Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

# -*- coding: utf-8 -*- 

r""" 

The space of `p`-adic weights 

 

A `p`-adic weight is a continuous character `\ZZ_p^\times \to 

\CC_p^\times`. These are the `\CC_p`-points of a rigid space over 

`\QQ_p`, which is isomorphic to a disjoint union of copies (indexed by 

`(\ZZ/p\ZZ)^\times`) of the open unit `p`-adic disc. 

 

Sage supports both "classical points", which are determined by the data of a 

Dirichlet character modulo `p^m` for some `m` and an integer `k` (corresponding 

to the character `z \mapsto z^k \chi(z)`) and "non-classical points" which are 

determined by the data of an element of `(\ZZ/p\ZZ)^\times` and 

an element `w \in \CC_p` with `|w - 1| < 1`. 

 

EXAMPLES:: 

 

sage: W = pAdicWeightSpace(17) 

sage: W 

Space of 17-adic weight-characters defined over '17-adic Field with capped relative precision 20' 

sage: R.<x> = QQ[] 

sage: L = Qp(17).extension(x^2 - 17, names='a'); L.rename('L') 

sage: W.base_extend(L) 

Space of 17-adic weight-characters defined over 'L' 

 

We create a simple element of `\mathcal{W}`: the algebraic character, `x \mapsto x^6`:: 

 

sage: kappa = W(6) 

sage: kappa(5) 

15625 

sage: kappa(5) == 5^6 

True 

 

A locally algebraic character, `x \mapsto x^6 \chi(x)` for `\chi` a Dirichlet 

character mod `p`:: 

 

sage: kappa2 = W(6, DirichletGroup(17, Qp(17)).0^8) 

sage: kappa2(5) == -5^6 

True 

sage: kappa2(13) == 13^6 

True 

 

A non-locally-algebraic character, sending the generator 18 of `1 + 17 

\ZZ_{17}` to 35 and acting as `\mu \mapsto \mu^4` on the group of 16th 

roots of unity:: 

 

sage: kappa3 = W(35 + O(17^20), 4, algebraic=False) 

sage: kappa3(2) 

16 + 8*17 + ... + O(17^20) 

 

AUTHORS: 

 

- David Loeffler (2008-9) 

""" 

 

#***************************************************************************** 

# Copyright (C) 2008 William Stein <wstein@gmail.com> 

# 2008-9 David Loeffler <d.loeffler.01@cantab.net> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six.moves import range 

 

from sage.structure.parent_base import ParentWithBase 

from sage.structure.element import Element 

from sage.structure.richcmp import richcmp 

from sage.modular.dirichlet import DirichletGroup, trivial_character 

from sage.rings.all import ZZ, QQ, IntegerModRing, Qp, Infinity 

from sage.arith.all import divisors 

from sage.rings.padics.padic_generic_element import pAdicGenericElement 

from sage.misc.misc import verbose 

from sage.misc.cachefunc import cached_method 

from sage.misc.superseded import deprecated_function_alias 

from sage.rings.padics.precision_error import PrecisionError 

import weakref 

 

_wscache = {} 

def WeightSpace_constructor(p, base_ring=None): 

r""" 

Construct the p-adic weight space for the given prime p. A `p`-adic weight 

is a continuous character `\ZZ_p^\times \to \CC_p^\times`. 

These are the `\CC_p`-points of a rigid space over `\QQ_p`, 

which is isomorphic to a disjoint union of copies (indexed by 

`(\ZZ/p\ZZ)^\times`) of the open unit `p`-adic disc. 

 

Note that the "base ring" of a `p`-adic weight is the smallest ring 

containing the image of `\ZZ`; in particular, although the default base 

ring is `\QQ_p`, base ring `\QQ` will also work. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(3) # indirect doctest 

Space of 3-adic weight-characters defined over '3-adic Field with capped relative precision 20' 

sage: pAdicWeightSpace(3, QQ) 

Space of 3-adic weight-characters defined over 'Rational Field' 

sage: pAdicWeightSpace(10) 

Traceback (most recent call last): 

... 

