Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

""" 

Subspace of ambient spaces of modular symbols 

""" 

 

#***************************************************************************** 

# Sage: System for Algebra and Geometry Experimentation 

# 

# Copyright (C) 2005 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

 

import sage.modular.hecke.all as hecke 

 

import sage.structure.factorization 

 

import sage.modular.modsym.space 

 

 

 

class ModularSymbolsSubspace(sage.modular.modsym.space.ModularSymbolsSpace, hecke.HeckeSubmodule): 

""" 

Subspace of ambient space of modular symbols 

""" 

################################ 

# Special Methods 

################################ 

def __init__(self, ambient_hecke_module, submodule, 

dual_free_module=None, check=False): 

""" 

INPUT: 

 

 

- ``ambient_hecke_module`` - the ambient space of 

modular symbols in which we're constructing a submodule 

 

- ``submodule`` - the underlying free module of the 

submodule 

 

- ``dual_free_module`` - underlying free module of 

the dual of the submodule (optional) 

 

- ``check`` - (default: False) whether to check that 

the submodule is invariant under all Hecke operators T_p. 

 

 

EXAMPLES:: 

 

sage: M = ModularSymbols(15,4) ; S = M.cuspidal_submodule() # indirect doctest 

sage: S 

Modular Symbols subspace of dimension 8 of Modular Symbols space of dimension 12 for Gamma_0(15) of weight 4 with sign 0 over Rational Field 

sage: S == loads(dumps(S)) 

True 

sage: M = ModularSymbols(1,24) 

sage: A = M.ambient_hecke_module() 

sage: B = A.submodule([ x.element() for x in M.cuspidal_submodule().gens() ]) 

sage: S = sage.modular.modsym.subspace.ModularSymbolsSubspace(A, B.free_module()) 

sage: S 

Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 5 for Gamma_0(1) of weight 24 with sign 0 over Rational Field 

sage: S == loads(dumps(S)) 

True 

""" 

self.__ambient_hecke_module = ambient_hecke_module 

A = ambient_hecke_module 

sage.modular.modsym.space.ModularSymbolsSpace.__init__(self, A.group(), A.weight(), \ 

A.character(), A.sign(), A.base_ring()) 

hecke.HeckeSubmodule.__init__(self, A, submodule, dual_free_module = dual_free_module, check=check) 

 

def _repr_(self): 

""" 

Return the string representation of self. 

 

EXAMPLES:: 

 

sage: ModularSymbols(24,4).cuspidal_subspace()._repr_() 

'Modular Symbols subspace of dimension 16 of Modular Symbols space of dimension 24 for Gamma_0(24) of weight 4 with sign 0 over Rational Field' 

""" 

return "Modular Symbols subspace of dimension %s of %s"%( 

self.rank(), self.ambient_module()) 

 

################################ 

# Public functions 

################################ 

def boundary_map(self): 

""" 

The boundary map to the corresponding space of boundary modular 

symbols. (This is the restriction of the map on the ambient 

space.) 

 

EXAMPLES:: 

 

sage: M = ModularSymbols(1, 24, sign=1) ; M 

Modular Symbols space of dimension 3 for Gamma_0(1) of weight 24 with sign 1 over Rational Field 

sage: M.basis() 

([X^18*Y^4,(0,0)], [X^20*Y^2,(0,0)], [X^22,(0,0)]) 

sage: M.cuspidal_submodule().basis() 

([X^18*Y^4,(0,0)], [X^20*Y^2,(0,0)]) 

sage: M.eisenstein_submodule().basis() 

([X^18*Y^4,(0,0)] + 166747/324330*[X^20*Y^2,(0,0)] + 236364091/6742820700*[X^22,(0,0)],) 

sage: M.boundary_map() 

Hecke module morphism boundary map defined by the matrix 

[ 0] 

[ 0] 

[-1] 

Domain: Modular Symbols space of dimension 3 for Gamma_0(1) of weight ... 

