Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

# -*- coding: utf-8 -*- 

""" 

Manin symbols 

  

This module defines the class ManinSymbol. A Manin symbol of 

weight `k`, level `N` has the form `[P(X,Y),(u:v)]` where 

`P(X,Y)\in\mathbb{Z}[X,Y]` is homogeneous of weight `k-2` and 

`(u:v)\in\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z}).` The ManinSymbol class 

holds a "monomial Manin symbol" of the simpler form 

`[X^iY^{k-2-i},(u:v)]`, which is stored as a triple `(i,u,v)`; the 

weight and level are obtained from the parent structure, which is a 

:class:`sage.modular.modsym.manin_symbol_list.ManinSymbolList`. 

  

Integer matrices `[a,b;c,d]` act on Manin symbols on the right, 

sending `[P(X,Y),(u,v)]` to `[P(aX+bY,cX+dY),(u,v)g]`. Diagonal 

matrices (with `b=c=0`, such as `I=[-1,0;0,1]` and `J=[-1,0;0,-1]`) 

and anti-diagonal matrices (with `a=d=0`, such as `S=[0,-1;1,0]`) map 

monomial Manin symbols to monomial Manin symbols, up to a scalar 

factor. For general matrices (such as `T=[0,1,-1,-1]` and 

`T^2=[-1,-1;0,1]`) the image of a monomial Manin symbol is expressed 

as a formal sum of monomial Manin symbols, with integer coefficients. 

  

""" 

  

from sage.modular.cusps import Cusp 

from sage.rings.all import Infinity, ZZ 

from sage.rings.integer cimport Integer 

from sage.structure.element cimport Element 

from sage.structure.sage_object import register_unpickle_override 

from sage.structure.richcmp cimport richcmp_not_equal, richcmp 

  

  

def is_ManinSymbol(x): 

""" 

Return ``True`` if ``x`` is a :class:`ManinSymbol`. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol, is_ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(6, 4) 

sage: s = ManinSymbol(m, m.symbol_list()[3]) 

sage: s 

[Y^2,(1,2)] 

sage: is_ManinSymbol(s) 

True 

sage: is_ManinSymbol(m[3]) 

True 

""" 

return isinstance(x, ManinSymbol) 

  

  

cdef class ManinSymbol(Element): 

r""" 

A Manin symbol `[X^i Y^{k-2-i}, (u, v)]`. 

  

INPUT: 

  

- ``parent`` -- :class:`~sage.modular.modsym.manin_symbol_list.ManinSymbolList` 

  

- ``t`` -- a triple `(i, u, v)` of integers 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,2) 

sage: s = ManinSymbol(m,(2,2,3)); s 

(2,3) 

sage: s == loads(dumps(s)) 

True 

  

:: 

  

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)); s 

[X^2*Y^4,(2,3)] 

  

:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s.parent() 

Manin Symbol List of weight 8 for Gamma0(5) 

  

""" 

def __init__(self, parent, t): 

r""" 

Create a Manin symbol `[X^i Y^{k-2-i}, (u, v)]`, where 

`k` is the weight. 

  

INPUT: 

  

- ``parent`` -- :class:`~sage.modular.modsym.manin_symbol_list.ManinSymbolList` 

  

- ``t`` -- a triple `(i, u, v)` of integers 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,2) 

sage: s = ManinSymbol(m,(2,2,3)); s 

(2,3) 

  

:: 

  

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)); s 

[X^2*Y^4,(2,3)] 

  

""" 

Element.__init__(self, parent) 

(i, u, v) = t 

self.i = Integer(i) 

self.u = Integer(u) 

self.v = Integer(v) 

  

def __reduce__(self): 

""" 

For pickling. 

  

TESTS:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma1 

sage: m = ManinSymbolList_gamma1(3, 2) 

sage: s = ManinSymbol(m, (2, 2, 3)) 

sage: loads(dumps(s)) 

(2,3) 

  

""" 

return ManinSymbol, (self.parent(), self.tuple()) 

  

def __setstate__(self, state): 

""" 

Needed to unpickle old :class:`ManinSymbol` objects. 