ValueError: p must be prime 

""" 

if base_ring is None: 

base_ring = Qp(p) 

if (p, base_ring) in _wscache: 

m = _wscache[(p, base_ring)]() 

if m is not None: 

return m 

m = WeightSpace_class(p, base_ring) 

_wscache[(p, base_ring)] = weakref.ref(m) 

return m 

 

class WeightSpace_class(ParentWithBase): 

r""" 

The space of `p`-adic weight-characters `\mathcal{W} = {\rm 

Hom}(\ZZ_p^\times, \CC_p^\times)`. This isomorphic to a 

disjoint union of `(p-1)` open discs of radius 1 (or 2 such discs if `p = 

2`), with the parameter on the open disc corresponding to the image of `1 + 

p` (or 5 if `p = 2`) 

 

TESTS:: 

 

sage: W = pAdicWeightSpace(3) 

sage: W is loads(dumps(W)) 

True 

""" 

 

def __init__(self, p, base_ring): 

r""" 

Initialisation function. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17) 

Space of 17-adic weight-characters defined over '17-adic Field with capped relative precision 20' 

""" 

ParentWithBase.__init__(self, base=base_ring) 

p = ZZ(p) 

if not p.is_prime(): 

raise ValueError("p must be prime") 

self._p = p 

self._param = Qp(p)((p == 2 and 5) or (p + 1)) 

 

def _repr_(self): 

r""" 

String representation of self. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17)._repr_() 

"Space of 17-adic weight-characters defined over '17-adic Field with capped relative precision 20'" 

""" 

return "Space of %s-adic weight-characters defined over '%s'" % (self.prime(), self.base_ring()) 

 

def __reduce__(self): 

r""" 

Used for pickling. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(3).__reduce__() 

(<function WeightSpace_constructor at ...>, (3, 3-adic Field with capped relative precision 20)) 

""" 

return (WeightSpace_constructor, (self.prime(), self.base_ring())) 

 

def __call__(self, arg1, arg2 = None, algebraic=True): 

r""" 

Create an element of this space. 

 

If ``algebraic = True`` (the default), create a locally algebraic 

character. The arguments should be `(k, \chi)` with `k \in \ZZ` 

and `\chi` a Dirichlet character of `p`-power conductor defined over a 

`p`-adic field; this corresponds to the weight-character `x \mapsto x^k 

\chi(x)`. If `\chi` is omitted, it defaults to the trivial character. 

 

If ``algebraic = False``, create a general character. The arguments are 

now (t, w) where `t \in \ZZ/(p-1)\ZZ` and `w \in 

\CC_p` with `|w - 1| < 1`. This corresponds to the character 

`\kappa` satisfying `\kappa(\mu) = \mu^t` where `\mu` is a `(p-1)`-st 

root of unity, and `\kappa(1 + p) = w`. 

 

EXAMPLES:: 

 

sage: W = pAdicWeightSpace(17) 

sage: W(4) 

4 

sage: W(4, DirichletGroup(17, Qp(17)).0) 

(4, 17, [3 + 13*17 + ... + O(17^20)]) 

sage: W(1 + O(17^5), 4, algebraic = False) 

[1 + O(17^5), 4] 

""" 

 

if isinstance(arg1, WeightCharacter): 

if arg1.parent() is self: 

return arg1 

elif arg1.parent().prime() == self.prime(): 

return self._coerce_in_wtchar(arg1) 

else: 

raise TypeError("Incompatible type!") 

 

if algebraic: 

return AlgebraicWeight(self, arg1, arg2) 

else: 

return ArbitraryWeight(self, arg1, arg2) 

 

@cached_method 

def zero(self): 

""" 

Return the zero of this weight space. 

 

EXAMPLES:: 

 

sage: W = pAdicWeightSpace(17) 

sage: W.zero() 

0 

""" 

return self(0) 

 

zero_element = deprecated_function_alias(17694, zero) 

 

def prime(self): 

r""" 

Return the prime `p` such that this is a `p`-adic weight space. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17).prime() 

17 

""" 

return self._p 

 

def base_extend(self, R): 

r""" 

Extend scalars to the ring R. There must be a canonical coercion map 

from the present base ring to R. 

 

EXAMPLES:: 

 

sage: W = pAdicWeightSpace(3, QQ) 

sage: W.base_extend(Qp(3)) 

Space of 3-adic weight-characters defined over '3-adic Field with capped relative precision 20' 

sage: W.base_extend(IntegerModRing(12)) 

Traceback (most recent call last): 

... 

