Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

r""" 

Atkin/Hecke series for overconvergent modular forms. 

 

This file contains a function :func:`~hecke_series` to compute the 

characteristic series `P(t)` modulo `p^m` of the Atkin/Hecke operator `U_p` 

upon the space of p-adic overconvergent modular forms of level `\Gamma_0(N)`. 

The input weight ``k`` can also be a list ``klist`` of weights which must all 

be congruent modulo `(p-1)`. 

 

Two optional parameters ``modformsring`` and ``weightbound`` can be specified, 

and in most cases for levels `N > 1` they can be used to obtain the output more 

quickly. When `m \le k-1` the output `P(t)` is also equal modulo `p^m` to the 

reverse characteristic polynomial of the Atkin operator `U_p` on the space of 

classical modular forms of weight k and level `\Gamma_0(Np)`. In addition, 

provided `m \le (k-2)/2` the output `P(t)` is equal modulo `p^m` to the reverse 

characteristic polynomial of the Hecke operator `T_p` on the space of classical 

modular forms of weight k and level `\Gamma_0(N)`. The function is based upon 

the main algorithm in [Lau2011]_, and has linear running time in the logarithm of 

the weight k. 

 

AUTHORS: 

 

- Alan G.B. Lauder (2011-11-10): original implementation. 

- David Loeffler (2011-12): minor optimizations in review stage. 

 

EXAMPLES: 

 

The characteristic series of the U_11 operator modulo 11^10 on the space of 11-adic overconvergent 

modular forms of level 1 and weight 10000:: 

 

sage: hecke_series(11,1,10000,10) 

10009319650*x^4 + 25618839103*x^3 + 6126165716*x^2 + 10120524732*x + 1 

 

The characteristic series of the U_5 operator modulo 5^5 on the space of 5-adic overconvergent 

modular forms of level 3 and weight 1000:: 

 

sage: hecke_series(5,3,1000,5) 

1875*x^6 + 1250*x^5 + 1200*x^4 + 1385*x^3 + 1131*x^2 + 2533*x + 1 

 

The characteristic series of the U_7 operator modulo 7^5 on the space of 7-adic overconvergent 

modular forms of level 5 and weight 1000. Here the optional parameter ``modformsring`` is set to true:: 

 

sage: hecke_series(7,5,1000,5,modformsring = True) # long time (21s on sage.math, 2012) 

12005*x^7 + 10633*x^6 + 6321*x^5 + 6216*x^4 + 5412*x^3 + 4927*x^2 + 4906*x + 1 

 

The characteristic series of the U_13 operator modulo 13^5 on the space of 13-adic overconvergent 

modular forms of level 2 and weight 10000. Here the optional parameter ``weightbound`` is set to 4:: 

 

sage: hecke_series(13,2,10000,5,weightbound = 4) # long time (17s on sage.math, 2012) 

325156*x^5 + 109681*x^4 + 188617*x^3 + 220858*x^2 + 269566*x + 1 

 

A list containing the characteristic series of the U_23 operator modulo 23^10 on the spaces of 

23-adic overconvergent modular forms of level 1 and weights 1000 and 1022, respectively. 

 

:: 

 

sage: hecke_series(23,1,[1000,1022],10) 

[7204610645852*x^6 + 2117949463923*x^5 + 24152587827773*x^4 + 31270783576528*x^3 + 30336366679797*x^2 

+ 29197235447073*x + 1, 32737396672905*x^4 + 36141830902187*x^3 + 16514246534976*x^2 + 38886059530878*x + 1] 

""" 

 

#***************************************************************************** 

# Copyright (C) 2011 Alan Lauder <lauder@maths.ox.ac.uk> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six.moves import range 

from sage.functions.all import floor, ceil 

from sage.arith.all import valuation 

from sage.rings.all import ZZ, Zmod, Infinity, Integer 

from sage.rings.finite_rings.finite_field_constructor import GF 

from sage.modular.modform.all import ModularForms, ModularFormsRing, delta_qexp, eisenstein_series_qexp 

from sage.modular.dims import dimension_modular_forms 

from sage.misc.functional import dimension,transpose,charpoly 

from sage.matrix.constructor import matrix, random_matrix 

from sage.matrix.matrix_space import MatrixSpace 

from sage.misc.misc import cputime, verbose 

 

# AUXILIARY CODE: SPACES OF MODULAR FORMS AND LINEAR ALGEBRA 

 

def compute_G(p, F): 

r""" 

Given a power series `F \in R[[q]]^\times`, for some ring `R`, and an 

integer `p`, compute the quotient 

 

.. MATH:: 

 

\frac{F(q)}{F(q^p)}. 

 

Used by :func:`level1_UpGj` and by :func:`higher_level_UpGj`, with `F` equal 

to the Eisenstein series `E_{p-1}`. 

 

INPUT: 

 

- ``p`` -- integer 

- ``F`` -- power series (with invertible constant term) 

 

OUTPUT: 

 

the power series `F(q) / F(q^p)`, to the same precision as `F` 

 

EXAMPLES:: 

 

sage: E = sage.modular.overconvergent.hecke_series.eisenstein_series_qexp(2, 12, Zmod(9),normalization="constant") 

sage: sage.modular.overconvergent.hecke_series.compute_G(3, E) 

1 + 3*q + 3*q^4 + 6*q^7 + O(q^12) 

""" 

Fp = (F.truncate_powerseries(ceil(F.prec() / ZZ(p)))).V(p) 

return F / Fp 

 

def low_weight_bases(N,p,m,NN,weightbound): 

r""" 

Returns a list of integral bases of modular forms of level N and (even) 

weight at most ``weightbound``, as `q`-expansions modulo `(p^m,q^{NN})`. 

 

These forms are obtained by reduction mod `p^m` from an integral basis in 

Hermite normal form (so they are not necessarily in reduced row echelon 

form mod `p^m`, but they are not far off). 

 

INPUT: 

 

- ``N`` -- positive integer (level). 

- ``p`` -- prime. 

- ``m``, ``NN`` -- positive integers. 

