Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

r""" 

Overview of Hecke triangle groups and modular forms for Hecke triangle groups 

 

AUTHORS: 

 

- Jonas Jermann (2013): initial version 

 

 

Hecke triangle groups and elements: 

----------------------------------- 

 

- **Hecke triangle group:** 

The Von Dyck group corresponding to the triangle group with angles 

``(pi/2, pi/n, 0)`` for ``n=3, 4, 5, ...``, generated by the conformal 

circle inversion ``S`` and by the translation ``T`` by ``lambda=2*cos(pi/n)``. 

I.e. the subgroup of orientation preserving elements of the triangle 

group generated by reflections along the boundaries of the above hyperbolic 

triangle. The group is arithmetic iff ``n=3, 4, 6, infinity``. 

 

The group elements correspond to matrices over ZZ[lambda], namely the 

corresponding order in the number field defined by the minimal polynomial 

of lambda (which embedds into ``AlgebraicReal`` accordingly). 

 

An exact symbolic expression of the corresponding transfinite diameter ``d`` 

(which is used as a formal parameter for Fourier expansion of modular forms) 

can be obtained. For arithmetic groups the (correct) rational number is 

returned instead. 

 

Basic matrices like ``S, T, U, V(j)`` are available. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(12) 

sage: G 

Hecke triangle group for n = 12 

sage: G.is_arithmetic() 

False 

sage: G.dvalue() 

e^(2*euler_gamma - 4*pi/(sqrt(6) + sqrt(2)) + psi(19/24) + psi(17/24)) 

sage: AA(G.lam()) 

1.9318516525781...? 

 

sage: G = HeckeTriangleGroup(6) 

sage: G 

Hecke triangle group for n = 6 

sage: G.is_arithmetic() 

True 

sage: G.dvalue() 

1/108 

sage: AA(G.lam()) == AA(sqrt(3)) 

True 

sage: G.gens() 

( 

[ 0 -1] [ 1 lam] 

[ 1 0], [ 0 1] 

) 

sage: G.U()^3 

[ lam -2] 

[ 2 -lam] 

sage: G.U().parent() 

Hecke triangle group for n = 6 

sage: G.U().matrix().parent() 

Full MatrixSpace of 2 by 2 dense matrices over Maximal Order in Number Field in lam with defining polynomial x^2 - 3 

 

 

- **Decomposition into product of generators:** 

It is possible to decompose any group element into products 

of generators the ``S`` and ``T``. In particular this allows 

to check whether a given matrix indeed is a group element. 

 

It also allows one to calculate the automorphy factor 

of a modular form for the Hecke triangle group for 

arbitrary arguments. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(6) 

sage: G.element_repr_method("basic") 

sage: A = G.V(2)*G.V(3)^(-2) 

sage: (L, sgn) = A.word_S_T() 

sage: L 

(S, T^(-2), S, T^(-1), S, T^(-1)) 

sage: sgn 

-1 

sage: sgn.parent() 

Hecke triangle group for n = 6 

 

sage: G(matrix([[-1, 1+G.lam()],[0, -1]])) 

Traceback (most recent call last): 

... 

TypeError: The matrix is not an element of Hecke triangle group for n = 6, up to equivalence it identifies two nonequivalent points. 

sage: G(matrix([[-1, G.lam()],[0, -1]])) 

-T^(-1) 

 

sage: G.element_repr_method("basic") 

 

sage: from sage.modular.modform_hecketriangle.space import ModularForms 

sage: MF = ModularForms(G, k=4, ep=1) 

sage: z = AlgebraicField()(1+i/2) 

sage: MF.aut_factor(A, z) 

37.62113890008...? + 12.18405525839...?*I 

 

 

- **Representation of elements:** 

An element can be represented in several ways: 

 

- As a matrix over the base ring (default) 

- As a product of the generators ``S`` and ``T`` 

- As a product of basic blocks conjugated by some element 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=5) 

sage: el = G.S()*G.T(3)*G.S()*G.T(-2) 

 

sage: G.element_repr_method("default") 

sage: el 

[ -1 2*lam] 

[ 3*lam -6*lam - 7] 

 

sage: G.element_repr_method("basic") 

sage: el 

S*T^3*S*T^(-2) 

 

sage: G.element_repr_method("block") 

sage: el 

-(S*T^3) * (V(4)^2*V(1)^3) * (S*T^3)^(-1) 

 

sage: G.element_repr_method("conj") 

sage: el 

[-V(4)^2*V(1)^3] 

 

sage: G.element_repr_method("default") 

 

 

- **Group action on the (extended) upper half plane:** 

The group action of Hecke triangle groups on the (extended) 

upper half plane (by linear fractional transformations) 

is implemented. The implementation is not based on a 

specific upper half plane model but is defined formally 

(for arbitrary arguments) instead. 

 

It is possible to determine the group translate of an 

element in the classic (strict) fundamental domain for 

the group, together with the corresponding mapping 

group element. 

 

The corresponding action of the group on itself by 

conjugation is supported as well. 

 

The usual `slash`-operator for even integer weights is 

also available. It acts on rational functions (resp. polynomials). 

For modular forms an evaluation argument is required. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=7) 

sage: G.element_repr_method("basic") 

 

sage: G.S().acton(i + exp(-2)) 

-1/(e^(-2) + I) 

sage: A = G.V(2)*G.V(3)^(-2) 

sage: A 

-S*T^(-2)*S*T^(-1)*S*T^(-1) 

sage: A.acton(CC(i + exp(-2))) 

0.344549645079... + 0.0163901095115...*I 

 

sage: G.S().acton(A) 

-T^(-2)*S*T^(-1)*S*T^(-1)*S 

 

sage: z = AlgebraicField()(4 + 1/7*i) 

sage: G.in_FD(z) 

False 

sage: (A, w) = G.get_FD(z) 

sage: A 

T^2*S*T^(-1)*S 

sage: w 

0.516937798396...? + 0.964078044600...?*I 

 

sage: A.acton(w) == z 

True 

sage: G.in_FD(w) 

True 

 

sage: z = PolynomialRing(G.base_ring(), 'z').gen() 

sage: rat = z^2 + 1/(z-G.lam()) 

sage: G.S().slash(rat) 

(z^6 - lam*z^4 - z^3)/(-lam*z^4 - z^3) 

 

sage: G.element_repr_method("default") 

 

 

- **Basic properties of group elements:** 

The trace, sign (based on the trace), discriminant and 

elliptic/parabolic/hyperbolic type are available. 

