Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

""" 

String Monoid Elements 

 

AUTHORS: 

 

- David Kohel <kohel@maths.usyd.edu.au>, 2007-01 

 

Elements of free string monoids, internal representation subject to change. 

 

These are special classes of free monoid elements with distinct printing. 

 

The internal representation of elements does not use the exponential 

compression of FreeMonoid elements (a feature), and could be packed into words. 

""" 

#***************************************************************************** 

# Copyright (C) 2007 David Kohel <kohel@maths.usyd.edu.au> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

from six import integer_types 

 

# import operator 

from sage.rings.integer import Integer 

from sage.rings.all import RealField 

from .free_monoid_element import FreeMonoidElement 

from sage.structure.richcmp import richcmp 

 

 

def is_StringMonoidElement(x): 

r""" 

""" 

return isinstance(x, StringMonoidElement) 

 

def is_AlphabeticStringMonoidElement(x): 

r""" 

""" 

from .string_monoid import AlphabeticStringMonoid 

return isinstance(x, StringMonoidElement) and \ 

isinstance(x.parent(), AlphabeticStringMonoid) 

 

def is_BinaryStringMonoidElement(x): 

r""" 

""" 

from .string_monoid import BinaryStringMonoid 

return isinstance(x, StringMonoidElement) and \ 

isinstance(x.parent(), BinaryStringMonoid) 

 

def is_OctalStringMonoidElement(x): 

r""" 

""" 

from .string_monoid import OctalStringMonoid 

return isinstance(x, StringMonoidElement) and \ 

isinstance(x.parent(), OctalStringMonoid) 

 

def is_HexadecimalStringMonoidElement(x): 

r""" 

""" 

from .string_monoid import HexadecimalStringMonoid 

return isinstance(x, StringMonoidElement) and \ 

isinstance(x.parent(), HexadecimalStringMonoid) 

 

def is_Radix64StringMonoidElement(x): 

r""" 

""" 

from .string_monoid import Radix64StringMonoid 

return isinstance(x, StringMonoidElement) and \ 

isinstance(x.parent(), string_monoid.Radix64StringMonoid) 

 

 

class StringMonoidElement(FreeMonoidElement): 

""" 

Element of a free string monoid. 

""" 

 

def __init__(self, S, x, check=True): 

""" 

Create the element ``x`` of the StringMonoid ``S``. 

 

This should typically be called by a StringMonoid. 

""" 

FreeMonoidElement.__init__(self, S, []) 

if isinstance(x, list): 

if check: 

for b in x: 

if not isinstance(b, integer_types + (Integer,)): 

raise TypeError( 

"x (= %s) must be a list of integers." % x) 

self._element_list = list(x) # make copy 

elif isinstance(x, str): 

alphabet = list(self.parent().alphabet()) 

self._element_list = [] 

for i in range(len(x)): 

try: 

b = alphabet.index(x[i]) 

except ValueError: 

raise TypeError( 

"Argument x (= %s) is not a valid string." % x) 

self._element_list += [b] 

else: 

raise TypeError("Argument x (= %s) is of the wrong type." % x) 

 

def _richcmp_(left, right, op): 

""" 

Compare two free monoid elements with the same parents. 

 

The ordering is the one on the underlying sorted list of 

(monomial, coefficients) pairs. 

 

EXAMPLES:: 

 

sage: S = BinaryStrings() 

sage: (x,y) = S.gens() 

sage: x * y < y * x 

True 

sage: S("01") < S("10") 

True 

""" 

return richcmp(left._element_list, right._element_list, op) 

 

def _repr_(self): 

""" 

The self-representation of a string monoid element. Unlike Python 

strings we print without the enclosing quotes. 

""" 

S = self.parent() 

alphabet = S.alphabet() 

s = '' 

for b in self._element_list: 

c = alphabet[b] 

s += c 

return s 

 

def _latex_(self): 

""" 

Return latex representation of self. 

 

EXAMPLES:: 

 

sage: S = BinaryStrings() 

sage: s = S('101111000') 

sage: latex(s) 

101111000 

""" 

return self._repr_() 

 

def __mul__(self, y): 

""" 

Multiply 2 free string monoid elements. 

 

EXAMPLES:: 

 

sage: S = BinaryStrings() 

sage: (x,y) = S.gens() 

sage: x*y 

01 

""" 

if not isinstance(y, StringMonoidElement): 

raise TypeError("Argument y (= %s) is of wrong type." % y) 

S = self.parent() 

x_elt = self._element_list 

y_elt = y._element_list 

z = S('') 

z._element_list = x_elt + y_elt 

return z 

 

def __pow__(self, n): 

""" 

Return the `n`-th power of the string element. 

 

EXAMPLES:: 

 

sage: (x,y) = BinaryStrings().gens() 

sage: x**3 * y**5 * x**7 

000111110000000 

sage: x**0 

 

 

Note that raising to a negative power is *not* a constructor 

for an element of the corresponding free group (yet). 

 

:: 

 

sage: x**(-1) 

Traceback (most recent call last): 

... 

IndexError: Argument n (= -1) must be non-negative. 

""" 

if not isinstance(n, integer_types + (Integer,)): 

raise TypeError("Argument n (= %s) must be an integer." % n) 

if n < 0: 

raise IndexError("Argument n (= %s) must be non-negative." % n) 

elif n == 0: 

return self.parent()('') 

elif n == 1: 

return self 

z = self.parent()('') 

z._element_list = self._element_list * n 

return z 

 

def __len__(self): 

""" 

Return the number of products that occur in this monoid element. 