TypeError: No coercion map from 'Rational Field' to 'Ring of integers modulo 12' is defined 

""" 

if R.has_coerce_map_from(self.base_ring()): 

return WeightSpace_constructor(self.prime(), R) 

else: 

raise TypeError("No coercion map from '%s' to '%s' is defined" % (self.base_ring(), R)) 

 

def _coerce_impl(self, x): 

r""" 

Canonical coercion of x into self. 

 

TESTS:: 

 

sage: W1 = pAdicWeightSpace(23, QQ) 

sage: W2 = W1.base_extend(Qp(23)) 

sage: w = W1(3) 

sage: W2.coerce(w) # indirect doctest 

3 

""" 

if isinstance(x, WeightCharacter) \ 

and x.parent().prime() == self.prime() \ 

and self.base_ring().has_coerce_map_from(x.base_ring()): 

return self._coerce_in_wtchar(x) 

raise TypeError 

 

def _coerce_in_wtchar(self, x): 

r""" 

Convert in a weight-character whose parent is different from self (with 

has the prime, but possibly different base ring). 

 

EXAMPLES:: 

 

sage: W1 = pAdicWeightSpace(23, Qp(3)) 

sage: W2 = pAdicWeightSpace(23, QQ) 

sage: w = W1(3) 

sage: W2._coerce_in_wtchar(w) 

3 

""" 

if isinstance(x, AlgebraicWeight): 

return AlgebraicWeight(self, x.k(), x.chi().change_ring(self.base_ring())) 

else: 

return ArbitraryWeight(self, self.base_ring()(x.w()), x.teichmuller_type()) 

 

 

class WeightCharacter(Element): 

r""" 

Abstract base class representing an element of the p-adic weight space 

`Hom(\ZZ_p^\times, \CC_p^\times)`. 

""" 

 

# This should probably derive from Morphism or even from 

# AbelianGroupMorphism; but Sage doesn't know about the abelian group 

# Z_p^*, so Hom(Z_p^*, C_p^*) is a bit beyond it! 

 

def __init__(self, parent): 

r""" 

Initialisation function. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17)(0) 

0 

""" 

 

Element.__init__(self, parent) 

self._p = self.parent().prime() 

 

def base_extend(self, R): 

r""" 

Extend scalars to the base ring R (which must have a canonical map from 

the current base ring) 

 

EXAMPLES:: 

 

sage: w = pAdicWeightSpace(17, QQ)(3) 

sage: w.base_extend(Qp(17)) 

3 

""" 

return self.parent().base_extend(R).coerce(self) 

 

def is_even(self): 

r""" 

Return True if this weight-character sends -1 to +1. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17)(0).is_even() 

True 

sage: pAdicWeightSpace(17)(11).is_even() 

False 

sage: pAdicWeightSpace(17)(1 + 17 + O(17^20), 3, False).is_even() 

False 

sage: pAdicWeightSpace(17)(1 + 17 + O(17^20), 4, False).is_even() 

True 

""" 

if self(-1) == -1: 

return False 

else: 

return True 

 

def pAdicEisensteinSeries(self, ring, prec=20): 

r""" 

Calculate the q-expansion of the p-adic Eisenstein series of given 

weight-character, normalised so the constant term is 1. 

 

EXAMPLES:: 

 

sage: kappa = pAdicWeightSpace(3)(3, DirichletGroup(3,QQ).0) 

sage: kappa.pAdicEisensteinSeries(QQ[['q']], 20) 

1 - 9*q + 27*q^2 - 9*q^3 - 117*q^4 + 216*q^5 + 27*q^6 - 450*q^7 + 459*q^8 - 9*q^9 - 648*q^10 + 1080*q^11 - 117*q^12 - 1530*q^13 + 1350*q^14 + 216*q^15 - 1845*q^16 + 2592*q^17 + 27*q^18 - 3258*q^19 + O(q^20) 

""" 

if not self.is_even(): 

raise ValueError("Eisenstein series not defined for odd weight-characters") 

q = ring.gen() 

s = ring(1) + 2*self.one_over_Lvalue() * sum(sum(self(d)/d for d in divisors(n)) * q**n for n in range(1, prec)) 

return s.add_bigoh(prec) 