- ``weightbound`` -- (even) positive integer. 

 

OUTPUT: 

 

- list of lists of `q`-expansions modulo `(p^m,q^{NN})`. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import low_weight_bases 

sage: low_weight_bases(2,5,3,5,6) 

[[1 + 24*q + 24*q^2 + 96*q^3 + 24*q^4 + O(q^5)], 

[1 + 115*q^2 + 35*q^4 + O(q^5), q + 8*q^2 + 28*q^3 + 64*q^4 + O(q^5)], 

[1 + 121*q^2 + 118*q^4 + O(q^5), q + 32*q^2 + 119*q^3 + 24*q^4 + O(q^5)]] 

 

""" 

generators = [] 

 

for k in range(2,weightbound + 2,2): 

b = ModularForms(N,k,base_ring=Zmod(p**m)).q_expansion_basis(prec=NN) 

generators.append(list(b)) 

return generators 

 

def random_low_weight_bases(N,p,m,NN,weightbound): 

r""" 

Returns list of random integral bases of modular forms of level `N` and 

(even) weight at most weightbound with coefficients reduced modulo 

`(p^m,q^{NN})`. 

 

INPUT: 

 

- ``N`` -- positive integer (level). 

- ``p`` -- prime. 

- ``m``, ``NN`` -- positive integers. 

- ``weightbound`` -- (even) positive integer. 

 

OUTPUT: 

 

- list of lists of `q`-expansions modulo `(p^m,q^{NN})`. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases 

sage: S = random_low_weight_bases(3,7,2,5,6); S # random 

[[4 + 48*q + 46*q^2 + 48*q^3 + 42*q^4 + O(q^5)], 

[3 + 5*q + 45*q^2 + 22*q^3 + 22*q^4 + O(q^5), 

1 + 3*q + 27*q^2 + 27*q^3 + 23*q^4 + O(q^5)], 

[2*q + 4*q^2 + 16*q^3 + 48*q^4 + O(q^5), 

2 + 6*q + q^2 + 3*q^3 + 43*q^4 + O(q^5), 

1 + 2*q + 6*q^2 + 14*q^3 + 4*q^4 + O(q^5)]] 

sage: S[0][0].parent() 

Power Series Ring in q over Ring of integers modulo 49 

sage: S[0][0].prec() 

5 

 

""" 

LWB = low_weight_bases(N,p,m,NN,weightbound) 

# this is "approximately" row reduced (it's the mod p^n reduction of a 

# matrix over ZZ in Hermite form) 

RandomLWB = [] 

for i in range(len(LWB)): 

n = len(LWB[i]) 

c = random_matrix(Zmod(p**m), n) 

while c.det() % p == 0: 

c = random_matrix(Zmod(p**m), n) 

RandomLWB.append([ sum([c[j, k] * LWB[i][k] for k in range(n)]) for j in range(n) ]) 

 

return RandomLWB 

 

def low_weight_generators(N,p,m,NN): 

r""" 

Returns a list of lists of modular forms, and an even natural number. The 

first output is a list of lists of modular forms reduced modulo 

`(p^m,q^{NN})` which generate the `(\ZZ / p^m \ZZ)`-algebra of mod `p^m` 

modular forms of weight at most 8, and the second output is the largest 

weight among the forms in the generating set. 

 

We (Alan Lauder and David Loeffler, the author and reviewer of this patch) 

conjecture that forms of weight at most 8 are always sufficient to generate 

the algebra of mod `p^m` modular forms of all weights. (We believe 6 to be 

sufficient, and we can prove that 4 is sufficient when there are no 

elliptic points, but using weights up to 8 acts as a consistency check.) 

 

INPUT: 

 

- ``N`` -- positive integer (level). 

- ``p`` -- prime. 

- ``m``, ``NN`` -- positive integers. 

 

OUTPUT: 

 

a tuple consisting of: 

 

- a list of lists of `q`-expansions modulo `(p^m,q^{NN})`, 

- an even natural number (twice the length of the list). 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import low_weight_generators 

sage: low_weight_generators(3,7,3,10) 

([[1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + 180*q^8 + 12*q^9 + O(q^10)], 

[1 + 240*q^3 + 102*q^6 + 203*q^9 + O(q^10)], 

[1 + 182*q^3 + 175*q^6 + 161*q^9 + O(q^10)]], 6) 

sage: low_weight_generators(11,5,3,10) 

([[1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10), 

q + 123*q^2 + 124*q^3 + 2*q^4 + q^5 + 2*q^6 + 123*q^7 + 123*q^9 + O(q^10)], 

[q + 116*q^4 + 115*q^5 + 102*q^6 + 121*q^7 + 96*q^8 + 106*q^9 + O(q^10)]], 4) 

""" 

M = ModularFormsRing(N,base_ring=Zmod(p)) 

 

b = M.gen_forms(maxweight = 8) 

 

weightbound = max([f.weight() for f in b]) 

generators = [] 

 

for k in range(2,weightbound + 2,2): 

generators.append([f.qexp(NN).change_ring(Zmod(p**m)) for f in b if f.weight() == k]) 

 

return generators,weightbound 

 

def random_solution(B,K): 

r""" 

Returns a random solution in non-negative integers to the equation `a_1 + 2 

a_2 + 3 a_3 + ... + B a_B = K`, using a greedy algorithm. 

 

Note that this is *much* faster than using 

``WeightedIntegerVectors.random_element()``. 

 

INPUT: 

 

- ``B``, ``K`` -- non-negative integers. 

 

OUTPUT: 

 

- list. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import random_solution 

sage: random_solution(5,10) 

[1, 1, 1, 1, 0] 

""" 

a = [] 

for i in range(B,1,-1): 

ai = ZZ.random_element((K // i) + 1) 

a.append(ai) 

K = K - ai*i 

a.append(K) 

a.reverse() 

 

return a 

 

# AUXILIARY CODE: ECHELON FORM 

 

def ech_form(A,p): 

r""" 

Returns echelon form of matrix ``A`` over the ring of integers modulo 

`p^m`, for some prime `p` and `m \ge 1`. 