 

Group elements can be displayed/represented in several ways: 

 

- As matrices over the base ring. 

- As a word in (powers of) the generators ``S`` and ``T``. 

- As a word in (powers of) basic block matrices ``V(j)`` 

(resp. ``U, S`` in the elliptic case) together 

with the conjugation matrix that maps the element to 

this form (also see below). 

 

For the case ``n=infinity`` the last method is not 

properly implemented. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=7) 

sage: A = -G.V(2)*G.V(3)^(-2) 

 

sage: print(A.string_repr("default")) 

[ lam -lam^2 + 1] 

[ 2*lam^2 - 1 -2*lam^2 - lam + 2] 

sage: print(A.string_repr("basic")) 

S*T^(-2)*S*T^(-1)*S*T^(-1) 

sage: print(A.string_repr("block")) 

-(-S*T^(-1)*S) * (V(3)) * (-S*T^(-1)*S)^(-1) 

sage: print(A.string_repr("conj")) 

[-V(3)] 

sage: A.trace() 

-2*lam^2 + 2 

sage: A.sign() 

[-1 0] 

[ 0 -1] 

sage: A.discriminant() 

4*lam^2 + 4*lam - 4 

sage: A.is_elliptic() 

False 

sage: A.is_hyperbolic() 

True 

 

 

- **Fixed points:** 

Elliptic, parabolic or hyperbolic fixed points of group 

can be obtained. They are implemented as a (relative) 

quadratic extension (given by the square root of the discriminant) 

of the base ring. It is possible to query the correct embedding 

into a given field. 

 

Note that for hyperbolic (and parabolic) fixed points there is a 

1-1 correspondence with primitive hyperbolic/parabolic group 

elements (at least if ``n < infinity``). The group action on 

fixed points resp. on matrices is compatible with this correspondence. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=7) 

 

sage: A = G.S() 

sage: A.fixed_points() 

(1/2*e, -1/2*e) 

sage: A.fixed_points(embedded=True) 

(I, -I) 

 

sage: A = G.U() 

sage: A.fixed_points() 

(1/2*e + 1/2*lam, -1/2*e + 1/2*lam) 

sage: A.fixed_points(embedded=True) 

(0.9009688679024...? + 0.4338837391175...?*I, 0.9009688679024...? - 0.4338837391175...?*I) 

 

sage: A = -G.V(2)*G.V(3)^(-2) 

sage: A.fixed_points() 

((-3/7*lam^2 + 2/7*lam + 11/14)*e - 1/7*lam^2 + 3/7*lam + 3/7, (3/7*lam^2 - 2/7*lam - 11/14)*e - 1/7*lam^2 + 3/7*lam + 3/7) 

sage: A.fixed_points(embedded=True) 

(0.3707208390178...?, 1.103231619181...?) 

 

sage: el = A.fixed_points()[0] 

sage: F = A.root_extension_field() 

sage: F == el.parent() 

True 

sage: A.root_extension_embedding(CC) 

Relative number field morphism: 

From: Number Field in e with defining polynomial x^2 - 4*lam^2 - 4*lam + 4 over its base field 

To: Complex Field with 53 bits of precision 

Defn: e |--> 4.02438434522465 

lam |--> 1.80193773580484 

 

sage: G.V(2).acton(A).fixed_points()[0] == G.V(2).acton(el) 

True 

 

 

- **Lambda-continued fractions:** 

For parabolic or hyperbolic elements (resp. their corresponding 

fixed point) the (negative) lambda-continued fraction expansion 

is eventually periodic. The lambda-CF (i.e. the preperiod and period) 

is calculated exactly. 

 

In particular this allows to determine primitive and reduced 

generators of group elements and the corresponding primitive 

power of the element. 

 

The case ``n=infinity`` is not properly implemented. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=7) 

sage: G.element_repr_method("block") 

 

sage: G.V(6).continued_fraction() 

((1,), (1, 1, 1, 1, 2)) 

sage: (-G.V(2)).continued_fraction() 

((1,), (2,)) 

 

sage: A = -(G.V(2)*G.V(3)^(-2))^2 

sage: A.is_primitive() 

False 

sage: A.primitive_power() 

2 

sage: A.is_reduced() 

False 

sage: A.continued_fraction() 

((1, 1, 1, 1), (1, 2)) 

 

sage: B = A.primitive_part() 

sage: B 

(-S*T^(-1)*S) * (V(3)) * (-S*T^(-1)*S)^(-1) 

sage: B.is_primitive() 

True 

sage: B.is_reduced() 

False 

sage: B.continued_fraction() 

((1, 1, 1, 1), (1, 2)) 

sage: A == A.sign() * B^A.primitive_power() 

True 

 

sage: B = A.reduce() 

sage: B 

(T*S*T) * (V(3)) * (T*S*T)^(-1) 

sage: B.is_primitive() 

True 

sage: B.is_reduced() 

True 

sage: B.continued_fraction() 

((), (1, 2)) 

 

sage: G.element_repr_method("default") 

 

 

- **Reduced and simple elements, Hecke-symmetric elements:** 

For primitive conjugacy classes of hyperbolic elements 

the cycle of reduced elements can be obtain as well as 

all simple elements. It is also possible to determine 

whether a class is Hecke-symmetric. 