 

def values_on_gens(self): 

r""" 

If `\kappa` is this character, calculate the values `(\kappa(r), t)` 

where `r` is `1 + p` (or 5 if `p = 2`) and `t` is the unique element of 

`\ZZ/(p-1)\ZZ` such that `\kappa(\mu) = \mu^t` for `\mu` 

a (p-1)st root of unity. (If `p = 2`, we take `t` to be 0 or 1 

according to whether `\kappa` is odd or even.) These two values 

uniquely determine the character `\kappa`. 

 

EXAMPLES:: 

 

sage: W=pAdicWeightSpace(11); W(2).values_on_gens() 

(1 + 2*11 + 11^2 + O(11^20), 2) 

sage: W(2, DirichletGroup(11, QQ).0).values_on_gens() 

(1 + 2*11 + 11^2 + O(11^20), 7) 

sage: W(1 + 2*11 + O(11^5), 4, algebraic = False).values_on_gens() 

(1 + 2*11 + O(11^5), 4) 

""" 

 

return ( self(self.parent()._param), self.teichmuller_type()) 

 

def is_trivial(self): 

r""" 

Return True if and only if this is the trivial character. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(11)(2).is_trivial() 

False 

sage: pAdicWeightSpace(11)(2, DirichletGroup(11, QQ).0).is_trivial() 

False 

sage: pAdicWeightSpace(11)(0).is_trivial() 

True 

""" 

return self.values_on_gens() == (1, 0) 

 

def _richcmp_(self, other, op): 

r""" 

Compare ``self`` to ``other``. 

 

EXAMPLES:: 

 

sage: W = pAdicWeightSpace(11) 

sage: W(2) == W(3) 

False 

sage: W(2, DirichletGroup(11, QQ).0) == W(2) 

False 

sage: W(2, DirichletGroup(11, QQ).0) == W(144 + O(11^20), 7, False) 

True 

""" 

return richcmp(self.values_on_gens(), other.values_on_gens(), op) 

 

def Lvalue(self): 

r""" 

Return the value of the p-adic L-function of `\QQ`, which can be 

regarded as a rigid-analytic function on weight space, evaluated at 

this character. 

 

EXAMPLES:: 

 

sage: W = pAdicWeightSpace(11) 

sage: sage.modular.overconvergent.weightspace.WeightCharacter(W).Lvalue() 

Traceback (most recent call last): 

... 

NotImplementedError 

""" 

raise NotImplementedError 

 

def one_over_Lvalue(self): 

r""" 

Return the reciprocal of the p-adic L-function evaluated at this 

weight-character. 

 

If the weight-character is odd, then the L-function 

is zero, so an error will be raised. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(11)(4).one_over_Lvalue() 

-12/133 

sage: pAdicWeightSpace(11)(3, DirichletGroup(11, QQ).0).one_over_Lvalue() 

-1/6 

sage: pAdicWeightSpace(11)(3).one_over_Lvalue() 

Traceback (most recent call last): 

... 

ZeroDivisionError: rational division by zero 

sage: pAdicWeightSpace(11)(0).one_over_Lvalue() 

0 

sage: type(_) 

<type 'sage.rings.integer.Integer'> 

""" 

if self.is_trivial(): 

return ZZ(0) 

else: 

return 1/self.Lvalue() 

 

 

class AlgebraicWeight(WeightCharacter): 

r""" 

A point in weight space corresponding to a locally algebraic character, of 

the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a 

Dirichlet character modulo `p^n` for some `n`. 

 

TESTS:: 

 

sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact 

sage: w == loads(dumps(w)) 

True 

sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact 

sage: w == loads(dumps(w)) 

True 

sage: w is loads(dumps(w)) # elements are not globally unique 

False 

""" 

 

def __init__(self, parent, k, chi=None): 

r""" 

Create a locally algebraic weight-character. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0) 

(13, 29, [2 + 2*29 + ... + O(29^20)]) 

""" 

WeightCharacter.__init__(self, parent) 

k = ZZ(k) 

self._k = k 

if chi is None: 

chi = trivial_character(self._p, QQ) 

n = ZZ(chi.conductor()) 

if n == 1: 

n = self._p 

if not n.is_power_of(self._p): 

raise ValueError("Character must have %s-power conductor" % p) 

self._chi = DirichletGroup(n, chi.base_ring())(chi) 

 

def __call__(self, x): 

r""" 

Evaluate this character at an element of `\ZZ_p^\times`. 