 

.. todo:: 

 

This should be moved to :mod:`sage.matrix.matrix_modn_dense` at some 

point. 

 

INPUT: 

 

- ``A`` -- matrix over ``Zmod(p^m)`` for some m. 

- ``p`` - prime p. 

 

OUTPUT: 

 

- matrix over ``Zmod(p^m)``. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import ech_form 

sage: A = MatrixSpace(Zmod(5**3),3)([1,2,3,4,5,6,7,8,9]) 

sage: ech_form(A,5) 

[1 2 3] 

[0 1 2] 

[0 0 0] 

""" 

 

S = A[0,0].parent() 

a = A.nrows() 

b = A.ncols() 

 

k = 0 # position pivoting row will be swapped to 

for j in range(b): 

if k < a: 

pivj = k # find new pivot 

for i in range(k+1,a): 

if valuation(A[i,j],p) < valuation(A[pivj,j],p): 

pivj = i 

if valuation(A[pivj,j],p) < +Infinity: # else column already reduced 

A.swap_rows(pivj, k) 

A.set_row_to_multiple_of_row(k, k, S(ZZ(A[k,j])/(p**valuation(A[k,j],p)))**(-1)) 

for i in range(k+1,a): 

A.add_multiple_of_row(i, k, S(-ZZ(A[i,j])/ZZ(A[k,j]))) 

k = k + 1 

 

return A 

 

 

# *** COMPLEMENTARY SPACES FOR LEVEL N > 1 *** 

 

def random_new_basis_modp(N,p,k,LWBModp,TotalBasisModp,elldash,bound): 

r""" 

Returns ``NewBasisCode``. Here `NewBasisCode` is a list of lists of lists 

``[j,a]``. This encodes a choice of basis for the ith complementary space 

`W_i`, as explained in the documentation for the function 

:func:`complementary_spaces_modp`. 

 

INPUT: 

 

- ``N`` -- positive integer at least 2 and not divisible by p (level). 

- ``p`` -- prime at least 5. 

- ``k`` -- non-negative integer. 

- ``LWBModp`` -- list of list of q-expansions modulo 

`(p,q^\text{elldash})`. 

- ``TotalBasisModp`` -- matrix over GF(p). 

- ``elldash`` - positive integer. 

- ``bound`` -- positive even integer (twice the length of the list 

``LWBModp``). 

 

OUTPUT: 

 

- A list of lists of lists ``[j,a]``. 

 

.. note:: 

 

As well as having a non-trivial return value, this function also 

modifies the input matrix ``TotalBasisModp``. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases, complementary_spaces_modp 

sage: LWB = random_low_weight_bases(2,5,2,4,6) 

sage: LWBModp = [ [f.change_ring(GF(5)) for f in x] for x in LWB] 

sage: complementary_spaces_modp(2,5,2,3,4,LWBModp,4) # random, indirect doctest 

[[[[0, 0]]], [[[0, 0], [1, 1]]], [[[0, 0], [1, 0], [1, 1]]], [[[0, 0], [1, 0], [1, 1], [1, 1]]]] 

 

""" 

 

R = LWBModp[0][0].parent() 

 

# Case k0 + i(p-1) = 0 + 0(p-1) = 0 

 

if k == 0: 

TotalBasisModp[0,0] = 1 

return [[]] 

 

# Case k = k0 + i(p-1) > 0 

 

di = dimension_modular_forms(N, k) 

diminus1 = dimension_modular_forms(N, k-(p-1)) 

mi = di - diminus1 

 

NewBasisCode = [] 

rk = diminus1 

for i in range(1,mi+1): 

while (rk < diminus1 + i): 

# take random product of basis elements 

exps = random_solution(bound // 2, k // 2) 

TotalBasisi = R(1) 

TotalBasisiCode = [] 

for j in range(len(exps)): 

for l in range(exps[j]): 

a = ZZ.random_element(len(LWBModp[j])) 

TotalBasisi = TotalBasisi*LWBModp[j][a] 

TotalBasisiCode.append([j,a]) 

TotalBasisModp[rk] = [TotalBasisi[j] for j in range(elldash)] 

TotalBasisModp.echelonize() 

rk = TotalBasisModp.rank() 

NewBasisCode.append(TotalBasisiCode) # this choice increased the rank 

 

return NewBasisCode 

 

def complementary_spaces_modp(N,p,k0,n,elldash,LWBModp,bound): 

r""" 

Returns a list of lists of lists of lists ``[j,a]``. The pairs ``[j,a]`` 

encode the choice of the `a`-th element in the `j`-th list of the input 

``LWBModp``, i.e., the `a`-th element in a particular basis modulo 

`(p,q^\text{elldash})` for the space of modular forms of level 

`\Gamma_0(N)` and weight `2(j+1)`. The list ``[[j_1,a_1],...,[j_r,a_r]]`` 

then encodes the product of the r modular forms associated to each 

``[j_i,a_i]``; this has weight `k + (p-1)i` for some `0 \le i \le n`; here 

the i is such that this *list of lists* occurs in the ith list of the 

output. The ith list of the output thus encodes a choice of basis for the 

complementary space `W_i` which occurs in Step 2 of Algorithm 2 in [Lau2011]_. 

The idea is that one searches for this space `W_i` first modulo 

`(p,q^\text{elldash})` and then, having found the correct products of 

generating forms, one can reconstruct these spaces modulo 

`(p^\text{mdash},q^\text{elldashp})` using the output of this function. 

(This idea is based upon a suggestion of John Voight.) 

 

INPUT: 

 

- ``N`` -- positive integer at least 2 and not divisible by p (level). 

- ``p`` -- prime at least 5. 

- ``k0`` -- integer in range 0 to `p-1`. 

- ``n,elldash`` -- positive integers. 

- ``LWBModp`` -- list of lists of `q`-expansions over `GF(p)`. 

- ``bound`` -- positive even integer (twice the length of the list ``LWBModp``). 