 

The case ``n=infinity`` is not properly implemented. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=5) 

 

sage: el = G.V(1)^2*G.V(2)*G.V(4) 

sage: R = el.reduced_elements() 

sage: [v.continued_fraction() for v in R] 

[((), (2, 1, 1, 4)), ((), (1, 1, 4, 2)), ((), (1, 4, 2, 1)), ((), (4, 2, 1, 1))] 

 

sage: el = G.V(1)^2*G.V(2)*G.V(4) 

sage: R = el.simple_elements() 

sage: [v.is_simple() for v in R] 

[True, True, True, True] 

sage: (fp1, fp2) = R[2].fixed_points(embedded=True) 

sage: fp2 < 0 < fp1 

True 

 

sage: el = G.V(2) 

sage: el.is_hecke_symmetric() 

False 

sage: (el.simple_fixed_point_set(), el.inverse().simple_fixed_point_set()) 

({1/2*e, (-1/2*lam + 1/2)*e}, {-1/2*e, (1/2*lam - 1/2)*e}) 

sage: el = G.V(2)*G.V(3) 

sage: el.is_hecke_symmetric() 

True 

sage: el.simple_fixed_point_set() == el.inverse().simple_fixed_point_set() 

True 

 

 

- **Rational period functions:** 

For each primitive (hyperbolic) conjugacy classes and each even 

weight ``k`` we can associate a corresponding rational period 

function. I.e. a rational function ``q`` of weight ``k`` which satisfies: 

``q | S == 0`` and ``q + q|U + ... + q|U^(n-1) == 0``, 

where ``S``, ``U`` are the corresponding group elements and 

``|`` is the usual `slash-operator` of weight ``k``. 

 

The set of all rational period function is expected 

to be generated by such functions. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=5) 

sage: S = G.S() 

sage: U = G.U() 

 

sage: def is_rpf(f, k=None): 

....: if not f + S.slash(f, k=k) == 0: 

....: return False 

....: if not sum([(U^m).slash(f, k=k) for m in range(G.n())]) == 0: 

....: return False 

....: return True 

 

sage: z = PolynomialRing(G.base_ring(), 'z').gen() 

sage: uniq([ is_rpf(1 - z^(-k), k=k) for k in range(-6, 6, 2)]) # long time 

[True] 

sage: [is_rpf(1/z, k=k) for k in range(-6, 6, 2)] 

[False, False, False, False, True, False] 

 

sage: el = G.V(2) 

sage: el.is_hecke_symmetric() 

False 

sage: rpf = el.rational_period_function(-4) 

sage: is_rpf(rpf) 

True 

sage: rpf 

-lam*z^4 + lam 

sage: rpf = el.rational_period_function(-2) 

sage: is_rpf(rpf) 

True 

sage: rpf 

(lam + 1)*z^2 - lam - 1 

sage: el.rational_period_function(0) == 0 

True 

sage: rpf = el.rational_period_function(2) 

sage: is_rpf(rpf) 

True 

sage: rpf 

((lam + 1)*z^2 - lam - 1)/(lam*z^4 + (-lam - 2)*z^2 + lam) 

 

sage: el = G.V(2)*G.V(3) 

sage: el.is_hecke_symmetric() 

True 

sage: el.rational_period_function(-4) == 0 

True 

sage: rpf = el.rational_period_function(-2) 

sage: rpf 

(8*lam + 4)*z^2 - 8*lam - 4 

sage: rpf = el.rational_period_function(2) 

sage: is_rpf(rpf) 

True 

sage: rpf.denominator() 

(144*lam + 89)*z^8 + (-618*lam - 382)*z^6 + (951*lam + 588)*z^4 + (-618*lam - 382)*z^2 + 144*lam + 89 

sage: el.rational_period_function(4) == 0 

True 

 

sage: G = HeckeTriangleGroup(n=4) 

sage: G.rational_period_functions(k=4, D=12) 

[(z^4 - 1)/z^4] 

sage: G.rational_period_functions(k=2, D=14) 

[(z^2 - 1)/z^2, 1/z, (24*z^6 - 120*z^4 + 120*z^2 - 24)/(9*z^8 - 80*z^6 + 146*z^4 - 80*z^2 + 9), (24*z^6 - 120*z^4 + 120*z^2 - 24)/(9*z^8 - 80*z^6 + 146*z^4 - 80*z^2 + 9)] 

 

 

- **Block decomposition of elements:** 

For each group element a very specific conjugacy representative 

can be obtained. For hyperbolic and parabolic elements the 

representative is a product ``V(j)``-matrices. They all 

have non-negative trace and the number of factors is called 

the block length of the element (which is implemented). 

 

Note: For this decomposition special care is given to the 

sign (of the trace) of the matrices. 

 

The case ``n=infinity`` for everything above is not properly implemented. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=7) 

sage: G.element_repr_method("block") 

 

sage: A = -G.V(2)*G.V(6)^3*G.V(3) 

sage: A 

-(T*S*T) * (V(6)^3*V(3)*V(2)) * (T*S*T)^(-1) 

sage: A.sign() 

-1 

sage: (L, R, sgn) = A.block_decomposition() 

sage: L 

((-S*T^(-1)*S) * (V(6)^3) * (-S*T^(-1)*S)^(-1), (T*S*T*S*T) * (V(3)) * (T*S*T*S*T)^(-1), (T*S*T) * (V(2)) * (T*S*T)^(-1)) 

sage: prod(L).sign() 

1 

sage: A == sgn * (R.acton(prod(L))) 

True 

sage: t = A.block_length() 

sage: t 

5 

sage: AA(A.discriminant()) >= AA(t^2 * G.lam() - 4) 

True 

 

 

- **Class number and class representatives**: 

The block length provides a lower bound for the 

discriminant. This allows to enlist all (representatives of) 

matrices of (or up to) a given discriminant. 

 

Using the 1-1 correspondence with hyperbolic fixed points 

(and certain hyperbolic binary quadratic forms) this 

makes it possible to calculate the corresponding class number 

(number of conjugacy classes for a given discriminant). 

 

It also allows to list all occurring discriminants up 

to some bound. Or to enlist all reduced/simple elements 

resp. their corresponding hyperbolic fixed points 

for the given discriminant. 