  

TESTS:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,2) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: loads(dumps(s)) 

(2,3) 

  

""" 

self._parent = state['_ManinSymbol__parent'] 

(self.i, self.u, self.v) = state['_ManinSymbol__t'] 

  

def tuple(self): 

r""" 

Return the 3-tuple `(i,u,v)` of this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s.tuple() 

(2, 2, 3) 

""" 

return (self.i, self.u, self.v) 

  

def _repr_(self): 

""" 

Return a string representation of this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: str(s) # indirect doctest 

'[X^2*Y^4,(2,3)]' 

""" 

if self.weight() > 2: 

polypart = _print_polypart(self.i, self.weight()-2-self.i) 

return "[%s,(%s,%s)]"%\ 

(polypart, self.u, self.v) 

return "(%s,%s)"%(self.u, self.v) 

  

def _latex_(self): 

""" 

Return a LaTeX representation of this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: latex(s) # indirect doctest 

[X^2*Y^4,(2,3)] 

""" 

return self._repr_() 

  

cpdef _richcmp_(self, right, int op): 

""" 

Comparison function for ManinSymbols. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: slist = m.manin_symbol_list() 

sage: slist[10] <= slist[20] 

True 

sage: slist[20] <= slist[10] 

False 

sage: slist[10] < slist[20] 

True 

sage: slist[20] > slist[10] 

True 

sage: slist[20] != slist[20] 

False 

""" 

cdef ManinSymbol other = <ManinSymbol>right 

# Compare tuples (i,u,v) 

lx = self.i 

rx = other.i 

if lx != rx: 

return richcmp_not_equal(lx, rx, op) 

lx = self.u 

rx = other.u 

if lx != rx: 

return richcmp_not_equal(lx, rx, op) 

return richcmp(self.v, other.v, op) 

  

def __mul__(self, matrix): 

""" 

Return the result of applying a matrix to this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,2) 

sage: s = ManinSymbol(m,(0,2,3)) 

sage: s*[1,2,0,1] 

(2,7) 

  

:: 

  

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s*[1,2,0,1] 

Traceback (most recent call last): 

... 

NotImplementedError: ModSym * Matrix only implemented in weight 2 

""" 

if self.weight() > 2: 

raise NotImplementedError("ModSym * Matrix only implemented " 

"in weight 2") 

from sage.structure.element import is_Matrix 

if is_Matrix(matrix): 

if (not matrix.nrows() == 2) or (not matrix.ncols() == 2): 

raise ValueError("matrix(=%s) must be 2x2" % matrix) 

matrix = matrix.list() 

return type(self)(self.parent(), 

(self.i, 

matrix[0]*self.u + matrix[2]*self.v, 

matrix[1]*self.u + matrix[3]*self.v)) 

  

def apply(self, a,b,c,d): 

""" 

Return the image of self under the matrix `[a,b;c,d]`. 

  

Not implemented for raw ManinSymbol objects, only for members 

of ManinSymbolLists. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,2) 

sage: m.apply(10,[1,0,0,1]) # not implemented for base class 

""" 

raise NotImplementedError 

  

def __copy__(self): 

""" 

Return a copy of this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s2 = copy(s) 

sage: s2 

[X^2*Y^4,(2,3)] 

""" 

return type(self)(self.parent(), (self.i, self.u, self.v)) 

  

def lift_to_sl2z(self, N=None): 

r""" 

Return a lift of this Manin symbol to `SL_2(\mathbb{Z})`. 

