Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

r""" 

Constructor for spaces of modular forms for Hecke triangle groups based on a type 

 

AUTHORS: 

 

- Jonas Jermann (2013): initial version 

 

""" 

from __future__ import absolute_import 

 

#***************************************************************************** 

# Copyright (C) 2013-2014 Jonas Jermann <jjermann2@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.rings.all import ZZ, QQ, infinity, PolynomialRing, FractionField 

 

 

def rational_type(f, n=ZZ(3), base_ring=ZZ): 

r""" 

Return the basic analytic properties that can be determined 

directly from the specified rational function ``f`` 

which is interpreted as a representation of an 

element of a FormsRing for the Hecke Triangle group 

with parameter ``n`` and the specified ``base_ring``. 

 

In particular the following degree of the generators is assumed: 

 

`deg(1) := (0, 1)` 

`deg(x) := (4/(n-2), 1)` 

`deg(y) := (2n/(n-2), -1)` 

`deg(z) := (2, -1)` 

 

The meaning of homogeneous elements changes accordingly. 

 

INPUT: 

 

- ``f`` -- A rational function in ``x,y,z,d`` over ``base_ring``. 

 

- ``n`` -- An integer greater or equal to `3` corresponding 

to the ``HeckeTriangleGroup`` with that parameter 

(default: `3`). 

 

- ``base_ring`` -- The base ring of the corresponding forms ring, resp. 

polynomial ring (default: ``ZZ``). 

 

OUTPUT: 

 

A tuple ``(elem, homo, k, ep, analytic_type)`` describing the basic 

analytic properties of `f` (with the interpretation indicated above). 

 

- ``elem`` -- ``True`` if `f` has a homogeneous denominator. 

 

- ``homo`` -- ``True`` if `f` also has a homogeneous numerator. 

 

- ``k`` -- ``None`` if `f` is not homogeneous, otherwise 

the weight of `f` (which is the first component 

of its degree). 

 

- ``ep`` -- ``None`` if `f` is not homogeneous, otherwise 

the multiplier of `f` (which is the second component 

of its degree) 

 

- ``analytic_type`` -- The ``AnalyticType`` of `f`. 

 

For the zero function the degree `(0, 1)` is choosen. 

 

This function is (heavily) used to determine the type of elements 

and to check if the element really is contained in its parent. 

 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.constructor import rational_type 

sage: (x,y,z,d) = var("x,y,z,d") 

 

sage: rational_type(0, n=4) 

(True, True, 0, 1, zero) 

 

sage: rational_type(1, n=12) 

(True, True, 0, 1, modular) 

 

sage: rational_type(x^3 - y^2) 

(True, True, 12, 1, cuspidal) 

 

sage: rational_type(x * z, n=7) 

(True, True, 14/5, -1, quasi modular) 

 

sage: rational_type(1/(x^3 - y^2) + z/d) 

(True, False, None, None, quasi weakly holomorphic modular) 

 

sage: rational_type(x^3/(x^3 - y^2)) 

(True, True, 0, 1, weakly holomorphic modular) 

 

sage: rational_type(1/(x + z)) 

(False, False, None, None, None) 

 

sage: rational_type(1/x + 1/z) 

(True, False, None, None, quasi meromorphic modular) 

 

sage: rational_type(d/x, n=10) 

(True, True, -1/2, 1, meromorphic modular) 

 

sage: rational_type(1.1 * z * (x^8-y^2), n=8, base_ring=CC) 

(True, True, 22/3, -1, quasi cuspidal) 

 

sage: rational_type(x-y^2, n=infinity) 

(True, True, 4, 1, modular) 

 

sage: rational_type(x*(x-y^2), n=infinity) 

(True, True, 8, 1, cuspidal) 

 

sage: rational_type(1/x, n=infinity) 

(True, True, -4, 1, weakly holomorphic modular) 

""" 

 

from .analytic_type import AnalyticType 

AT = AnalyticType() 

 

# Determine whether f is zero 

if (f == 0): 

# elem, homo, k, ep, analytic_type 

return (True, True, QQ(0), ZZ(1), AT([])) 

 

analytic_type = AT(["quasi", "mero"]) 

 