 

Warning: The currently used algorithm is very slow! 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup 

sage: G = HeckeTriangleGroup(n=4) 

sage: G.element_repr_method("basic") 

sage: G.is_discriminant(68) 

True 

sage: G.class_number(14) 

2 

sage: G.list_discriminants(D=68) 

[4, 12, 14, 28, 32, 46, 60, 68] 

sage: G.list_discriminants(D=0, hyperbolic=False, primitive=False) 

[-4, -2, 0] 

sage: G.class_number(68) 

4 

sage: G.class_representatives(68) 

[S*T^(-2)*S*T^(-1)*S*T, -S*T^(-1)*S*T^2*S*T, S*T^(-5)*S*T^(-1)*S, T*S*T^5] 

sage: R = G.reduced_elements(68) 

sage: uniq([v.is_reduced() for v in R]) # long time 

[True] 

sage: R = G.simple_elements(68) 

sage: uniq([v.is_simple() for v in R]) # long time 

[True] 

sage: G.element_repr_method("default") 

 

sage: G = HeckeTriangleGroup(n=5) 

sage: G.element_repr_method("basic") 

sage: G.list_discriminants(9*G.lam() + 5) 

[4*lam, 7*lam + 6, 9*lam + 5] 

sage: G.list_discriminants(D=0, hyperbolic=False, primitive=False) 

[-4, -lam - 2, lam - 3, 0] 

sage: G.class_number(9*G.lam() + 5) 

2 

sage: G.class_representatives(9*G.lam() + 5) 

[S*T^(-2)*S*T^(-1)*S, T*S*T^2] 

sage: R = G.reduced_elements(9*G.lam() + 5) 

sage: uniq([v.is_reduced() for v in R]) # long time 

[True] 

sage: R = G.simple_elements(7*G.lam() + 6) 

sage: for v in R: print(v.string_repr("default")) 

[lam + 2 lam] 

[ lam 1] 

[ 1 lam] 

[ lam lam + 2] 

sage: G.element_repr_method("default") 

 

 

 

Modular forms ring and spaces for Hecke triangle groups: 

-------------------------------------------------------- 

 

- **Analytic type:** 

The analytic type of forms, including the behavior at infinity: 

 

- Meromorphic (and meromorphic at infinity) 

- Weakly holomorphic (holomorphic and meromorphic at infinity) 

- Holomorphic (and holomorphic at infinity) 

- Cuspidal (holomorphic and zero at infinity) 

 

Additionally the type specifies whether the form is modular or only quasi modular. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.analytic_type import AnalyticType 

sage: AnalyticType()(["quasi", "cusp"]) 

quasi cuspidal 

 

 

- **Modular form (for Hecke triangle groups):** 

A function of some analytic type which transforms like a modular form 

for the given group, weight ``k`` and multiplier ``epsilon``: 

 

- ``f(z+lambda) = f(lambda)`` 

- ``f(-1/z) = epsilon * (z/i)^k * f(z)`` 

 

The multiplier is either ``1`` or ``-1``. 

The weight is a rational number of the form ``4*(n*l+l')/(n-2) + (1-epsilon)*n/(n-2)``. 

If ``n`` is odd, then the multiplier is unique and given by ``(-1)^(k*(n-2)/2)``. 

The space of modular forms for a given group, weight and multiplier forms a module 

over the base ring. It is finite dimensional if the analytic type is ``holomorphic``. 

 

Modular forms can be constructed in several ways: 

 

- Using some already available construction function for modular forms 

(those function are available for all spaces/rings and in general 

do not return elements of the same parent) 

- Specifying the form as a rational function in the basic generators (see below) 

- For weakly holomorphic modular forms it is possible to exactly determine the 

form by specifying (sufficiently many) initial coefficients of its Fourier expansion. 

- There is even hope (no garantuee) to determine a (exact) form from 

the initial numerical coefficients (see below). 

- By specifying the coefficients with respect to a basis of the space 

(if the corresponding space supports coordinate vectors) 

- Arithmetic combination of forms or differential operators applied to forms 

 

The implementation is based on the implementation of the graded ring (see below). 

All calculations are exact (no precision argument is required). 

The analytic type of forms is checked during construction. 

The analytic type of parent spaces after arithmetic/differential operations 

with elements is changed (extended/reduced) accordingly. 

 

In particular it is possible to multiply arbitrary modular forms (and end up 

with an element of a modular forms space). If two forms of different 

weight/multiplier are added then an element of the corresponding 

modular forms ring is returned instead. 

 

Elements of modular forms spaces are represented by their Fourier expansion. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import CuspForms, ModularForms, MeromorphicModularForms 

sage: MeromorphicModularForms(n=4, k=8, ep=1) 

MeromorphicModularForms(n=4, k=8, ep=1) over Integer Ring 

sage: CF = CuspForms(n=7, k=12, ep=1) 

sage: CF 

CuspForms(n=7, k=12, ep=1) over Integer Ring 

 

sage: MF = ModularForms(k=12, ep=1) 

sage: (x,y,z,d) = MF.pol_ring().gens() 

 

Using existing functions: 

sage: CF.Delta() 

q + 17/(56*d)*q^2 + 88887/(2458624*d^2)*q^3 + 941331/(481890304*d^3)*q^4 + O(q^5) 

 

Using rational function in the basic generators: 

sage: MF(x^3) 

1 + 720*q + 179280*q^2 + 16954560*q^3 + 396974160*q^4 + O(q^5) 

 

Using Fourier expansions: 

sage: qexp = CF.Delta().q_expansion(prec=2) 

sage: qexp 

q + O(q^2) 

sage: qexp.parent() 

Power Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring 

sage: MF(qexp) 

q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5) 

 

Using coordinate vectors: 

sage: MF([0,1]) == MF.f_inf() 

True 

 

Using arithmetic expressions: 

sage: d = CF.get_d() 

sage: CF.f_rho()^7 / (d*CF.f_rho()^7 - d*CF.f_i()^2) == CF.j_inv() 

True 

sage: MF.E4().serre_derivative() == -1/3 * MF.E6() 

True 

 

 

- **Hauptmodul:** 

The ``j-function`` for Hecke triangle groups is given by the unique Riemann map 

from the hyperbolic triangle with vertices at ``rho``, ``i`` and ``infinity`` to the 

upper half plane, normalized such that its Fourier coefficients are real and such 

that the first nontrivial Fourier coefficient is 1. The function extends to a 

completely invariant weakly holomorphic function from the upper half plane to the 

complex numbers. Another used normalization (in capital letters) is ``J(i)=1``. 

The coefficients of ``j`` are rational numbers up to a power of ``d=1/j(i)`` 

which is only rational in the arithmetic cases ``n=3, 4, 6, infinity``. 

