Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

""" 

Hecke Operators on `q`-expansions 

""" 

from __future__ import absolute_import 

 

#***************************************************************************** 

# Copyright (C) 2004-2006 William Stein <wstein@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.modular.dirichlet import DirichletGroup, is_DirichletCharacter 

from sage.rings.all import ZZ, Integer, Infinity, CyclotomicField 

from sage.arith.all import divisors, gcd 

 

from sage.rings.power_series_ring_element import is_PowerSeries 

 

from sage.matrix.all import matrix, MatrixSpace 

from .element import is_ModularFormElement 

 

def hecke_operator_on_qexp(f, n, k, eps = None, 

prec=None, check=True, _return_list=False): 

r""" 

Given the `q`-expansion `f` of a modular form with character 

`\varepsilon`, this function computes the image of `f` under the 

Hecke operator `T_{n,k}` of weight `k`. 

 

EXAMPLES:: 

 

sage: M = ModularForms(1,12) 

sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 

252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + O(q^5) 

sage: hecke_operator_on_qexp(M.basis()[0], 1, 12, prec=7) 

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7) 

sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) 

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + O(q^14) 

 

sage: M.prec(20) 

20 

sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 

252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) 

sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) 

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + 401856*q^14 + 1217160*q^15 + 987136*q^16 - 6905934*q^17 + 2727432*q^18 + 10661420*q^19 - 7109760*q^20 + O(q^21) 

 

sage: (hecke_operator_on_qexp(M.basis()[0], 1, 12)*252).add_bigoh(7) 

252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) 

 

sage: hecke_operator_on_qexp(M.basis()[0], 6, 12) 

-6048*q + 145152*q^2 - 1524096*q^3 + O(q^4) 

 

An example on a formal power series:: 

 

sage: R.<q> = QQ[[]] 

sage: f = q + q^2 + q^3 + q^7 + O(q^8) 

sage: hecke_operator_on_qexp(f, 3, 12) 

q + O(q^3) 

sage: hecke_operator_on_qexp(delta_qexp(24), 3, 12).prec() 

8 

sage: hecke_operator_on_qexp(delta_qexp(25), 3, 12).prec() 

9 

 

An example of computing `T_{p,k}` in characteristic `p`:: 

 

sage: p = 199 

sage: fp = delta_qexp(prec=p^2+1, K=GF(p)) 

sage: tfp = hecke_operator_on_qexp(fp, p, 12) 

sage: tfp == fp[p] * fp 

True 

sage: tf = hecke_operator_on_qexp(delta_qexp(prec=p^2+1), p, 12).change_ring(GF(p)) 

sage: tfp == tf 

True 

""" 

if eps is None: 

# Need to have base_ring=ZZ to work over finite fields, since 

# ZZ can coerce to GF(p), but QQ can't. 

eps = DirichletGroup(1, base_ring=ZZ)[0] 

if check: 

if not (is_PowerSeries(f) or is_ModularFormElement(f)): 

raise TypeError("f (=%s) must be a power series or modular form"%f) 

if not is_DirichletCharacter(eps): 

raise TypeError("eps (=%s) must be a Dirichlet character"%eps) 

k = Integer(k) 

n = Integer(n) 

v = [] 

 

if prec is None: 

if is_ModularFormElement(f): 

# always want at least three coefficients, but not too many, unless 

# requested 

pr = max(f.prec(), f.parent().prec(), (n+1)*3) 

pr = min(pr, 100*(n+1)) 

prec = pr // n + 1 

else: 

prec = (f.prec() / ZZ(n)).ceil() 

if prec == Infinity: prec = f.parent().default_prec() // n + 1 

 

if f.prec() < prec: 

f._compute_q_expansion(prec) 

 

p = Integer(f.base_ring().characteristic()) 

if k != 1 and p.is_prime() and n.is_power_of(p): 

# if computing T_{p^a} in characteristic p, use the simpler (and faster) 

# formula 

v = [f[m*n] for m in range(prec)] 

else: 

l = k-1 

for m in range(prec): 

am = sum([eps(d) * d**l * f[m*n//(d*d)] for \ 

d in divisors(gcd(n, m)) if (m*n) % (d*d) == 0]) 

v.append(am) 

if _return_list: 

return v 

if is_ModularFormElement(f): 

R = f.parent()._q_expansion_ring() 

else: 

R = f.parent() 

return R(v, prec) 

 

def _hecke_operator_on_basis(B, V, n, k, eps): 

""" 

Does the work for hecke_operator_on_basis once the input 

is normalized. 