R = PolynomialRing(base_ring,'x,y,z,d') 

F = FractionField(R) 

(x,y,z,d) = R.gens() 

R2 = PolynomialRing(PolynomialRing(base_ring, 'd'), 'x,y,z') 

dhom = R.hom( R2.gens() + (R2.base().gen(),), R2) 

 

f = F(f) 

 

num = R(f.numerator()) 

denom = R(f.denominator()) 

ep_num = set([ZZ(1) - 2*(( sum([g.exponents()[0][m] for m in [1,2]]) )%2) for g in dhom(num).monomials()]) 

ep_denom = set([ZZ(1) - 2*(( sum([g.exponents()[0][m] for m in [1,2]]) )%2) for g in dhom(denom).monomials()]) 

 

if (n == infinity): 

hom_num = R( num.subs(x=x**4, y=y**2, z=z**2) ) 

hom_denom = R( denom.subs(x=x**4, y=y**2, z=z**2) ) 

else: 

n = ZZ(n) 

hom_num = R( num.subs(x=x**4, y=y**(2*n), z=z**(2*(n-2))) ) 

hom_denom = R( denom.subs(x=x**4, y=y**(2*n), z=z**(2*(n-2))) ) 

 

# Determine whether the denominator of f is homogeneous 

if (len(ep_denom) == 1 and dhom(hom_denom).is_homogeneous()): 

elem = True 

else: 

# elem, homo, k, ep, analytic_type 

return (False, False, None, None, None) 

 

 

# Determine whether f is homogeneous 

if (len(ep_num) == 1 and dhom(hom_num).is_homogeneous()): 

homo = True 

if (n == infinity): 

weight = (dhom(hom_num).degree() - dhom(hom_denom).degree()) 

else: 

weight = (dhom(hom_num).degree() - dhom(hom_denom).degree()) / (n-2) 

ep = ep_num.pop() / ep_denom.pop() 

# TODO: decompose f (resp. its degrees) into homogeneous parts 

else: 

homo = False 

weight = None 

ep = None 

 

# Note that we intentionally leave out the d-factor! 

if (n == infinity): 

finf_pol = (x-y**2) 

else: 

finf_pol = x**n-y**2 

 

# Determine whether f is modular 

if not ( (num.degree(z) > 0) or (denom.degree(z) > 0) ): 

analytic_type = analytic_type.reduce_to("mero") 

 

# Determine whether f is holomorphic 

if (dhom(denom).is_constant()): 

analytic_type = analytic_type.reduce_to(["quasi", "holo"]) 

# Determine whether f is cuspidal in the sense that finf divides it... 

# Bug in singular: finf_pol.dividess(1.0) fails over RR 

if (not dhom(num).is_constant() and finf_pol.divides(num)): 

if (n != infinity or x.divides(num)): 

analytic_type = analytic_type.reduce_to(["quasi", "cusp"]) 

else: 

# -> Because of a bug with singular in some cases 

try: 

while (finf_pol.divides(denom)): 

# a simple "denom /= finf_pol" is strangely not enough for non-exact rings 

# and dividing would/may result with an element of the quotient ring of the polynomial ring 

denom = denom.quo_rem(finf_pol)[0] 

denom = R(denom) 

if (n == infinity): 

while (x.divides(denom)): 

# a simple "denom /= x" is strangely not enough for non-exact rings 

# and dividing would/may result with an element of the quotient ring of the polynomial ring 

denom = denom.quo_rem(x)[0] 

denom = R(denom) 

except TypeError: 

pass 

 

# Determine whether f is weakly holomorphic in the sense that at most powers of finf occur in denom 

if (dhom(denom).is_constant()): 

analytic_type = analytic_type.reduce_to(["quasi", "weak"]) 

 

return (elem, homo, weight, ep, analytic_type) 

 

 

def FormsSpace(analytic_type, group=3, base_ring=ZZ, k=QQ(0), ep=None): 

r""" 

Return the FormsSpace with the given ``analytic_type``, ``group`` 

``base_ring`` and degree (``k``, ``ep``). 

 

INPUT: 

 

- ``analytic_type`` -- An element of ``AnalyticType()`` describing 

the analytic type of the space. 