 

All Fourier coefficients of modular forms are based on the coefficients of ``j``. 

The coefficients of ``j`` are calculated by inverting the Fourier series of its 

inverse (the series inversion is also by far the most expensive operation of all). 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import WeakModularFormsRing 

sage: from sage.modular.modform_hecketriangle.space import WeakModularForms 

sage: WeakModularForms(n=3, k=0, ep=1).j_inv() 

q^-1 + 744 + 196884*q + 21493760*q^2 + 864299970*q^3 + 20245856256*q^4 + O(q^5) 

sage: WeakModularFormsRing(n=7).j_inv() 

f_rho^7/(f_rho^7*d - f_i^2*d) 

sage: WeakModularFormsRing(n=7, red_hom=True).j_inv() 

q^-1 + 151/(392*d) + 165229/(2458624*d^2)*q + 107365/(15059072*d^3)*q^2 + 25493858865/(48358655787008*d^4)*q^3 + 2771867459/(92561489592320*d^5)*q^4 + O(q^5) 

 

 

- **Basic generators:** 

There exist unique modular forms ``f_rho``, ``f_i`` and ``f_inf`` such that 

each has a simple zero at ``rho=exp(pi/n)``, ``i`` and ``infinity`` resp. and 

no other zeros. The forms are normalized such that their first Fourier coefficient 

is ``1``. They have the weight and multiplier ``(4/(n-2), 1)``, ``(2*n/(n-2), -1)``, 

``(4*n/(n-2), 1)`` resp. and can be defined in terms of the Hauptmodul ``j``. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing 

sage: ModularFormsRing(n=5, red_hom=True).f_rho() 

1 + 7/(100*d)*q + 21/(160000*d^2)*q^2 + 1043/(192000000*d^3)*q^3 + 45479/(1228800000000*d^4)*q^4 + O(q^5) 

sage: ModularFormsRing(n=5, red_hom=True).f_i() 

1 - 13/(40*d)*q - 351/(64000*d^2)*q^2 - 13819/(76800000*d^3)*q^3 - 1163669/(491520000000*d^4)*q^4 + O(q^5) 

sage: ModularFormsRing(n=5, red_hom=True).f_inf() 

q - 9/(200*d)*q^2 + 279/(640000*d^2)*q^3 + 961/(192000000*d^3)*q^4 + O(q^5) 

sage: ModularFormsRing(n=5).f_inf() 

f_rho^5*d - f_i^2*d 

 

 

- **Eisenstein series and Delta:** 

The Eisenstein series of weight ``2``, ``4`` and ``6`` exist for all ``n`` and 

are all implemented . Note that except for ``n=3`` the series ``E4`` and ``E6`` 

do not coincide with ``f_rho`` and ``f_i``. 

 

Similarly there always exists a (generalization of) ``Delta``. Except for ``n=3`` 

it also does not coincide with ``f_inf``. 

 

In general Eisenstein series of all even weights exist for all ``n``. 

In the non-arithmetic cases they are however very hard to determine 

(it's an open problem(?) and consequently not yet implemented, 

except for trivial one-dimensional cases). 

 

The Eisenstein series in the arithmetic cases ``n = 3, 4, 6`` are fully 

implemented though. Note that this requires a lot more work/effort 

for ``k != 2, 4, 6`` resp. for multidimensional spaces. 

 

The case ``n=infinity`` is a special case (since there are two cusps) 

and is not implemented yet. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing 

sage: from sage.modular.modform_hecketriangle.space import ModularForms 

sage: ModularFormsRing(n=5).E4() 

f_rho^3 

sage: ModularFormsRing(n=5).E6() 

f_rho^2*f_i 

sage: ModularFormsRing(n=5).Delta() 

f_rho^9*d - f_rho^4*f_i^2*d 

sage: ModularFormsRing(n=5).Delta() == ModularFormsRing(n=5).f_inf()*ModularFormsRing(n=5).f_rho()^4 

True 

 

The basic generators in some arithmetic cases: 

sage: ModularForms(n=3, k=6).E6() 

1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 + O(q^5) 

sage: ModularForms(n=4, k=6).E6() 

1 - 56*q - 2296*q^2 - 13664*q^3 - 73976*q^4 + O(q^5) 

sage: ModularForms(n=infinity, k=4).E4() 

1 + 16*q + 112*q^2 + 448*q^3 + 1136*q^4 + O(q^5) 

 

General Eisenstein series in some arithmetic cases: 

sage: ModularFormsRing(n=4).EisensteinSeries(k=8) 

(-25*f_rho^4 - 9*f_i^2)/(-34) 

sage: ModularForms(n=3, k=12).EisensteinSeries() 

1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + O(q^5) 

sage: ModularForms(n=6, k=12).EisensteinSeries() 

1 + 6552/50443*q + 13425048/50443*q^2 + 1165450104/50443*q^3 + 27494504856/50443*q^4 + O(q^5) 

sage: ModularForms(n=4, k=22, ep=-1).EisensteinSeries() 

1 - 184/53057489*q - 386252984/53057489*q^2 - 1924704989536/53057489*q^3 - 810031218278584/53057489*q^4 + O(q^5) 

 

 

- **Generator for ``k=0``, ``ep=-1``:** 

If ``n`` is even then the space of weakly holomorphic modular forms of weight 

``0`` and multiplier ``-1`` is not empty and generated by one element, 

denoted by ``g_inv``. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import WeakModularForms 

sage: WeakModularForms(n=4, k=0, ep=-1).g_inv() 

q^-1 - 24 - 3820*q - 100352*q^2 - 1217598*q^3 - 10797056*q^4 + O(q^5) 

sage: WeakModularFormsRing(n=8).g_inv() 

f_rho^4*f_i/(f_rho^8*d - f_i^2*d) 

 

 

- **Quasi modular form (for Hecke triangle groups):** 

``E2`` no longer transforms like a modular form but like a quasi modular form. 

More generally quasi modular forms are given in terms of modular forms and powers 

of ``E2``. E.g. a holomorphic quasi modular form is a sum of holomorphic modular 

forms multiplied with a power of ``E2`` such that the weights and multipliers match up. 