 

OUTPUT: 

 

- list of list of list of lists. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases, complementary_spaces_modp 

sage: LWB = random_low_weight_bases(2,5,2,4,6) 

sage: LWBModp = [[f.change_ring(Zmod(5)) for f in x] for x in LWB] 

sage: complementary_spaces_modp(2,5,0,3,4,LWBModp,6) # random, indirect doctest 

[[[]], [[[0, 0], [0, 0]]], [[[0, 0], [2, 1]]], [[[0, 0], [0, 0], [0, 0], [2, 1]]]] 

""" 

CompSpacesCode = [] 

ell = dimension_modular_forms(N,k0 + n*(p-1)) 

TotalBasisModp = matrix(GF(p),ell,elldash); # zero matrix 

 

for i in range(n+1): 

NewBasisCodemi = random_new_basis_modp(N,p,k0 + i*(p-1),LWBModp,TotalBasisModp,elldash,bound) 

# TotalBasisModp is passed by reference and updated in function 

CompSpacesCode.append(NewBasisCodemi) 

 

return CompSpacesCode 

 

def complementary_spaces(N,p,k0,n,mdash,elldashp,elldash,modformsring,bound): 

r""" 

Returns a list ``Ws``, each element in which is a list ``Wi`` of 

q-expansions modulo `(p^\text{mdash},q^\text{elldashp})`. The list ``Wi`` is 

a basis for a choice of complementary space in level `\Gamma_0(N)` and 

weight `k` to the image of weight `k - (p-1)` forms under multiplication by 

the Eisenstein series `E_{p-1}`. 

 

The lists ``Wi`` play the same role as `W_i` in Step 2 of Algorithm 2 in 

[Lau2011]_. (The parameters ``k0,n,mdash,elldash,elldashp = elldash*p`` are 

defined as in Step 1 of that algorithm when this function is used in 

:func:`hecke_series`.) However, the complementary spaces are computed in a 

different manner, combining a suggestion of David Loeffler with one of John 

Voight. That is, one builds these spaces recursively using random products 

of forms in low weight, first searching for suitable products modulo 

`(p,q^\text{elldash})`, and then later reconstructing only the required 

products to the full precision modulo `(p^\text{mdash},q^{elldashp})`. The 

forms in low weight are chosen from either bases of all forms up to weight 

``bound`` or from a (tentative) generating set for the ring of all modular 

forms, according to whether ``modformsring`` is ``False`` or ``True``. 

 

INPUT: 

 

- ``N`` -- positive integer at least 2 and not divisible by p (level). 

- ``p`` -- prime at least 5. 

- ``k0`` -- integer in range 0 to ``p-1``. 

- ``n,mdash,elldashp,elldash`` -- positive integers. 

- ``modformsring`` -- True or False. 

- ``bound`` -- positive (even) integer (ignored if ``modformsring`` is True). 

 

OUTPUT: 

 

- list of lists of q-expansions modulo 

``(p^\text{mdash},q^\text{elldashp})``. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import complementary_spaces 

sage: complementary_spaces(2,5,0,3,2,5,4,true,6) # random 

[[1], 

[1 + 23*q + 24*q^2 + 19*q^3 + 7*q^4 + O(q^5)], 

[1 + 21*q + 2*q^2 + 17*q^3 + 14*q^4 + O(q^5)], 

[1 + 19*q + 9*q^2 + 11*q^3 + 9*q^4 + O(q^5)]] 

sage: complementary_spaces(2,5,0,3,2,5,4,false,6) # random 

[[1], 

[3 + 4*q + 2*q^2 + 12*q^3 + 11*q^4 + O(q^5)], 

[2 + 2*q + 14*q^2 + 19*q^3 + 18*q^4 + O(q^5)], 

[6 + 8*q + 10*q^2 + 23*q^3 + 4*q^4 + O(q^5)]] 

""" 

if not modformsring: 

LWB = random_low_weight_bases(N,p,mdash,elldashp,bound) 

else: 

LWB,bound = low_weight_generators(N,p,mdash,elldashp) 

 

LWBModp = [ [ f.change_ring(GF(p)).truncate_powerseries(elldash) for f in x] for x in LWB] 

 

CompSpacesCode = complementary_spaces_modp(N,p,k0,n,elldash,LWBModp,bound) 

 

Ws = [] 

Epm1 = eisenstein_series_qexp(p-1, prec=elldashp, K = Zmod(p**mdash), normalization="constant") 

for i in range(n+1): 

CompSpacesCodemi = CompSpacesCode[i] 

Wi = [] 

for k in range(len(CompSpacesCodemi)): 

CompSpacesCodemik = CompSpacesCodemi[k] 

Wik = Epm1.parent()(1) 

for j in range(len(CompSpacesCodemik)): 

l = CompSpacesCodemik[j][0] 

index = CompSpacesCodemik[j][1] 

Wik = Wik*LWB[l][index] 

Wi.append(Wik) 

Ws.append(Wi) 

 

return Ws 

 

# AUXILIARY CODE: KATZ EXPANSIONS 

 

def higher_level_katz_exp(p,N,k0,m,mdash,elldash,elldashp,modformsring,bound): 

r""" 

Returns a matrix `e` of size ``ell x elldashp`` over the integers modulo 

`p^\text{mdash}`, and the Eisenstein series `E_{p-1} = 1 + .\dots \bmod 

(p^\text{mdash},q^\text{elldashp})`. The matrix e contains the coefficients 

of the elements `e_{i,s}` in the Katz expansions basis in Step 3 of 

Algorithm 2 in [Lau2011]_ when one takes as input to that algorithm 

`p`,`N`,`m` and `k` and define ``k0``, ``mdash``, ``n``, ``elldash``, 

``elldashp = ell*dashp`` as in Step 1. 

 

INPUT: 

 

- ``p`` -- prime at least 5. 

- ``N`` -- positive integer at least 2 and not divisible by p (level). 

- ``k0`` -- integer in range 0 to p-1. 