 

- ``group`` -- The index of the (Hecke triangle) group of the 

space (default: `3`). 

 

- ``base_ring`` -- The base ring of the space 

(default: ``ZZ``). 

 

- ``k`` -- The weight of the space, a rational number 

(default: ``0``). 

 

- ``ep`` -- The multiplier of the space, `1`, `-1` 

or ``None`` (in case ``ep`` should be 

determined from ``k``). Default: ``None``. 

 

For the variables ``group``, ``base_ring``, ``k``, ``ep`` 

the same arguments as for the class ``FormsSpace_abstract`` can be used. 

The variables will then be put in canonical form. 

In particular the multiplier ``ep`` is calculated 

as usual from ``k`` if ``ep == None``. 

 

OUTPUT: 

 

The FormsSpace with the given properties. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.constructor import FormsSpace 

sage: FormsSpace([]) 

ZeroForms(n=3, k=0, ep=1) over Integer Ring 

sage: FormsSpace(["quasi"]) # not implemented 

 

sage: FormsSpace("cusp", group=5, base_ring=CC, k=12, ep=1) 

CuspForms(n=5, k=12, ep=1) over Complex Field with 53 bits of precision 

 

sage: FormsSpace("holo") 

ModularForms(n=3, k=0, ep=1) over Integer Ring 

 

sage: FormsSpace("weak", group=6, base_ring=ZZ, k=0, ep=-1) 

WeakModularForms(n=6, k=0, ep=-1) over Integer Ring 

 

sage: FormsSpace("mero", group=7, base_ring=ZZ, k=2, ep=-1) 

MeromorphicModularForms(n=7, k=2, ep=-1) over Integer Ring 

 

sage: FormsSpace(["quasi", "cusp"], group=5, base_ring=CC, k=12, ep=1) 

QuasiCuspForms(n=5, k=12, ep=1) over Complex Field with 53 bits of precision 

 

sage: FormsSpace(["quasi", "holo"]) 

QuasiModularForms(n=3, k=0, ep=1) over Integer Ring 

 

sage: FormsSpace(["quasi", "weak"], group=6, base_ring=ZZ, k=0, ep=-1) 

QuasiWeakModularForms(n=6, k=0, ep=-1) over Integer Ring 

 

sage: FormsSpace(["quasi", "mero"], group=7, base_ring=ZZ, k=2, ep=-1) 

QuasiMeromorphicModularForms(n=7, k=2, ep=-1) over Integer Ring 

 

sage: FormsSpace(["quasi", "cusp"], group=infinity, base_ring=ZZ, k=2, ep=-1) 

QuasiCuspForms(n=+Infinity, k=2, ep=-1) over Integer Ring 

""" 

 

from .space import canonical_parameters 

(group, base_ring, k, ep, n) = canonical_parameters(group, base_ring, k, ep) 

 

from .analytic_type import AnalyticType 

AT = AnalyticType() 

analytic_type = AT(analytic_type) 

 

if analytic_type <= AT("mero"): 

if analytic_type <= AT("weak"): 

if analytic_type <= AT("holo"): 

if analytic_type <= AT("cusp"): 

if analytic_type <= AT([]): 

from .space import ZeroForm 

return ZeroForm(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import CuspForms 

return CuspForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import ModularForms 

return ModularForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import WeakModularForms 

return WeakModularForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import MeromorphicModularForms 

return MeromorphicModularForms(group=group, base_ring=base_ring, k=k, ep=ep) 

elif analytic_type <= AT(["mero", "quasi"]): 

if analytic_type <= AT(["weak", "quasi"]): 

if analytic_type <= AT(["holo", "quasi"]): 

if analytic_type <= AT(["cusp", "quasi"]): 

if analytic_type <= AT(["quasi"]): 

raise ValueError("There should be only non-quasi ZeroForms. That could be changed but then this exception should be removed.") 

from .space import ZeroForm 

return ZeroForm(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import QuasiCuspForms 

return QuasiCuspForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import QuasiModularForms 

return QuasiModularForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import QuasiWeakModularForms 

return QuasiWeakModularForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

from .space import QuasiMeromorphicModularForms 

return QuasiMeromorphicModularForms(group=group, base_ring=base_ring, k=k, ep=ep) 

else: 

raise NotImplementedError("Analytic type not implemented.") 