The space of quasi modular forms for a given group, weight and multiplier forms a 

module over the base ring. It is finite dimensional if the analytic type is 

``holomorphic``. 

 

The implementation and construction are analogous to modular forms (see above). 

In particular construction of quasi weakly holomorphic forms by their initial 

Laurent coefficients is supported as well! 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing 

sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms, QuasiModularForms, QuasiWeakModularForms 

sage: QuasiCuspForms(n=7, k=12, ep=1) 

QuasiCuspForms(n=7, k=12, ep=1) over Integer Ring 

sage: QuasiModularForms(n=4, k=8, ep=-1) 

QuasiModularForms(n=4, k=8, ep=-1) over Integer Ring 

 

sage: QuasiModularForms(n=4, k=2, ep=-1).E2() 

1 - 8*q - 40*q^2 - 32*q^3 - 104*q^4 + O(q^5) 

 

A quasi weak form can be constructed by using its initial Laurent expansion: 

sage: QF = QuasiWeakModularForms(n=8, k=10/3, ep=-1) 

sage: qexp = (QF.quasi_part_gens(min_exp=-1)[4]).q_expansion(prec=5) 

sage: qexp 

q^-1 - 19/(64*d) - 7497/(262144*d^2)*q + 15889/(8388608*d^3)*q^2 + 543834047/(1649267441664*d^4)*q^3 + 711869853/(43980465111040*d^5)*q^4 + O(q^5) 

sage: qexp.parent() 

Laurent Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring 

sage: QF(qexp).as_ring_element() 

f_rho^3*f_i*E2^2/(f_rho^8*d - f_i^2*d) 

sage: QF(qexp).reduced_parent() 

QuasiWeakModularForms(n=8, k=10/3, ep=-1) over Integer Ring 

 

Derivatives of (quasi weak) modular forms are again quasi (weak) modular forms: 

sage: CF.f_inf().derivative() == CF.f_inf()*CF.E2() 

True 

 

 

- **Ring of (quasi) modular forms:** 

The ring of (quasi) modular forms for a given analytic type and Hecke triangle group. 

In fact it is a graded algebra over the base ring where the grading is over 

``1/(n-2)*Z x Z/(2Z)`` corresponding to the weight and multiplier. 

A ring element is thus a finite linear combination of (quasi) modular forms 

of (possibly) varying weights and multipliers. 

 

Each ring element is represented as a rational function in the 

generators ``f_rho``, ``f_i`` and ``E2``. The representations and arithmetic 

operations are exact (no precision argument is required). 

 

Elements of the ring are represented by the rational function in the generators. 

 

If the parameter ``red_hom`` is set to ``True`` (default: ``False``) then 

operations with homogeneous elements try to return an element of the corresponding 

vector space (if the element is homogeneous) instead of the forms ring. 

It is also easier to use the forms ring with ``red_hom=True`` to construct known 

forms (since then it is not required to specify the weight and multiplier). 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing, ModularFormsRing 

sage: QuasiModularFormsRing(n=5, red_hom=True) 

QuasiModularFormsRing(n=5) over Integer Ring 

sage: ModularFormsRing() 

ModularFormsRing(n=3) over Integer Ring 

sage: (x,y,z,d) = ModularFormsRing().pol_ring().gens() 

 

sage: ModularFormsRing()(x+y) 

f_rho + f_i 

 

sage: QuasiModularFormsRing(n=5, red_hom=True)(x^5-y^2).reduce() 

1/d*q - 9/(200*d^2)*q^2 + 279/(640000*d^3)*q^3 + 961/(192000000*d^4)*q^4 + O(q^5) 

 

 

- **Construction of modular forms spaces and rings:** 

There are functorial constructions behind all forms spaces and rings 

which assure that arithmetic operations between those spaces and rings 

work and fit into the coercion framework. In particular ring elements 

are interpreted as constant modular forms in this context and base 

extensions are done if necessary. 

 

 

- **Fourier expansion of (quasi) modular forms (for Hecke triangle groups):** 

Each (quasi) modular form (in fact each ring element) possesses a Fourier 

expansion of the form ``sum_{n>=n_0} a_n q^n``, where ``n_0`` is an integer, 

``q=exp(2*pi*i*z/lambda)`` and the coefficients ``a_n`` are rational numbers 

(or more generally an extension of rational numbers) up to a power of ``d``, 

where ``d`` is the (possibly) transcendental parameter described above. 

I.e. the coefficient ring is given by ``Frac(R)(d)``. 

 

The coefficients are calculated exactly in terms of the (formal) parameter 

``d``. The expansion is calculated exactly up to the specified precision. 

It is also possible to get a Fourier expansion where ``d`` is evaluated 

to its numerical approximation. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing, QuasiModularFormsRing 

sage: ModularFormsRing(n=4).j_inv().q_expansion(prec=3) 

q^-1 + 13/(32*d) + 1093/(16384*d^2)*q + 47/(8192*d^3)*q^2 + O(q^3) 

sage: QuasiModularFormsRing(n=5).E2().q_expansion(prec=3) 

1 - 9/(200*d)*q - 369/(320000*d^2)*q^2 + O(q^3) 

sage: QuasiModularFormsRing(n=5).E2().q_expansion_fixed_d(prec=3) 

1.000000000000... - 6.380956565426...*q - 23.18584547617...*q^2 + O(q^3) 

 

 

- **Evaluation of forms:** 

(Quasi) modular forms (and also ring elements) can be viewed as 

functions from the upper half plane and can be numerically evaluated 

by using the Fourier expansion. 

 

The evaluation uses the (quasi) modularity properties (if possible) 

for a faster and more precise evaluation. The precision of the result 

depends both on the numerical precision and on the default precision 

used for the Fourier expansion. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing 

sage: f_i = ModularFormsRing(n=4).f_i() 

sage: f_i(i) 

0 

sage: f_i(infinity) 

1 

sage: f_i(1/7 + 0.01*i) 

32189.02016723... + 21226.62951394...*I 

 

 

- **L-functions of forms:** 

Using the (pari based) function ``Dokchitser`` L-functions of non-constant 

holomorphic modular forms are supported for all values of ``n``. 