- ``m,mdash,elldash,elldashp`` -- positive integers. 

- ``modformsring`` -- True or False. 

- ``bound`` -- positive (even) integer. 

 

OUTPUT: 

 

- matrix and q-expansion. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import higher_level_katz_exp 

sage: e,Ep1 = higher_level_katz_exp(5,2,0,1,2,4,20,true,6) 

sage: e 

[ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

[ 0 1 18 23 19 6 9 9 17 7 3 17 12 8 22 8 11 19 1 5] 

[ 0 0 1 11 20 16 0 8 4 0 18 15 24 6 15 23 5 18 7 15] 

[ 0 0 0 1 4 16 23 13 6 5 23 5 2 16 4 18 10 23 5 15] 

sage: Ep1 

1 + 15*q + 10*q^2 + 20*q^3 + 20*q^4 + 15*q^5 + 5*q^6 + 10*q^7 + 

5*q^9 + 10*q^10 + 5*q^11 + 10*q^12 + 20*q^13 + 15*q^14 + 20*q^15 + 15*q^16 + 

10*q^17 + 20*q^18 + O(q^20) 

""" 

ordr = 1/(p+1) 

S = Zmod(p**mdash) 

Ep1 = eisenstein_series_qexp(p-1,prec=elldashp,K=S, normalization="constant") 

 

n = floor(((p+1)/(p-1))*(m+1)) 

Wjs = complementary_spaces(N,p,k0,n,mdash,elldashp,elldash,modformsring,bound) 

 

Basis = [] 

for j in range(n+1): 

Wj = Wjs[j] 

dimj = len(Wj) 

Ep1minusj = Ep1**(-j) 

for i in range(dimj): 

wji = Wj[i] 

b = p**floor(ordr*j) * wji * Ep1minusj 

Basis.append(b) 

 

# extract basis as a matrix 

 

ell = len(Basis) 

M = matrix(S,ell,elldashp) 

for i in range(ell): 

for j in range(elldashp): 

M[i,j] = Basis[i][j] 

 

ech_form(M,p) # put it into echelon form 

 

return M,Ep1 

 

def compute_elldash(p,N,k0,n): 

r""" 

Returns the "Sturm bound" for the space of modular forms of level 

`\Gamma_0(N)` and weight `k_0 + n(p-1)`. 

 

.. SEEALSO:: 

 

:meth:`~sage.modular.modform.space.ModularFormsSpace.sturm_bound` 

 

INPUT: 

 

- ``p`` -- prime. 

- ``N`` -- positive integer (level). 

- ``k0``, ``n`` - non-negative integers not both zero. 

 

OUTPUT: 

 

- positive integer. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import compute_elldash 

sage: compute_elldash(11,5,4,10) 

53 

""" 

 

return ModularForms(N,k0 + n*(p-1)).sturm_bound() 

 

# *** DEGREE BOUND ON HECKE SERIES *** 

 

def hecke_series_degree_bound(p,N,k,m): 

r""" 

Returns the ``Wan bound`` on the degree of the characteristic series of the 

Atkin operator on p-adic overconvergent modular forms of level 

`\Gamma_0(N)` and weight k when reduced modulo `p^m`. This bound depends 

only upon p, `k \pmod{p-1}`, and N. It uses Lemma 3.1 in [Wan1998]_. 

 

INPUT: 

 

- ``p`` -- prime at least 5. 

- ``N`` -- positive integer not divisible by p. 

- ``k`` -- even integer. 

- ``m`` -- positive integer. 

 

OUTPUT: 

 

A non-negative integer. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import hecke_series_degree_bound 

sage: hecke_series_degree_bound(13,11,100,5) 

39 

""" 

k0 = k % (p-1) 

ds = [dimension_modular_forms(N, k0)] 

ms = [ds[0]] 

sum = 0 

u = 1 

 

ord = 0 

while ord < m: 

ds.append(dimension_modular_forms(N,k0 + u*(p-1))) 

ms.append(ds[u] - ds[u-1]) 

sum = sum + u*ms[u] 

ord = floor(((p-1)/(p+1))*sum - ds[u]) 

u = u + 1 

 

return (ds[u-1] - 1) 

 

# *** MAIN FUNCTION FOR LEVEL > 1 *** 

 

# Returns matrix A modulo p^m from Step 6 of Algorithm 2. 

 

def higher_level_UpGj(p, N, klist, m, modformsring, bound, extra_data=False): 

r""" 

Return a list ``[A_k]`` of square matrices over ``IntegerRing(p^m)`` 

parameterised by the weights k in ``klist``. 

 

The matrix `A_k` is the finite square matrix which occurs on input 

p, k, N and m in Step 6 of Algorithm 2 in [Lau2011]_. 

 

Notational change from paper: In Step 1 following Wan we defined 

j by `k = k_0 + j(p-1)` with `0 \le k_0 < p-1`. Here we replace j by 

``kdiv`` so that we may use j as a column index for matrices.) 

 

INPUT: 

 

- ``p`` -- prime at least 5. 

- ``N`` -- integer at least 2 and not divisible by p (level). 

- ``klist`` -- list of integers all congruent modulo (p-1) (the weights). 

- ``m`` -- positive integer. 

- ``modformsring`` -- ``True`` or ``False``. 

- ``bound`` -- (even) positive integer. 

- ``extra_data`` -- (default: ``False``) boolean. 