 

EXAMPLES: 

 

Exact answers are returned when this is possible:: 

 

sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0) 

sage: kappa(1) 

1 

sage: kappa(0) 

0 

sage: kappa(12) 

-106993205379072 

sage: kappa(-1) 

-1 

sage: kappa(13 + 4*29 + 11*29^2 + O(29^3)) 

9 + 21*29 + 27*29^2 + O(29^3) 

 

When the character chi is defined over a p-adic field, the results returned are inexact:: 

 

sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) 

sage: kappa(1) 

1 + O(29^20) 

sage: kappa(0) 

0 

sage: kappa(12) 

17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20) 

sage: kappa(12) == -106993205379072 

True 

sage: kappa(-1) == -1 

True 

sage: kappa(13 + 4*29 + 11*29^2 + O(29^3)) 

9 + 21*29 + 27*29^2 + O(29^3) 

""" 

if isinstance(x, pAdicGenericElement): 

if x.parent().prime() != self._p: 

raise TypeError("x must be an integer or a %s-adic integer" % self._p) 

if self._p**(x.precision_absolute()) < self._chi.conductor(): 

raise PrecisionError("Precision too low") 

xint = x.lift() 

else: 

xint = x 

if (xint % self._p == 0): return 0 

return self._chi(xint) * x**self._k 

 

def k(self): 

r""" 

If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a 

Dirichlet character `\chi`, return `k`. 

 

EXAMPLES:: 

 

sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) 

sage: kappa.k() 

13 

""" 

return self._k 

 

def chi(self): 

r""" 

If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a 

Dirichlet character `\chi`, return `\chi`. 

 

EXAMPLES:: 

 

sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) 

sage: kappa.chi() 

Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20) 

""" 

return self._chi 

 

def __hash__(self): 

r""" 

TESTS:: 

 

sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) 

sage: hash(w) 

2363715643371367891 # 64-bit 

-1456525869 # 32-bit 

""" 

if self._chi.is_trivial(): 

return hash(self._k) 

else: 

return hash( (self._k,self._chi.modulus(),self._chi) ) 

 

def _repr_(self): 

r""" 

String representation of self. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17)(2)._repr_() 

'2' 

sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0)._repr_() 

'(2, 17, [-1])' 

sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0^2)._repr_() 

'2' 

""" 

if self._chi.is_trivial(): 

return "%s" % self._k 

else: 

return "(%s, %s, %s)" % (self._k, self._chi.modulus(), self._chi._repr_short_()) 

 

def teichmuller_type(self): 

r""" 

Return the Teichmuller type of this weight-character `\kappa`, which is 

the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) = 

\mu^t` for \mu a `(p-1)`-st root of 1. 

 

For `p = 2` this doesn't make sense, but we still want the Teichmuller 

type to correspond to the index of the component of weight space in 

which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type() 

7 

sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type() 

14 

sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type() 

0 

""" 

# Special case p == 2 

if self._p == 2: 

if self.is_even(): 

return IntegerModRing(2)(0) 

else: 

return IntegerModRing(2)(1) 

m = IntegerModRing(self._p).multiplicative_generator() 

x = [y for y in IntegerModRing(self._chi.modulus()) if y == m and y**(self._p - 1) == 1] 

if len(x) != 1: raise ArithmeticError 

x = x[0] 

f = IntegerModRing(self._p)(self._chi(x)).log(m) 

return IntegerModRing(self._p - 1)(self._k + f) 

 

def Lvalue(self): 

r""" 

Return the value of the p-adic L-function of `\QQ` evaluated at 

this weight-character. If the character is `x \mapsto x^k \chi(x)` 

where `k > 0` and `\chi` has conductor a power of `p`, this is an 

element of the number field generated by the values of `\chi`, equal to 

the value of the complex L-function `L(1-k, \chi)`. If `\chi` is 

trivial, it is equal to `(1 - p^{k-1})\zeta(1-k)`. 