Codomain: Space of Boundary Modular Symbols for Modular Group SL(2,Z) ... 

sage: M.cuspidal_subspace().boundary_map() 

Hecke module morphism defined by the matrix 

[0] 

[0] 

Domain: Modular Symbols subspace of dimension 2 of Modular Symbols space ... 

Codomain: Space of Boundary Modular Symbols for Modular Group SL(2,Z) ... 

sage: M.eisenstein_submodule().boundary_map() 

Hecke module morphism defined by the matrix 

[-236364091/6742820700] 

Domain: Modular Symbols subspace of dimension 1 of Modular Symbols space ... 

Codomain: Space of Boundary Modular Symbols for Modular Group SL(2,Z) ... 

""" 

try: 

return self.__boundary_map 

except AttributeError: 

# restrict from ambient space 

b = self.ambient_hecke_module().boundary_map() 

self.__boundary_map = b.restrict_domain(self) 

return self.__boundary_map 

 

def cuspidal_submodule(self): 

""" 

Return the cuspidal subspace of this subspace of modular symbols. 

 

EXAMPLES:: 

 

sage: S = ModularSymbols(42,4).cuspidal_submodule() ; S 

Modular Symbols subspace of dimension 40 of Modular Symbols space of dimension 48 for Gamma_0(42) of weight 4 with sign 0 over Rational Field 

sage: S.is_cuspidal() 

True 

sage: S.cuspidal_submodule() 

Modular Symbols subspace of dimension 40 of Modular Symbols space of dimension 48 for Gamma_0(42) of weight 4 with sign 0 over Rational Field 

 

The cuspidal submodule of the cuspidal submodule is just itself:: 

 

sage: S.cuspidal_submodule() is S 

True 

sage: S.cuspidal_submodule() == S 

True 

 

An example where we abuse the _set_is_cuspidal function:: 

 

sage: M = ModularSymbols(389) 

sage: S = M.eisenstein_submodule() 

sage: S._set_is_cuspidal(True) 

sage: S.cuspidal_submodule() 

Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 65 for Gamma_0(389) of weight 2 with sign 0 over Rational Field 

""" 

try: 

return self.__cuspidal_submodule 

except AttributeError: 

try: 

if self.__is_cuspidal: 

return self 

except AttributeError: 

pass 

S = self.ambient_hecke_module().cuspidal_submodule() 

self.__cuspidal_submodule = S.intersection(self) 

return self.__cuspidal_submodule 

 

 

def dual_star_involution_matrix(self): 

""" 

Return the matrix of the dual star involution, which is induced by 

complex conjugation on the linear dual of modular symbols. 

 

EXAMPLES:: 

 

sage: S = ModularSymbols(6,4) ; S.dual_star_involution_matrix() 

[ 1 0 0 0 0 0] 

[ 0 1 0 0 0 0] 

[ 0 -2 1 2 0 0] 

[ 0 2 0 -1 0 0] 

[ 0 -2 0 2 1 0] 

[ 0 2 0 -2 0 1] 

sage: S.star_involution().matrix().transpose() == S.dual_star_involution_matrix() 

True 

""" 

try: 

return self.__dual_star_involution 

except AttributeError: 

pass 

S = self.ambient_hecke_module().dual_star_involution_matrix() 

A = S.restrict(self.dual_free_module()) 

self.__dual_star_involution = A 

return self.__dual_star_involution 

 

def eisenstein_subspace(self): 

""" 

Return the Eisenstein subspace of this space of modular symbols. 

 

EXAMPLES:: 

 

sage: ModularSymbols(24,4).eisenstein_subspace() 

Modular Symbols subspace of dimension 8 of Modular Symbols space of dimension 24 for Gamma_0(24) of weight 4 with sign 0 over Rational Field 

sage: ModularSymbols(20,2).cuspidal_subspace().eisenstein_subspace() 

Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 7 for Gamma_0(20) of weight 2 with sign 0 over Rational Field 

""" 

try: 

return self.__eisenstein_subspace 

except AttributeError: 

S = self.ambient_hecke_module().eisenstein_subspace() 

self.__eisenstein_subspace = S.intersection(self) 

return self.__eisenstein_subspace 

 

def factorization(self): 

""" 

Returns a list of pairs `(S,e)` where `S` is simple 

spaces of modular symbols and self is isomorphic to the direct sum 

of the `S^e` as a module over the *anemic* Hecke algebra 

adjoin the star involution. 