 

Note: For non-arithmetic groups this involves an irrational conductor. 

The conductor for the arithmetic groups ``n = 3, 4, 6, infinity`` is 

``1, 2, 3, 4`` respectively. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform.eis_series import eisenstein_series_lseries 

sage: from sage.modular.modform_hecketriangle.space import ModularForms 

sage: f = ModularForms(n=3, k=4).E4()/240 

sage: L = f.lseries() 

sage: L.conductor 

1 

sage: L.check_functional_equation() < 2^(-50) 

True 

sage: L(1) 

-0.0304484570583... 

sage: abs(L(1) - eisenstein_series_lseries(4)(1)) < 2^(-53) 

True 

sage: L.taylor_series(1, 3) 

-0.0304484570583... - 0.0504570844798...*z - 0.0350657360354...*z^2 + O(z^3) 

sage: coeffs = f.q_expansion_vector(min_exp=0, max_exp=20, fix_d=True) 

sage: abs(L(10) - sum([coeffs[k] * ZZ(k)^(-10) for k in range(1,len(coeffs))]).n(53)) < 10^(-7) 

True 

 

sage: L = ModularForms(n=6, k=6, ep=-1).E6().lseries(num_prec=200) 

sage: L.conductor 

3 

sage: L.check_functional_equation() < 2^(-180) 

True 

sage: L.eps 

-1 

sage: abs(L(3)) < 2^(-180) 

True 

 

sage: L = ModularForms(n=17, k=12).Delta().lseries() 

sage: L.conductor 

3.86494445880... 

sage: L.check_functional_equation() < 2^(-50) 

True 

sage: L.taylor_series(6, 3) 

2.15697985314... - 1.17385918996...*z + 0.605865993050...*z^2 + O(z^3) 

 

sage: L = ModularForms(n=infinity, k=2, ep=-1).f_i().lseries() 

sage: L.conductor 

4 

sage: L.check_functional_equation() < 2^(-50) 

True 

sage: L.taylor_series(1, 3) 

0.000000000000... + 5.76543616701...*z + 9.92776715593...*z^2 + O(z^3) 

 

 

- **(Serre) derivatives:** 

Derivatives and Serre derivatives of forms can be calculated. 

The analytic type is extended accordingly. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing 

sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms 

sage: f_inf = ModularFormsRing(n=4, red_hom=True).f_inf() 

sage: f_inf.derivative()/f_inf == QuasiModularForms(n=4, k=2, ep=-1).E2() 

True 

sage: ModularFormsRing().E4().serre_derivative() == -1/3 * ModularFormsRing().E6() 

True 

 

 

- **Basis for weakly holomorphic modular forms and Faber polynomials:** 

(Natural) generators of weakly holomorphic modular forms can 

be obtained using the corresponding generalized Faber polynomials. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import WeakModularForms, CuspForms 

sage: MF = WeakModularForms(n=5, k=62/3, ep=-1) 

sage: MF.disp_prec(MF._l1+2) 

 

sage: MF.F_basis(2) 

q^2 - 41/(200*d)*q^3 + O(q^4) 

sage: MF.F_basis(1) 

q - 13071/(640000*d^2)*q^3 + O(q^4) 

sage: MF.F_basis(-0) 

1 - 277043/(192000000*d^3)*q^3 + O(q^4) 

sage: MF.F_basis(-2) 

q^-2 - 162727620113/(40960000000000000*d^5)*q^3 + O(q^4) 

 

 

- **Basis for quasi weakly holomorphic modular forms:** 

(Natural) generators of quasi weakly holomorphic modular forms can 

also be obtained. In most cases it is even possible to find a basis consisting 

of elements with only one non-trivial Laurent coefficient (up to some coefficient). 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import QuasiWeakModularForms 

sage: QF = QuasiWeakModularForms(n=8, k=10/3, ep=-1) 

sage: QF.default_prec(1) 

sage: QF.quasi_part_gens(min_exp=-1) 

[q^-1 + O(q), 

1 + O(q), 

q^-1 - 9/(128*d) + O(q), 

1 + O(q), 

q^-1 - 19/(64*d) + O(q), 

q^-1 + 1/(64*d) + O(q)] 

sage: QF.default_prec(QF.required_laurent_prec(min_exp=-1)) 

sage: QF.q_basis(min_exp=-1) # long time 

[q^-1 + O(q^5), 

1 + O(q^5), 

q + O(q^5), 

q^2 + O(q^5), 

q^3 + O(q^5), 

q^4 + O(q^5)] 

 

 

- **Dimension and basis for holomorphic or cuspidal (quasi) modular forms:** 

For finite dimensional spaces the dimension and a basis can be obtained. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms 

sage: MF = QuasiModularForms(n=5, k=6, ep=-1) 

sage: MF.dimension() 

3 

sage: MF.default_prec(2) 

sage: MF.gens() 

[1 - 37/(200*d)*q + O(q^2), 

1 + 33/(200*d)*q + O(q^2), 

1 - 27/(200*d)*q + O(q^2)] 

 

 

- **Coordinate vectors for (quasi) holomorphic modular forms and (quasi) cusp forms:** 

For (quasi) holomorphic modular forms and (quasi) cusp forms it is possible 

to determine the coordinate vectors of elements with respect to the basis. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import ModularForms 

sage: ModularForms(n=7, k=12, ep=1).dimension() 

3 

sage: ModularForms(n=7, k=12, ep=1).Delta().coordinate_vector() 

(0, 1, 17/(56*d)) 

 

sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms 

sage: MF = QuasiCuspForms(n=7, k=20, ep=1) 

sage: MF.dimension() 

13 

sage: el = MF(MF.Delta()*MF.E2()^4 + MF.Delta()*MF.E2()*MF.E6()) 

sage: el.coordinate_vector() # long time 

(0, 0, 0, 1, 29/(196*d), 0, 0, 0, 0, 1, 17/(56*d), 0, 0) 

 

 