  

If this Manin symbol is `(c,d)` and `N` is its level, this 

function returns a list `[a,b, c',d']` that defines a 2x2 

matrix with determinant 1 and integer entries, such that 

`c=c'` (mod `N`) and `d=d'` (mod `N`). 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s 

[X^2*Y^4,(2,3)] 

sage: s.lift_to_sl2z() 

[1, 1, 2, 3] 

  

""" 

if N is None: 

N = self.level() 

if N == 1: 

return [ZZ.one(), ZZ.zero(), ZZ.zero(), ZZ.one()] 

c = Integer(self.u) 

d = Integer(self.v) 

g, z1, z2 = c.xgcd(d) 

  

# We're lucky: z1*c + z2*d = 1. 

if g==1: 

return [z2, -z1, c, d] 

  

# Have to try harder. 

if c == 0: 

c += N 

if d == 0: 

d += N 

m = c 

  

# compute prime-to-d part of m. 

while True: 

g = m.gcd(d) 

if g == 1: 

break 

m //= g 

  

# compute prime-to-N part of m. 

while True: 

g = m.gcd(N) 

if g == 1: 

break 

m //= g 

d += N*m 

g, z1, z2 = c.xgcd(d) 

assert g==1 

return [z2, -z1, c, d] 

  

def endpoints(self, N=None): 

r""" 

Return cusps `alpha`, `beta` such that this Manin symbol, viewed as a 

symbol for level `N`, is `X^i*Y^{k-2-i} \{alpha, beta\}`. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)); s 

[X^2*Y^4,(2,3)] 

sage: s.endpoints() 

(1/3, 1/2) 

""" 

if N is None: 

N = self.parent().level() 

else: 

N=int(N) 

if N < 1: 

raise ArithmeticError("N must be positive") 

a,b,c,d = self.lift_to_sl2z() 

return Cusp(b, d), Cusp(a, c) 

  

def weight(self): 

""" 

Return the weight of this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s.weight() 

8 

  

""" 

return self.parent().weight() 

  

def level(self): 

""" 

Return the level of this Manin symbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s.level() 

5 

  

""" 

return self.parent().level() 

  

def modular_symbol_rep(self): 

""" 

Return a representation of ``self`` as a formal sum of modular 

symbols. 

  

The result is not cached. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import ManinSymbol 

sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0 

sage: m = ManinSymbolList_gamma0(5,8) 

sage: s = ManinSymbol(m,(2,2,3)) 

sage: s.modular_symbol_rep() 

144*X^6*{1/3, 1/2} - 384*X^5*Y*{1/3, 1/2} + 424*X^4*Y^2*{1/3, 1/2} - 248*X^3*Y^3*{1/3, 1/2} + 81*X^2*Y^4*{1/3, 1/2} - 14*X*Y^5*{1/3, 1/2} + Y^6*{1/3, 1/2} 

  

  

""" 

# TODO: It would likely be much better to do this slightly more directly 

from sage.modular.modsym.modular_symbols import ModularSymbol 

x = ModularSymbol(self.parent(), self.i, 0, Infinity) 

a,b,c,d = self.lift_to_sl2z() 

return x.apply([a,b,c,d]) 

  

  

def _print_polypart(i, j): 

r""" 

Helper function for printing the polynomial part `X^iY^j` of a ManinSymbol. 

  

EXAMPLES:: 

  

sage: from sage.modular.modsym.manin_symbol import _print_polypart 

sage: _print_polypart(2,3) 

'X^2*Y^3' 

sage: _print_polypart(2,0) 

'X^2' 

sage: _print_polypart(0,1) 

'Y' 

""" 

if i > 1: 

xpart = "X^%s"%i 

elif i == 1: 

xpart = "X" 

else: 

xpart = "" 

if j > 1: 

ypart = "Y^%s"%j 

elif j == 1: 

ypart = "Y" 

else: 

ypart = "" 

if len(xpart) > 0 and len(ypart) > 0: 

times = "*" 

else: 

times = "" 

if len(xpart + ypart) > 0: 

polypart = "%s%s%s"%(xpart, times, ypart) 

else: 

polypart = "" 

return polypart 

  

  

register_unpickle_override('sage.modular.modsym.manin_symbols', 

'ManinSymbol', ManinSymbol)