Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

############################################################################# 

# Copyright (C) 2004, 2007 William Stein <wstein@gmail.com> 

# Distributed under the terms of the GNU General Public License (GPL) 

# The full text of the GPL is available at: 

# http://www.gnu.org/licenses/ 

############################################################################# 

  

from cysignals.memory cimport sig_malloc, sig_free 

  

from sage.modules.vector_modn_sparse cimport c_vector_modint 

  

cdef int allocate_c_vector_modint(c_vector_modint* v, Py_ssize_t num_nonzero) except -1: 

""" 

Allocate memory for a c_vector_modint -- most user code won't call this. 

""" 

v.entries = <int*>sig_malloc(num_nonzero*sizeof(int)) 

if v.entries == NULL: 

raise MemoryError("Error allocating memory") 

v.positions = <Py_ssize_t*>sig_malloc(num_nonzero*sizeof(Py_ssize_t)) 

if v.positions == NULL: 

sig_free(v.entries) 

raise MemoryError("Error allocating memory") 

return 0 

  

cdef int init_c_vector_modint(c_vector_modint* v, int p, Py_ssize_t degree, 

Py_ssize_t num_nonzero) except -1: 

""" 

Initialize a c_vector_modint. 

""" 

if (allocate_c_vector_modint(v, num_nonzero) == -1): 

raise MemoryError("Error allocating memory for sparse vector.") 

if p > 46340: 

clear_c_vector_modint(v) 

raise OverflowError("The prime must be <= 46340.") 

v.num_nonzero = num_nonzero 

v.degree = degree 

v.p = p 

return 0 

  

cdef void clear_c_vector_modint(c_vector_modint* v): 

sig_free(v.entries) 

sig_free(v.positions) 

  

cdef Py_ssize_t binary_search0_modn(Py_ssize_t* v, Py_ssize_t n, int x): 

""" 

Find the position of the int x in the array v, which has length n. 

Returns -1 if x is not in the array v. 

""" 

if n == 0: 

return -1 

  

cdef Py_ssize_t i, j, k 

i = 0 

j = n-1 

while i<=j: 

if i == j: 

if v[i] == x: 

return i 

return -1 

k = (i+j)/2 

if v[k] > x: 

j = k-1 

elif v[k] < x: 

i = k+1 

else: # only possibility is that v[k] == x 

return k 

return -1 

  

cdef Py_ssize_t binary_search_modn(Py_ssize_t* v, Py_ssize_t n, int x, Py_ssize_t* ins): 

""" 

Find the position of the integer x in the array v, which has length n. 

Returns -1 if x is not in the array v, and in this case ins is 

set equal to the position where x should be inserted in order to 

obtain an ordered array. 

""" 

if n == 0: 

ins[0] = 0 

return -1 

  

cdef Py_ssize_t i, j, k 

i = 0 

j = n-1 

while i<=j: 

if i == j: 

if v[i] == x: 

ins[0] = i 

return i 

if v[i] < x: 

ins[0] = i + 1 

else: 

ins[0] = i 

return -1 

k = (i+j)/2 

if v[k] > x: 

j = k-1 

elif v[k] < x: 

i = k+1 

else: # only possibility is that v[k] == x 

ins[0] = k 

return k 

# end while 

ins[0] = j+1 

return -1 

  

cdef int get_entry(c_vector_modint* v, Py_ssize_t n) except -1: 

""" 

Returns the n-th entry of the sparse vector v. This 

would be v[n] in Python syntax. 

""" 

if n >= v.degree or n < 0: 

raise IndexError("Index must be between 0 and the degree minus 1.") 

cdef Py_ssize_t m 

m = binary_search0_modn(v.positions, v.num_nonzero, n) 

if m == -1: 

return 0 

return v.entries[m] 

  

cdef object to_list(c_vector_modint* v): 

""" 

Returns a Python list of 2-tuples (i,x), where x=v[i] runs 

through the nonzero elements of x, in order. 

""" 

cdef object X 

cdef Py_ssize_t i 

X = [] 

for i from 0 <= i < v.num_nonzero: 

X.append( (v.positions[i], v.entries[i]) ) 

return X 

  

cdef int set_entry(c_vector_modint* v, Py_ssize_t n, int x) except -1: 

""" 

Set the n-th component of the sparse vector v equal to x. 

This would be v[n] = x in Python syntax. 