 

OUTPUT: 

 

- list of square matrices. If ``extra_data`` is ``True``, return also 

extra intermediate data, namely the matrix `E` in [Lau2011]_ and 

the integers ``elldash`` and ``mdash``. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import higher_level_UpGj 

sage: higher_level_UpGj(5,3,[4],2,true,6) 

[ 

[ 1 0 0 0 0 0] 

[ 0 1 0 0 0 0] 

[ 0 7 0 0 0 0] 

[ 0 5 10 20 0 0] 

[ 0 7 20 0 20 0] 

[ 0 1 24 0 20 0] 

] 

sage: len(higher_level_UpGj(5,3,[4],2,true,6,extra_data=True)) 

4 

""" 

t = cputime() 

# Step 1 

 

k0 = klist[0] % (p-1) 

n = floor(((p+1)/(p-1)) * (m+1)) 

elldash = compute_elldash(p,N,k0,n) 

elldashp = elldash*p 

mdash = m + ceil(n/(p+1)) 

 

verbose("done step 1", t) 

t = cputime() 

# Steps 2 and 3 

 

e, Ep1 = higher_level_katz_exp(p, N, k0, m, mdash, elldash, elldashp, 

modformsring, bound) 

ell = dimension(transpose(e)[0].parent()) 

S = e[0,0].parent() 

 

verbose("done steps 2+3", t) 

t = cputime() 

# Step 4 

 

R = Ep1.parent() 

G = compute_G(p, Ep1) 

Alist = [] 

 

verbose("done step 4a", t) 

t = cputime() 

for k in klist: 

k = ZZ(k) # convert to sage integer 

kdiv = k // (p-1) 

Gkdiv = G**kdiv 

 

T = matrix(S,ell,elldash) 

for i in range(ell): 

ei = R(e[i].list()) 

Gkdivei = Gkdiv*ei; # act by G^kdiv 

for j in range(0, elldash): 

T[i,j] = Gkdivei[p*j] 

 

verbose("done steps 4b and 5", t) 

t = cputime() 

 

# Step 6: solve T = AE using fact E is upper triangular. 

# Warning: assumes that T = AE (rather than pT = AE) has 

# a solution over Z/(p^mdash). This has always been the case in 

# examples computed by the author, see Note 3.1. 

 

A = matrix(S, ell, ell) 

verbose("solving a square matrix problem of dimension %s" % ell) 

verbose("elldash is %s" % elldash) 

 

for i in range(ell): 

Ti = T[i] 

for j in range(ell): 

ej = Ti.parent()([e[j][l] for l in range(elldash)]) 

ejleadpos = ej.nonzero_positions()[0] 

lj = ZZ(ej[ejleadpos]) 

A[i,j] = S(ZZ(Ti[j])/lj) 

Ti = Ti - A[i,j]*ej 

 

Alist.append(MatrixSpace(Zmod(p**m),ell,ell)(A)) 

verbose("done step 6", t) 

 

if extra_data: 

return Alist, e, elldash, mdash 

else: 

return Alist 

 

 

# *** LEVEL 1 CODE *** 

 

def compute_Wi(k,p,h,hj,E4,E6): 

r""" 

This function computes a list `W_i` of q-expansions, together with an 

auxiliary quantity `h^j` (see below) which is to be used on the next 

call of this function. (The precision is that of input q-expansions.) 

 

The list `W_i` is a certain subset of a basis of the modular forms of 

weight `k` and level 1. Suppose `(a, b)` is the pair of non-negative 

integers with `4a + 6b = k` and `a` minimal among such pairs. Then this 

space has a basis given by 

 

.. MATH:: 

 

\{ \Delta^j E_6^{b - 2j} E_4^a : 0 \le j < d\} 

 

where `d` is the dimension. 

 

What this function returns is the subset of the above basis corresponding 

to `e \le j < d` where `e` is the dimension of the space of modular forms 

of weight `k - (p-1)`. This set is a basis for the complement of the image 

of the weight `k - (p-1)` forms under multiplication by `E_{p-1}`. 

 

This function is used repeatedly in the construction of the Katz expansion 

basis. Hence considerable care is taken to reuse steps in the computation 

wherever possible: we keep track of powers of the form `h = \Delta / 

E_6^2`. 

 

INPUT: 

 

- ``k`` -- non-negative integer. 

- ``p`` -- prime at least 5. 

- ``h`` -- q-expansion of `h` (to some finite precision). 

- ``hj`` -- q-expansion of h^j where j is the dimension of the space of 

modular forms of level 1 and weight `k - (p-1)` (to same finite 

precision). 

- ``E4`` -- q-expansion of ``E_4`` (to same finite precision). 

- ``E6`` -- q-expansion of ``E_6`` (to same finite precision). 

 

The Eisenstein series q-expansions should be normalized to have constant 

term 1. 

 

OUTPUT: 

 

- list of q-expansions (to same finite precision), and q-expansion. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import compute_Wi 

sage: p = 17 

sage: prec = 10 

sage: k = 24 

sage: S = Zmod(17^3) 

sage: E4 = eisenstein_series_qexp(4, prec, K=S, normalization="constant") 

sage: E6 = eisenstein_series_qexp(6, prec, K=S, normalization="constant") 

sage: h = delta_qexp(prec, K=S) / E6^2 

sage: j = dimension_modular_forms(1, k - (p-1)) 

sage: hj = h**j 

sage: c = compute_Wi(k,p,h,hj,E4,E6); c 

([q + 3881*q^2 + 4459*q^3 + 4665*q^4 + 2966*q^5 + 1902*q^6 + 1350*q^7 + 3836*q^8 + 1752*q^9 + O(q^10), q^2 + 4865*q^3 + 1080*q^4 + 4612*q^5 + 1343*q^6 + 1689*q^7 + 3876*q^8 + 1381*q^9 + O(q^10)], q^3 + 2952*q^4 + 1278*q^5 + 3225*q^6 + 1286*q^7 + 589*q^8 + 122*q^9 + O(q^10)) 

sage: c == ([delta_qexp(10) * E6^2, delta_qexp(10)^2], h**3) 

True 

""" 

 

# Define a and b 

a = k % 3 

b = (k // 2) % 2 

 

# Compute dimensions required for Miller basis 

d = dimension_modular_forms(1, k) - 1 

e = dimension_modular_forms(1, k-(p-1)) - 1 

 

# This next line is a bit of a bottleneck, particularly when m is large but 

# p is small. It would be good to reuse values calculated on the previous 

# call here somehow. 

r = E6**(2*d + b) * E4**a 

 

prec = E4.prec() # everything gets truncated to this precision 

 

# Construct basis for Wi 

Wi = [] 

for j in range(e+1,d+1): 