 

The cuspidal `S` are all simple, but the Eisenstein factors 

need not be simple. 

 

The factors are sorted by dimension - don't depend on much more for 

now. 

 

ASSUMPTION: self is a module over the anemic Hecke algebra. 

 

EXAMPLES: Note that if the sign is 1 then the cuspidal factors 

occur twice, one with each star eigenvalue. 

 

:: 

 

sage: M = ModularSymbols(11) 

sage: D = M.factorization(); D 

(Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field) * 

(Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field) * 

(Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field) 

sage: [A.T(2).matrix() for A, _ in D] 

[[-2], [3], [-2]] 

sage: [A.star_eigenvalues() for A, _ in D] 

[[-1], [1], [1]] 

 

In this example there is one old factor squared. 

 

:: 

 

sage: M = ModularSymbols(22,sign=1) 

sage: S = M.cuspidal_submodule() 

sage: S.factorization() 

(Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field)^2 

 

:: 

 

sage: M = ModularSymbols(Gamma0(22), 2, sign=1) 

sage: M1 = M.decomposition()[1] 

sage: M1.factorization() 

Modular Symbols subspace of dimension 3 of Modular Symbols space of dimension 5 for Gamma_0(22) of weight 2 with sign 1 over Rational Field 

""" 

try: 

return self._factorization 

except AttributeError: 

pass 

try: 

if self._is_simple: 

return [(self, 1)] 

except AttributeError: 

pass 

if self.is_new() and self.is_cuspidal(): 

D = [] 

N = self.decomposition() 

if self.sign() == 0: 

for A in N: 

if A.is_cuspidal(): 

V = A.plus_submodule() 

V._is_simple = True 

D.append((V,1)) 

V = A.minus_submodule() 

V._is_simple = True 

D.append((V,1)) 

else: 

A._is_simple = True 

D.append((A, 1)) 

else: 

for A in N: 

A._is_simple = True 

D.append((A,1)) 

else: 

# Compute factorization of the ambient space, then compute multiplicity 

# of each factor in this space. 

D = [] 

for S in self.ambient_hecke_module().simple_factors(): 

n = self.multiplicity(S, check_simple=False) 

if n > 0: 

D.append((S,n)) 

# endif 

 

# check that dimensions add up 

r = self.dimension() 

s = sum([A.rank()*mult for A, mult in D]) 

if r != s: 

raise NotImplementedError("modular symbols factorization not fully implemented yet -- self has dimension %s, but sum of dimensions of factors is %s"%( 

r, s)) 

self._factorization = sage.structure.factorization.Factorization(D, cr=True) 

return self._factorization 

 

def is_cuspidal(self): 

""" 

Return True if self is cuspidal. 

 

EXAMPLES:: 

 

sage: ModularSymbols(42,4).cuspidal_submodule().is_cuspidal() 

True 

sage: ModularSymbols(12,6).eisenstein_submodule().is_cuspidal() 

False 

""" 

try: 

return self.__is_cuspidal 

except AttributeError: 

C = self.ambient_hecke_module().cuspidal_submodule() 

self.__is_cuspidal = self.is_submodule(C) 

return self.__is_cuspidal 

 

def _set_is_cuspidal(self, t): 

""" 

Used internally to declare that a given submodule is cuspidal. 

 

EXAMPLES: We abuse this command:: 

 

sage: M = ModularSymbols(389) 

sage: S = M.eisenstein_submodule() 

sage: S._set_is_cuspidal(True) 

sage: S.is_cuspidal() 

True 

""" 

self.__is_cuspidal = t 

 

def is_eisenstein(self): 

""" 

Return True if self is an Eisenstein subspace. 