""" 

if n < 0 or n >= v.degree: 

raise IndexError("Index (=%s) must be between 0 and %s."%(n, v.degree-1)) 

cdef Py_ssize_t i, m, ins 

cdef Py_ssize_t m2, ins2 

cdef Py_ssize_t *pos 

cdef int *e 

  

x = x % v.p 

if x<0: x = x + v.p 

m = binary_search_modn(v.positions, v.num_nonzero, n, &ins) 

  

if m != -1: 

# The position n was found in the array of positions. 

# Now there are two cases: 

# 1. x =/= 0, which is easy, and 

# 2. x = 0, in which case we have to recopy 

# positions and entries, without the m-th 

# element, and change num_nonzero. 

if x != 0: # case 1 

v.entries[m] = x 

else: # case 2 

e = v.entries 

pos = v.positions 

allocate_c_vector_modint(v, v.num_nonzero - 1) 

for i from 0 <= i < m: 

v.entries[i] = e[i] 

v.positions[i] = pos[i] 

for i from m < i < v.num_nonzero: 

v.entries[i-1] = e[i] 

v.positions[i-1] = pos[i] 

sig_free(e) 

sig_free(pos) 

v.num_nonzero = v.num_nonzero - 1 

else: 

# Allocate new memory and copy over elements from the 

# old array. This is similar to case 2 above, 

# except we are inserting a new entry rather than 

# deleting an old one. The new entry should be inserted 

# at position ins, which was computed using binary search. 

# 

# There is one exception -- if the new entry is 0, we 

# do nothing and return. 

if x == 0: 

return 0 

v.num_nonzero = v.num_nonzero + 1 

e = v.entries 

pos = v.positions 

allocate_c_vector_modint(v, v.num_nonzero) 

for i from 0 <= i < ins: 

v.entries[i] = e[i] 

v.positions[i] = pos[i] 

v.entries[ins] = x 

v.positions[ins] = n 

for i from ins < i < v.num_nonzero: 

v.entries[i] = e[i-1] 

v.positions[i] = pos[i-1] 

sig_free(e) 

sig_free(pos) 

  

cdef int add_c_vector_modint_init(c_vector_modint* sum, c_vector_modint* v, 

c_vector_modint* w, int multiple) except -1: 

""" 

Set sum = v + multiple*w. 

""" 

if v.p != w.p: 

raise ArithmeticError("The vectors must be modulo the same prime.") 

if v.degree != w.degree: 

raise ArithmeticError("The vectors must have the same degree.") 

  

cdef int s 

cdef Py_ssize_t nz, i, j, k 

cdef c_vector_modint* z 

  

multiple = multiple % v.p # need this to avoid overflow. 

if multiple < 0: 

multiple = multiple + v.p 

  

z = sum 

# ALGORITHM: 

# 1. Allocate enough memory to hold the union of the two 

# lists of positions. We allocate the sum of the number 

# of positions of both (up to the degree), to avoid 

# having to make two passes. This might be slightly wasteful of 

# memory, but is faster. 

# 2. Move along the entries of v and w, copying them into the 

# new position / entry array. When position are the same, 

# add modulo p. 

# 3. Set num_nonzero and return success code. 

  

# 1. Allocate memory: 

nz = v.num_nonzero + w.num_nonzero 

if nz > v.degree: nz = v.degree 

init_c_vector_modint(z, v.p, v.degree, nz) 

# 2. Merge entries 

i = 0 # index into entries of v 

j = 0 # index into entries of w 

k = 0 # index into z (the vector we are creating) 

while i < v.num_nonzero or j < w.num_nonzero: 

if i >= v.num_nonzero: # just copy w in 

z.positions[k] = w.positions[j] 

z.entries[k] = (multiple*w.entries[j])%v.p 

j = j + 1 

k = k + 1 

elif j >= w.num_nonzero: # just copy v in 

z.positions[k] = v.positions[i] 

z.entries[k] = v.entries[i] 

i = i + 1 

k = k + 1 

elif v.positions[i] < w.positions[j]: # copy entry from v in 

z.positions[k] = v.positions[i] 

z.entries[k] = v.entries[i] 

i = i + 1 

k = k + 1 

elif v.positions[i] > w.positions[j]: # copy entry from w in 

s = (multiple*w.entries[j])%v.p 

if s != 0: 

z.positions[k] = w.positions[j] 

z.entries[k] = s 

k = k + 1 

j = j + 1 

else: # equal, so add and copy 

s = (v.entries[i] + multiple*w.entries[j]) % v.p 

if s != 0: 

z.positions[k] = v.positions[i] 

z.entries[k] = s 

k = k + 1 # only increment if sum is nonzero! 

i = i + 1 

j = j + 1 

#end if 

# end while 

z.num_nonzero = k 

return 0 

  

cdef int scale_c_vector_modint(c_vector_modint* v, int scalar) except -1: 

scalar = scalar % v.p 

if scalar == 0: 

clear_c_vector_modint(v) 

init_c_vector_modint(v, v.p, v.degree, 0) 

return 0 

if scalar < 0: 

scalar = scalar + v.p 

cdef Py_ssize_t i 

for i from 0 <= i < v.num_nonzero: 

v.entries[i] = (v.entries[i] * scalar) % v.p 

return 0