# compute aj = delta^j*E6^(2*(d-j) + b)*E4^a 

verbose("k = %s, computing Delta^%s E6^%s E4^%s" % (k, j, 2*(d-j) + b, a), level=2) 

aj = (hj * r).truncate_powerseries(prec) 

hj = (hj * h).truncate_powerseries(prec) 

Wi.append(aj) 

 

return Wi,hj 

 

def katz_expansions(k0,p,ellp,mdash,n): 

r""" 

Returns a list e of q-expansions, and the Eisenstein series `E_{p-1} = 1 + 

\dots`, all modulo `(p^\text{mdash},q^\text{ellp})`. The list e contains 

the elements `e_{i,s}` in the Katz expansions basis in Step 3 of Algorithm 

1 in [Lau2011]_ when one takes as input to that algorithm p,m and k and define 

``k0``, ``mdash``, n, ``ellp = ell*p`` as in Step 1. 

 

INPUT: 

 

- ``k0`` -- integer in range 0 to p-1. 

- ``p`` -- prime at least 5. 

- ``ellp,mdash,n`` -- positive integers. 

 

OUTPUT: 

 

- list of q-expansions and the Eisenstein series E_{p-1} modulo 

`(p^\text{mdash},q^\text{ellp})`. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import katz_expansions 

sage: katz_expansions(0,5,10,3,4) 

([1 + O(q^10), q + 6*q^2 + 27*q^3 + 98*q^4 + 65*q^5 + 37*q^6 + 81*q^7 + 85*q^8 + 62*q^9 + O(q^10)], 

1 + 115*q + 35*q^2 + 95*q^3 + 20*q^4 + 115*q^5 + 105*q^6 + 60*q^7 + 25*q^8 + 55*q^9 + O(q^10)) 

""" 

S = Zmod(p**mdash) 

 

Ep1 = eisenstein_series_qexp(p-1, ellp, K=S, normalization="constant") 

E4 = eisenstein_series_qexp(4, ellp, K=S, normalization="constant") 

E6 = eisenstein_series_qexp(6, ellp, K=S, normalization="constant") 

 

delta = delta_qexp(ellp, K=S) 

h = delta / E6**2 

hj = delta.parent()(1) 

e = [] 

 

# We compute negative powers of E_(p-1) successively (this saves a great 

# deal of time). The effect is that Ep1mi = Ep1 ** (-i). 

Ep1m1 = ~Ep1 

Ep1mi = 1 

for i in range(0,n+1): 

Wi,hj = compute_Wi(k0 + i*(p-1),p,h,hj,E4,E6) 

for bis in Wi: 

eis = p**floor(i/(p+1)) * Ep1mi * bis 

e.append(eis) 

Ep1mi = Ep1mi * Ep1m1 

 

return e,Ep1 

 

# *** MAIN FUNCTION FOR LEVEL 1 *** 

 

def level1_UpGj(p, klist, m, extra_data=False): 

r""" 

Return a list `[A_k]` of square matrices over ``IntegerRing(p^m)`` 

parameterised by the weights k in ``klist``. 

 

The matrix `A_k` is the finite square matrix which occurs on input 

p, k and m in Step 6 of Algorithm 1 in [Lau2011]_. 

 

Notational change from paper: In Step 1 following Wan we defined 

j by `k = k_0 + j(p-1)` with `0 \le k_0 < p-1`. Here we replace j by 

``kdiv`` so that we may use j as a column index for matrices. 

 

INPUT: 

 

- ``p`` -- prime at least 5. 

- ``klist`` -- list of integers congruent modulo `(p-1)` (the weights). 

- ``m`` -- positive integer. 

- ``extra_data`` -- (default: ``False``) boolean 

 

OUTPUT: 

 

- list of square matrices. If ``extra_data`` is ``True``, return also 

extra intermediate data, namely the matrix `E` in [Lau2011]_ and 

the integers ``elldash`` and ``mdash``. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import level1_UpGj 

sage: level1_UpGj(7,[100],5) 

[ 

[ 1 980 4802 0 0] 

[ 0 13727 14406 0 0] 

[ 0 13440 7203 0 0] 

[ 0 1995 4802 0 0] 

[ 0 9212 14406 0 0] 

] 

sage: len(level1_UpGj(7,[100],5,extra_data=True)) 

4 

 

""" 

# Step 1 

t = cputime() 

 

k0 = klist[0] % (p-1) 

n = floor(((p+1)/(p-1)) * (m+1)) 

ell = dimension_modular_forms(1, k0 + n*(p-1)) 

ellp = ell*p 

mdash = m + ceil(n/(p+1)) 

 

verbose("done step 1", t) 

t = cputime() 

# Steps 2 and 3 

 

e,Ep1 = katz_expansions(k0,p,ellp,mdash,n) 

 

verbose("done steps 2+3", t) 

t=cputime() 

# Step 4 

 

G = compute_G(p, Ep1) 

Alist = [] 

 

verbose("done step 4a", t) 

t=cputime() 

for k in klist: 

k = ZZ(k) # convert to sage integer 

kdiv = k // (p-1) 

Gkdiv = G**kdiv 

u = [] 

for i in range(0,ell): 

ei = e[i] 

ui = Gkdiv*ei 

u.append(ui) 

 

verbose("done step 4b", t) 

t = cputime() 

# Step 5 and computation of T in Step 6 

 

S = e[0][0].parent() 

T = matrix(S,ell,ell) 

 

for i in range(0,ell): 

for j in range(0,ell): 

T[i,j] = u[i][p*j] 

 

verbose("done step 5", t) 

t = cputime() 

# Step 6: solve T = AE using fact E is upper triangular. 

# Warning: assumes that T = AE (rather than pT = AE) has 

# a solution over Z/(p^mdash). This has always been the case in 

# examples computed by the author, see Note 3.1. 

 

A = matrix(S,ell,ell) 

verbose("solving a square matrix problem of dimension %s" % ell, t) 

 

for i in range(0,ell): 

Ti = T[i] 

for j in range(0,ell): 

ej = Ti.parent()([e[j][l] for l in range(0,ell)]) 

lj = ZZ(ej[j]) 

A[i,j] = S(ZZ(Ti[j])/lj) 

Ti = Ti - A[i,j]*ej 

 

Alist.append(MatrixSpace(Zmod(p**m),ell,ell)(A)) 

verbose("done step 6", t) 

 

if extra_data: 

return Alist, e, ell, mdash 

else: 

return Alist 

 

# *** CODE FOR GENERAL LEVEL *** 

 

def is_valid_weight_list(klist,p): 

r""" 

This function checks that ``klist`` is a nonempty list of integers all of 

which are congruent modulo `(p-1)`. Otherwise, it will raise a ValueError. 