 

EXAMPLES:: 

 

sage: ModularSymbols(22,6).cuspidal_submodule().is_eisenstein() 

False 

sage: ModularSymbols(22,6).eisenstein_submodule().is_eisenstein() 

True 

""" 

try: 

return self.__is_eisenstien 

except AttributeError: 

C = self.ambient_hecke_module().eisenstein_subspace() 

self.__is_eisenstein = self.is_submodule(C) 

return self.__is_eisenstein 

 

 

def _compute_sign_subspace(self, sign, compute_dual=True): 

""" 

Return the subspace of self that is fixed under the star 

involution. 

 

INPUT: 

 

 

- ``sign`` - int (either -1 or +1) 

 

- ``compute_dual`` - bool (default: True) also 

compute dual subspace. This are useful for many algorithms. 

 

 

OUTPUT: subspace of modular symbols 

 

EXAMPLES:: 

 

sage: S = ModularSymbols(100,2).cuspidal_submodule() ; S 

Modular Symbols subspace of dimension 14 of Modular Symbols space of dimension 31 for Gamma_0(100) of weight 2 with sign 0 over Rational Field 

sage: S._compute_sign_subspace(1) 

Modular Symbols subspace of dimension 7 of Modular Symbols space of dimension 31 for Gamma_0(100) of weight 2 with sign 0 over Rational Field 

sage: S._compute_sign_subspace(-1) 

Modular Symbols subspace of dimension 7 of Modular Symbols space of dimension 31 for Gamma_0(100) of weight 2 with sign 0 over Rational Field 

sage: S._compute_sign_subspace(-1).sign() 

-1 

""" 

S = self.star_involution().matrix() - sign 

V = S.kernel() 

if compute_dual: 

Sdual = self.dual_star_involution_matrix() - sign 

Vdual = Sdual.kernel() 

else: 

Vdual = None 

res = self.submodule_from_nonembedded_module(V, Vdual) 

res._set_sign(sign) 

return res 

 

def star_involution(self): 

""" 

Return the star involution on self, which is induced by complex 

conjugation on modular symbols. 

 

EXAMPLES:: 

 

sage: M = ModularSymbols(1,24) 

sage: M.star_involution() 

Hecke module morphism Star involution on Modular Symbols space of dimension 5 for Gamma_0(1) of weight 24 with sign 0 over Rational Field defined by the matrix 

[ 1 0 0 0 0] 

[ 0 -1 0 0 0] 

[ 0 0 1 0 0] 

[ 0 0 0 -1 0] 

[ 0 0 0 0 1] 

Domain: Modular Symbols space of dimension 5 for Gamma_0(1) of weight ... 

Codomain: Modular Symbols space of dimension 5 for Gamma_0(1) of weight ... 

sage: M.cuspidal_subspace().star_involution() 

Hecke module morphism defined by the matrix 

[ 1 0 0 0] 

[ 0 -1 0 0] 

[ 0 0 1 0] 

[ 0 0 0 -1] 

Domain: Modular Symbols subspace of dimension 4 of Modular Symbols space ... 

Codomain: Modular Symbols subspace of dimension 4 of Modular Symbols space ... 

sage: M.plus_submodule().star_involution() 

Hecke module morphism defined by the matrix 

[1 0 0] 

[0 1 0] 

[0 0 1] 

Domain: Modular Symbols subspace of dimension 3 of Modular Symbols space ... 

Codomain: Modular Symbols subspace of dimension 3 of Modular Symbols space ... 

sage: M.minus_submodule().star_involution() 

Hecke module morphism defined by the matrix 

[-1 0] 

[ 0 -1] 

Domain: Modular Symbols subspace of dimension 2 of Modular Symbols space ... 

Codomain: Modular Symbols subspace of dimension 2 of Modular Symbols space ... 

""" 

try: 

return self.__star_involution 

except AttributeError: 

pass 

S = self.ambient_hecke_module().star_involution() 

self.__star_involution = S.restrict(self) 

return self.__star_involution