 

 

def FormsRing(analytic_type, group=3, base_ring=ZZ, red_hom=False): 

r""" 

Return the FormsRing with the given ``analytic_type``, ``group`` 

``base_ring`` and variable ``red_hom``. 

 

INPUT: 

 

- ``analytic_type`` -- An element of ``AnalyticType()`` describing 

the analytic type of the space. 

 

- ``group`` -- The index of the (Hecke triangle) group of the space 

(default: 3`). 

 

- ``base_ring`` -- The base ring of the space 

(default: ``ZZ``). 

 

- ``red_hom`` -- The (boolean= variable ``red_hom`` of the space 

(default: ``False``). 

 

For the variables ``group``, ``base_ring``, ``red_hom`` 

the same arguments as for the class ``FormsRing_abstract`` can be used. 

The variables will then be put in canonical form. 

 

OUTPUT: 

 

The FormsRing with the given properties. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.constructor import FormsRing 

sage: FormsRing("cusp", group=5, base_ring=CC) 

CuspFormsRing(n=5) over Complex Field with 53 bits of precision 

 

sage: FormsRing("holo") 

ModularFormsRing(n=3) over Integer Ring 

 

sage: FormsRing("weak", group=6, base_ring=ZZ, red_hom=True) 

WeakModularFormsRing(n=6) over Integer Ring 

 

sage: FormsRing("mero", group=7, base_ring=ZZ) 

MeromorphicModularFormsRing(n=7) over Integer Ring 

 

sage: FormsRing(["quasi", "cusp"], group=5, base_ring=CC) 

QuasiCuspFormsRing(n=5) over Complex Field with 53 bits of precision 

 

sage: FormsRing(["quasi", "holo"]) 

QuasiModularFormsRing(n=3) over Integer Ring 

 

sage: FormsRing(["quasi", "weak"], group=6, base_ring=ZZ, red_hom=True) 

QuasiWeakModularFormsRing(n=6) over Integer Ring 

 

sage: FormsRing(["quasi", "mero"], group=7, base_ring=ZZ, red_hom=True) 

QuasiMeromorphicModularFormsRing(n=7) over Integer Ring 

 

sage: FormsRing(["quasi", "cusp"], group=infinity) 

QuasiCuspFormsRing(n=+Infinity) over Integer Ring 

""" 

 

from .graded_ring import canonical_parameters 

(group, base_ring, red_hom, n) = canonical_parameters(group, base_ring, red_hom) 

 

from .analytic_type import AnalyticType 

AT = AnalyticType() 

analytic_type = AT(analytic_type) 

 

if analytic_type <= AT("mero"): 

if analytic_type <= AT("weak"): 

if analytic_type <= AT("holo"): 

if analytic_type <= AT("cusp"): 

if analytic_type <=AT([]): 

raise ValueError("Analytic type Zero is not valid for forms rings.") 

else: 

from .graded_ring import CuspFormsRing 

return CuspFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

from .graded_ring import ModularFormsRing 

return ModularFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

from .graded_ring import WeakModularFormsRing 

return WeakModularFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

from .graded_ring import MeromorphicModularFormsRing 

return MeromorphicModularFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

elif analytic_type <= AT(["mero", "quasi"]): 

if analytic_type <= AT(["weak", "quasi"]): 

if analytic_type <= AT(["holo", "quasi"]): 

if analytic_type <= AT(["cusp", "quasi"]): 

if analytic_type <=AT(["quasi"]): 

raise ValueError("Analytic type Zero is not valid for forms rings.") 

else: 

from .graded_ring import QuasiCuspFormsRing 

return QuasiCuspFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

from .graded_ring import QuasiModularFormsRing 

return QuasiModularFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

from .graded_ring import QuasiWeakModularFormsRing 

return QuasiWeakModularFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

from .graded_ring import QuasiMeromorphicModularFormsRing 

return QuasiMeromorphicModularFormsRing(group=group, base_ring=base_ring, red_hom=red_hom) 

else: 

raise NotImplementedError("Analytic type not implemented.")