 

INPUT: 

 

- ``klist`` -- list of integers. 

- ``p`` -- prime. 

 

EXAMPLES:: 

 

sage: from sage.modular.overconvergent.hecke_series import is_valid_weight_list 

sage: is_valid_weight_list([10,20,30],11) 

sage: is_valid_weight_list([-3, 1], 5) 

sage: is_valid_weight_list([], 3) 

Traceback (most recent call last): 

... 

ValueError: List of weights must be non-empty 

sage: is_valid_weight_list([-3, 2], 5) 

Traceback (most recent call last): 

... 

ValueError: List of weights must be all congruent modulo p-1 = 4, but given list contains -3 and 2 which are not congruent 

""" 

if len(klist) == 0: 

raise ValueError("List of weights must be non-empty") 

k0 = klist[0] % (p-1) 

for i in range(1,len(klist)): 

if (klist[i] % (p-1)) != k0: 

raise ValueError("List of weights must be all congruent modulo p-1 = %s, but given list contains %s and %s which are not congruent" % (p-1, klist[0], klist[i])) 

 

def hecke_series(p,N,klist,m, modformsring = False, weightbound = 6): 

r""" 

Returns the characteristic series modulo `p^m` of the Atkin operator `U_p` 

acting upon the space of p-adic overconvergent modular forms of level 

`\Gamma_0(N)` and weight ``klist``. The input ``klist`` may also be a list 

of weights congruent modulo `(p-1)`, in which case the output is the 

corresponding list of characteristic series for each `k` in ``klist``; this 

is faster than performing the computation separately for each `k`, since 

intermediate steps in the computation may be reused. 

 

If ``modformsring`` is True, then for `N > 1` the algorithm computes at one 

step ``ModularFormsRing(N).generators()``. This will often be faster but 

the algorithm will default to ``modformsring = False`` if the generators 

found are not p-adically integral. Note that ``modformsring`` is ignored 

for `N = 1` and the ring structure of modular forms is *always* used in 

this case. 

 

When ``modformsring`` is False and `N > 1`, `weightbound` is a bound set on 

the weight of generators for a certain subspace of modular forms. The 

algorithm will often be faster if ``weightbound = 4``, but it may fail to 

terminate for certain exceptional small values of `N`, when this bound is 

too small. 

 

The algorithm is based upon that described in [Lau2011]_. 

 

INPUT: 

 

- ``p`` -- a prime greater than or equal to 5. 

- ``N`` -- a positive integer not divisible by `p`. 

- ``klist`` -- either a list of integers congruent modulo `(p-1)`, or a single integer. 

- ``m`` -- a positive integer. 

- ``modformsring`` -- ``True`` or ``False`` (optional, default ``False``). 

Ignored if `N = 1`. 

- ``weightbound`` -- a positive even integer (optional, default 6). Ignored 

if `N = 1` or ``modformsring`` is True. 

 

OUTPUT: 

 

Either a list of polynomials or a single polynomial over the integers modulo `p^m`. 

 

EXAMPLES:: 

 

sage: hecke_series(5,7,10000,5, modformsring = True) # long time (3.4s) 

250*x^6 + 1825*x^5 + 2500*x^4 + 2184*x^3 + 1458*x^2 + 1157*x + 1 

sage: hecke_series(7,3,10000,3, weightbound = 4) 

196*x^4 + 294*x^3 + 197*x^2 + 341*x + 1 

sage: hecke_series(19,1,[10000,10018],5) 

[1694173*x^4 + 2442526*x^3 + 1367943*x^2 + 1923654*x + 1, 

130321*x^4 + 958816*x^3 + 2278233*x^2 + 1584827*x + 1] 

 

Check that silly weights are handled correctly:: 

 

sage: hecke_series(5, 7, [2, 3], 5) 

Traceback (most recent call last): 

... 

ValueError: List of weights must be all congruent modulo p-1 = 4, but given list contains 2 and 3 which are not congruent 

sage: hecke_series(5, 7, [3], 5) 

[1] 

sage: hecke_series(5, 7, 3, 5) 

1 

""" 

# convert to sage integers 

p = ZZ(p) 

N = ZZ(N) 

m = ZZ(m) 

weightbound = ZZ(weightbound) 

 

oneweight = False 

# convert single weight to list 

if ((isinstance(klist, int)) or (isinstance(klist, Integer))): 

klist = [klist] 

oneweight = True # input is single weight 

 

# algorithm may finish with false output unless: 

is_valid_weight_list(klist,p) 

if not p.is_prime(): 

raise ValueError("p (=%s) is not prime" % p) 

if p < 5: 

raise ValueError("p = 2 and p = 3 not supported") 

if not N%p: 

raise ValueError("Level (=%s) should be prime to p (=%s)" % (N, p)) 

 

# return all 1 list for odd weights 

if klist[0] % 2 == 1: 

if oneweight: 

return 1 

else: 

return [1 for i in range(len(klist))] 

 

if N == 1: 

Alist = level1_UpGj(p,klist,m) 

else: 

Alist = higher_level_UpGj(p,N,klist,m,modformsring,weightbound) 

 

Plist = [] 

for A in Alist: 

P = charpoly(A).reverse() 

Plist.append(P) 

 

if oneweight: 

return Plist[0] 

else: 

return Plist