 

At present this is not implemented in any other cases, except the 

trivial character (for which the value is `\infty`). 

 

TODO: Implement this more generally using the Amice transform machinery 

in sage/schemes/elliptic_curves/padic_lseries.py, which should clearly 

be factored out into a separate class. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(7)(4).Lvalue() == (1 - 7^3)*zeta__exact(-3) 

True 

sage: pAdicWeightSpace(7)(5, DirichletGroup(7, Qp(7)).0^4).Lvalue() 

0 

sage: pAdicWeightSpace(7)(6, DirichletGroup(7, Qp(7)).0^4).Lvalue() 

1 + 2*7 + 7^2 + 3*7^3 + 3*7^5 + 4*7^6 + 2*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 6*7^11 + 2*7^12 + 3*7^13 + 5*7^14 + 6*7^15 + 5*7^16 + 3*7^17 + 6*7^18 + O(7^19) 

""" 

if self._k > 0: 

return -self._chi.bernoulli(self._k)/self._k 

if self.is_trivial(): 

return Infinity 

else: 

raise NotImplementedError("Don't know how to compute value of this L-function") 

 

class ArbitraryWeight(WeightCharacter): 

 

def __init__(self, parent, w, t): 

r""" 

Create the element of p-adic weight space in the given component 

mapping 1 + p to w. Here w must be an element of a p-adic field, with 

finite precision. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17)(1 + 17^2 + O(17^3), 11, False) 

[1 + 17^2 + O(17^3), 11] 

""" 

WeightCharacter.__init__(self, parent) 

 

self.t = ZZ(t) % (self._p > 2 and (self._p - 1) or 2) 

# do we store w precisely? 

if (w - 1).valuation() <= 0: 

raise ValueError("Must send generator to something nearer 1") 

self.w = w 

 

def _repr_(self): 

r"""String representation of this character. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(97)(1 + 2*97 + O(97^20), 12, False)._repr_() 

'[1 + 2*97 + O(97^20), 12]' 

""" 

return "[%s, %s]" % (self.w, self.t) 

 

def __call__(self, x): 

r""" 

Evaluate this character at an element of `\ZZ_p^\times`. 

 

EXAMPLES:: 

 

sage: kappa = pAdicWeightSpace(23)(1 + 23^2 + O(23^20), 4, False) 

sage: kappa(2) 

16 + 7*23 + 7*23^2 + 16*23^3 + 23^4 + 20*23^5 + 15*23^7 + 11*23^8 + 12*23^9 + 8*23^10 + 22*23^11 + 16*23^12 + 13*23^13 + 4*23^14 + 19*23^15 + 6*23^16 + 7*23^17 + 11*23^19 + O(23^20) 

sage: kappa(-1) 

1 + O(23^20) 

sage: kappa(23) 

0 

sage: kappa(2 + 2*23 + 11*23^2 + O(23^3)) 

16 + 7*23 + O(23^3) 

""" 

 

if not isinstance(x, pAdicGenericElement): 

x = Qp(self._p)(x) 

if x.valuation() != 0: 

return 0 

 

teich = x.parent().teichmuller(x, x.precision_absolute()) 

xx = x / teich 

if (xx - 1).valuation() <= 0: 

raise ArithmeticError 

verbose("Normalised element is %s" % xx) 

 

e = xx.log() / self.parent()._param.log() 

verbose("Exponent is %s" % e) 

 

return teich**(self.t) * (self.w.log() * e).exp() 

 

def teichmuller_type(self): 

r""" 

Return the Teichmuller type of this weight-character `\kappa`, which is 

the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) = 

\mu^t` for \mu a `(p-1)`-st root of 1. 

 

For `p = 2` this doesn't make sense, but we still want the Teichmuller 

type to correspond to the index of the component of weight space in 

which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise. 

 

EXAMPLES:: 

 

sage: pAdicWeightSpace(17)(1 + 3*17 + 2*17^2 + O(17^3), 8, False).teichmuller_type() 

8 

sage: pAdicWeightSpace(2)(1 + 2 + O(2^2), 1, False).teichmuller_type() 

1 

""" 

return self.t