 

EXAMPLES:: 

 

sage: hecke_operator_on_basis(ModularForms(1,16).q_expansion_basis(30), 3, 16) # indirect doctest 

[ -3348 0] 

[ 0 14348908] 

 

The following used to cause a segfault due to accidentally 

transposed second and third argument (:trac:`2107`):: 

 

sage: B = victor_miller_basis(100,30) 

sage: t2 = hecke_operator_on_basis(B, 100, 2) 

Traceback (most recent call last): 

... 

ValueError: The given basis vectors must be linearly independent. 

""" 

prec = V.degree() 

TB = [hecke_operator_on_qexp(f, n, k, eps, prec, check=False, _return_list=True) 

for f in B] 

TB = [V.coordinate_vector(w) for w in TB] 

return matrix(V.base_ring(), len(B), len(B), TB, sparse=False) 

 

def hecke_operator_on_basis(B, n, k, eps=None, 

already_echelonized = False): 

r""" 

Given a basis `B` of `q`-expansions for a space of modular forms 

with character `\varepsilon` to precision at least `\#B\cdot n+1`, 

this function computes the matrix of `T_n` relative to `B`. 

 

.. note:: 

 

If the elements of B are not known to sufficient precision, 

this function will report that the vectors are linearly 

dependent (since they are to the specified precision). 

 

INPUT: 

 

- ``B`` - list of q-expansions 

 

- ``n`` - an integer >= 1 

 

- ``k`` - an integer 

 

- ``eps`` - Dirichlet character 

 

- ``already_echelonized`` -- bool (default: False); if True, use that the 

basis is already in Echelon form, which saves a lot of time. 

 

EXAMPLES:: 

 

sage: sage.modular.modform.constructor.ModularForms_clear_cache() 

sage: ModularForms(1,12).q_expansion_basis() 

[ 

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6), 

1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + 3199218815520/691*q^5 + O(q^6) 

] 

sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(), 3, 12) 

Traceback (most recent call last): 

... 

ValueError: The given basis vectors must be linearly independent. 

 

sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(30), 3, 12) 

[ 252 0] 

[ 0 177148] 

 

TESTS: 

 

This shows that the problem with finite fields reported at :trac:`8281` is solved:: 

 

sage: bas_mod5 = [f.change_ring(GF(5)) for f in victor_miller_basis(12, 20)] 

sage: hecke_operator_on_basis(bas_mod5, 2, 12) 

[4 0] 

[0 1] 

 

This shows that empty input is handled sensibly (:trac:`12202`):: 

 

sage: x = hecke_operator_on_basis([], 3, 12); x 

[] 

sage: x.parent() 

Full MatrixSpace of 0 by 0 dense matrices over Cyclotomic Field of order 1 and degree 1 

sage: y = hecke_operator_on_basis([], 3, 12, eps=DirichletGroup(13).0^2); y 

[] 

sage: y.parent() 

Full MatrixSpace of 0 by 0 dense matrices over Cyclotomic Field of order 12 and degree 4 

""" 

if not isinstance(B, (list, tuple)): 

raise TypeError("B (=%s) must be a list or tuple"%B) 

if len(B) == 0: 

if eps is None: 

R = CyclotomicField(1) 

else: 

R = eps.base_ring() 

return MatrixSpace(R, 0)(0) 

f = B[0] 

R = f.base_ring() 

if eps is None: 

eps = DirichletGroup(1, R)[0] 

all_powerseries = True 

for x in B: 

if not is_PowerSeries(x): 

all_powerseries = False 

if not all_powerseries: 

raise TypeError("each element of B must be a power series") 

n = Integer(n) 

k = Integer(k) 

prec = (f.prec()-1)//n 

A = R**prec 

V = A.span_of_basis([g.padded_list(prec) for g in B], 

already_echelonized = already_echelonized) 

return _hecke_operator_on_basis(B, V, n, k, eps)