*q^2 + 9*q^3 + 4*q^4 + 6*q^5 + O(q^6))] 

sage: [k for k,f,F in ModularFormsRing(13, base_ring=ZZ).cuspidal_ideal_generators(maxweight=14)] 

[4, 4, 4, 6, 6, 12] 

""" 

working_prec = self.modular_forms_of_weight(maxweight).sturm_bound() 

 

if self.__cached_cusp_maxweight > -1: 

k = self.__cached_cusp_maxweight + 1 

verbose("Already calculated cusp gens up to weight %s -- using those" % (k-1)) 

 

# we may need to increase the precision of the cached cusp 

# generators 

G = [] 

for j,f,F in self.__cached_cusp_gens: 

if f.prec() >= working_prec: 

f = F.qexp(working_prec).change_ring(self.base_ring()) 

G.append( (j,f,F) ) 

else: 

k = 2 

G = [] 

 

 

while k <= maxweight: 

t = verbose("Looking for cusp generators in weight %s" % k) 

 

kprec = self.modular_forms_of_weight(k).sturm_bound() 

 

flist = [] 

 

for (j, f, F) in G: 

for g in self.q_expansion_basis(k - j, prec=kprec): 

flist.append(g*f) 

A = self.base_ring() ** kprec 

W = A.span([A(f.padded_list(kprec)) for f in flist]) 

 

S = self.modular_forms_of_weight(k).cuspidal_submodule() 

if (W.rank() == S.dimension() 

and (self.base_ring().is_field() or W.index_in_saturation() == 1)): 

verbose("Nothing new in weight %s" % k, t) 

k += 1 

continue 

 

t = verbose("Known cusp generators span a submodule of dimension %s of space of dimension %s" % (W.rank(), S.dimension()), t) 

 

B = S.q_integral_basis(prec=working_prec) 

V = A.span([A(f.change_ring(self.base_ring()).padded_list(kprec)) for f in B]) 

Q = V/W 

 

for q in Q.gens(): 

try: 

qc = V.coordinates(Q.lift(q)) 

except AttributeError: 

# work around a silly free module bug 

qc = V.coordinates(q.lift()) 

qcZZ = [ZZ(_) for _ in qc] # lift to ZZ so we can define F 

f = sum([B[i] * qcZZ[i] for i in range(len(B))]) 

F = S(f) 

G.append((k, f.change_ring(self.base_ring()), F)) 

 

verbose('added %s new generators' % Q.ngens(), t) 

k += 1 

 

self.__cached_cusp_maxweight = maxweight 

self.__cached_cusp_gens = G 

 

if prec is None: 

return G 

elif prec <= working_prec: 

return [ (k, f.truncate_powerseries(prec), F) for k,f,F in G] 

else: 

# user wants increased precision, so we may as well cache that 

Gnew = [ (k, F.qexp(prec).change_ring(self.base_ring()), F) for k,f,F in G] 

self.__cached_cusp_gens = Gnew 

return Gnew 

 

def cuspidal_submodule_q_expansion_basis(self, weight, prec=None): 

r""" 

Calculate a basis of `q`-expansions for the space of cusp forms of 

weight ``weight`` for this group. 

 

INPUT: 

 

- ``weight`` (integer) -- the weight 

- ``prec`` (integer or None) -- precision of `q`-expansions to return 

 

ALGORITHM: Uses the method :meth:`cuspidal_ideal_generators` to 

calculate generators of the ideal of cusp forms inside this ring. Then 

multiply these up to weight ``weight`` using the generators of the 

whole modular form space returned by :meth:`q_expansion_basis`. 

 

EXAMPLES:: 

 

sage: R = ModularFormsRing(Gamma0(3)) 

sage: R.cuspidal_submodule_q_expansion_basis(20) 

[q - 8532*q^6 - 88442*q^7 + O(q^8), q^2 + 207*q^6 + 24516*q^7 + O(q^8), q^3 + 456*q^6 + O(q^8), q^4 - 135*q^6 - 926*q^7 + O(q^8), q^5 + 18*q^6 + 135*q^7 + O(q^8)] 

 

We compute a basis of a space of very large weight, quickly (using this 

module) and slowly (using modular symbols), and verify that the answers 

are the same. :: 

 

sage: A = R.cuspidal_submodule_q_expansion_basis(80, prec=30) # long time (1s on sage.math, 2013) 

sage: B = R.modular_forms_of_weight(80).cuspidal_submodule().q_expansion_basis(prec=30) # long time (19s on sage.math, 2013) 

sage: A == B # long time 

True 

""" 

d = self.modular_forms_of_weight(weight).cuspidal_submodule().dimension() 

if d == 0: return [] 

 

minprec = self.modular_forms_of_weight(weight).sturm_bound() 

if prec is None: 

prec = working_prec = minprec 

else: 

working_prec = max(prec, minprec) 

 

gen_weight = min(6, weight) 

 

while True: 

verbose("Trying to generate the %s-dimensional cuspidal submodule at weight %s using generators of weight up to %s" % (d, weight, gen_weight)) 

G = self.cuspidal_ideal_generators(maxweight=gen_weight, prec=working_prec) 

 

flist = [] 

for (j, f, F) in G: 

for g in self.q_expansion_basis(weight - j, prec=working_prec): 

flist.append(g*f) 

 

A = self.base_ring() ** working_prec 

W = A.span([A(f.padded_list(working_prec)) for f in flist]) 

if W.rank() == d and (self.base_ring().is_field() or W.index_in_saturation() == 1): 

break 

else: 

gen_weight += 1 

verbose("Need more generators: trying again with generators of weight up to %s" % gen_weight) 

 

R = G[0][1].parent() 

return [R(list(x), prec=prec) for x in W.gens()]