- **Subspaces:** 

It is possible to construct subspaces of (quasi) holomorphic modular forms 

or (quasi) cusp forms spaces with respect to a specified basis of the 

corresponding ambient space. The subspaces also support coordinate 

vectors with respect to its basis. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import ModularForms 

sage: MF = ModularForms(n=7, k=12, ep=1) 

sage: subspace = MF.subspace([MF.E4()^3, MF.Delta()]) 

sage: subspace 

Subspace of dimension 2 of ModularForms(n=7, k=12, ep=1) over Integer Ring 

sage: el = subspace(MF.E6()^2) 

sage: el.coordinate_vector() 

(1, -61/(196*d)) 

sage: el.ambient_coordinate_vector() 

(1, -61/(196*d), -51187/(614656*d^2)) 

 

sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms 

sage: MF = QuasiCuspForms(n=7, k=20, ep=1) 

sage: subspace = MF.subspace([MF.Delta()*MF.E2()^2*MF.E4(), MF.Delta()*MF.E2()^4]) # long time 

sage: subspace # long time 

Subspace of dimension 2 of QuasiCuspForms(n=7, k=20, ep=1) over Integer Ring 

sage: el = subspace(MF.Delta()*MF.E2()^4) # long time 

sage: el.coordinate_vector() # long time 

(0, 1) 

sage: el.ambient_coordinate_vector() # long time 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17/(56*d), 0, 0) 

 

 

- **Theta subgroup:** 

The Hecke triangle group corresponding to ``n=infinity`` is also 

completely supported. In particular the (special) behavior around 

the cusp ``-1`` is considered and can be specified. 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing 

sage: MR = QuasiMeromorphicModularFormsRing(n=infinity, red_hom=True) 

sage: MR 

QuasiMeromorphicModularFormsRing(n=+Infinity) over Integer Ring 

sage: j_inv = MR.j_inv().full_reduce() 

sage: f_i = MR.f_i().full_reduce() 

sage: E4 = MR.E4().full_reduce() 

sage: E2 = MR.E2().full_reduce() 

 

sage: j_inv 

q^-1 + 24 + 276*q + 2048*q^2 + 11202*q^3 + 49152*q^4 + O(q^5) 

sage: MR.f_rho() == MR(1) 

True 

sage: E4 

1 + 16*q + 112*q^2 + 448*q^3 + 1136*q^4 + O(q^5) 

sage: f_i 

1 - 24*q + 24*q^2 - 96*q^3 + 24*q^4 + O(q^5) 

sage: E2 

1 - 8*q - 8*q^2 - 32*q^3 - 40*q^4 + O(q^5) 

sage: E4.derivative() == E4 * (E2 - f_i) 

True 

sage: f_i.serre_derivative() == -1/2 * E4 

True 

sage: MF = f_i.serre_derivative().parent() 

sage: MF 

ModularForms(n=+Infinity, k=4, ep=1) over Integer Ring 

sage: MF.dimension() 

2 

sage: MF.gens() 

[1 + 240*q^2 + 2160*q^4 + O(q^5), q - 8*q^2 + 28*q^3 - 64*q^4 + O(q^5)] 

sage: E4(i) 

1.941017189... 

sage: E4.order_at(-1) 

1 

 

sage: MF = (E2/E4).reduced_parent() 

sage: MF.quasi_part_gens(order_1=-1) 

[1 - 40*q + 552*q^2 - 4896*q^3 + 33320*q^4 + O(q^5), 

1 - 24*q + 264*q^2 - 2016*q^3 + 12264*q^4 + O(q^5)] 

sage: prec = MF.required_laurent_prec(order_1=-1) 

sage: qexp = (E2/E4).q_expansion(prec=prec) 

sage: qexp 

1 - 3/(8*d)*q + O(q^2) 

sage: MF.construct_quasi_form(qexp, order_1=-1) == E2/E4 

True 

sage: MF.disp_prec(6) 

sage: MF.q_basis(m=-1, order_1=-1, min_exp=-1) 

q^-1 - 203528/7*q^5 + O(q^6) 

 

Elements with respect to the full group are automatically coerced 

to elements of the Theta subgroup if necessary:: 

 

sage: el = QuasiMeromorphicModularFormsRing(n=3).Delta().full_reduce() + E2 

sage: el 

(E4*f_i^4 - 2*E4^2*f_i^2 + E4^3 + 4096*E2)/4096 

sage: el.parent() 

QuasiModularFormsRing(n=+Infinity) over Integer Ring 

 

 

- **Determine exact coefficients from numerical ones:** 

There is some experimental support for replacing numerical coefficients with 

corresponding exact coefficients. There is however NO guarantee that 

the procedure will work (and most probably there are cases where it won't). 

 

EXAMPLES:: 

 

sage: from sage.modular.modform_hecketriangle.space import WeakModularForms, QuasiCuspForms 

sage: WF = WeakModularForms(n=14) 

sage: qexp = WF.J_inv().q_expansion_fixed_d(d_num_prec=1000) 

sage: qexp.parent() 

Laurent Series Ring in q over Real Field with 1000 bits of precision 

sage: qexp_int = WF.rationalize_series(qexp) 

doctest:...: UserWarning: Using an experimental rationalization of coefficients, please check the result for correctness! 

sage: qexp_int.parent() 

Laurent Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring 

sage: qexp_int == WF.J_inv().q_expansion() 

True 

sage: WF(qexp_int) == WF.J_inv() 

True 

 

sage: QF = QuasiCuspForms(n=8, k=22/3, ep=-1) 

sage: el = QF(QF.f_inf()*QF.E2()) 

sage: qexp = el.q_expansion_fixed_d(d_num_prec=1000) 

sage: qexp_int = QF.rationalize_series(qexp) 

sage: qexp_int == el.q_expansion() 

True 

sage: QF(qexp_int) == el 

True 

 

 

 

Future ideas: 

------------- 

 

- Complete support for the case ``n=infinity`` (e.g. lambda-CF) 

 

- Properly implemented lambda-CF 

 

- Binary quadratic forms for Hecke triangle groups 

 

- Cycle integrals 

 

- Maybe: Proper spaces (with coordinates) for (quasi) weakly holomorphic forms with bounds on the initial Fourier exponent 

 

- Support for general triangle groups (hard) 

 

- Support for "congruence" subgroups (hard) 

 

"""