For example, the length of the identity is 0, and the length 

of the monoid `x_0^2x_1` is three. 

 

EXAMPLES:: 

 

sage: S = BinaryStrings() 

sage: z = S('') 

sage: len(z) 

0 

sage: (x,y) = S.gens() 

sage: len(x**2 * y**3) 

5 

""" 

return len(self._element_list) 

 

def __iter__(self): 

""" 

Return an iterator over this element as a string. 

 

EXAMPLES:: 

 

sage: t = AlphabeticStrings()('SHRUBBERY') 

sage: next(t.__iter__()) 

S 

sage: list(t) 

[S, H, R, U, B, B, E, R, Y] 

""" 

l = len(self._element_list) 

i = 0 

while i < l: 

yield self[i] 

i += 1 

 

def __getitem__(self, n): 

""" 

Return the n-th string character. 

 

EXAMPLES:: 

 

sage: t = AlphabeticStrings()('SHRUBBERY') 

sage: t[0] 

S 

sage: t[3] 

U 

sage: t[-1] 

Y 

""" 

try: 

c = self._element_list[n] 

except Exception: 

raise IndexError("Argument n (= %s) is not a valid index." % n) 

if not isinstance(c, list): 

c = [c] 

return self.parent()(c) 

 

def decoding(self, padic=False): 

r""" 

The byte string associated to a binary or hexadecimal string 

monoid element. 

 

EXAMPLES:: 

 

sage: S = HexadecimalStrings() 

sage: s = S.encoding("A..Za..z"); s 

412e2e5a612e2e7a 

sage: s.decoding() 

'A..Za..z' 

sage: s = S.encoding("A..Za..z",padic=True); s 

14e2e2a516e2e2a7 

sage: s.decoding() 

'\x14\xe2\xe2\xa5\x16\xe2\xe2\xa7' 

sage: s.decoding(padic=True) 

'A..Za..z' 

sage: S = BinaryStrings() 

sage: s = S.encoding("A..Za..z"); s 

0100000100101110001011100101101001100001001011100010111001111010 

sage: s.decoding() 

'A..Za..z' 

sage: s = S.encoding("A..Za..z",padic=True); s 

1000001001110100011101000101101010000110011101000111010001011110 

sage: s.decoding() 

'\x82ttZ\x86tt^' 

sage: s.decoding(padic=True) 

'A..Za..z' 

""" 

S = self.parent() 

from .string_monoid import (AlphabeticStringMonoid, 

BinaryStringMonoid, 

HexadecimalStringMonoid) 

if isinstance(S, AlphabeticStringMonoid): 

return ''.join([ chr(65+i) for i in self._element_list ]) 

n = len(self) 

if isinstance(S, HexadecimalStringMonoid): 

if not n % 2 == 0: 

"String %s must have even length to determine a byte character string." % str(self) 

s = [] 

x = self._element_list 

for k in range(n//2): 

m = 2*k 

if padic: 

c = chr(x[m]+16*x[m+1]) 

else: 

c = chr(16*x[m]+x[m+1]) 

s.append(c) 

return ''.join(s) 

if isinstance(S, BinaryStringMonoid): 

if not n % 8 == 0: 

"String %s must have even length 0 mod 8 to determine a byte character string." % str(self) 

pows = [ 2**i for i in range(8) ] 

s = [] 

x = self._element_list 

for k in range(n//8): 

m = 8*k 

if padic: 

c = chr(sum([ x[m+i]*pows[i] for i in range(8) ])) 

else: 

c = chr(sum([ x[m+7-i]*pows[i] for i in range(8) ])) 

s.append(c) 

return ''.join(s) 

raise TypeError( 

"Argument %s must be an alphabetic, binary, or hexadecimal string." % str(self)) 

 

def coincidence_index(self, prec=0): 

""" 

Returns the probability of two randomly chosen characters being equal. 

""" 

if prec == 0: 

RR = RealField() 

else: 

RR = RealField(prec) 

char_dict = {} 

for i in self._element_list: 

if i in char_dict: 

char_dict[i] += 1 

else: 

char_dict[i] = 1 

nn = 0 

ci_num = 0 

for i in char_dict.keys(): 

ni = char_dict[i] 

nn += ni 

ci_num += ni*(ni-1) 

ci_den = nn*(nn-1) 

return RR(ci_num)/ci_den 

 

def character_count(self): 

r""" 

Return the count of each unique character. 

 

EXAMPLES: 

 

Count the character frequency in an object comprised of capital 

letters of the English alphabet:: 

 

sage: M = AlphabeticStrings().encoding("abcabf") 

sage: sorted(M.character_count().items()) 

[(A, 2), (B, 2), (C, 1), (F, 1)] 

 

In an object comprised of binary numbers:: 

 

sage: M = BinaryStrings().encoding("abcabf") 

sage: sorted(M.character_count().items()) 

[(0, 28), (1, 20)] 

 

In an object comprised of octal numbers:: 

 

sage: A = OctalStrings() 

sage: M = A([1, 2, 3, 2, 5, 3]) 

sage: sorted(M.character_count().items()) 

[(1, 1), (2, 2), (3, 2), (5, 1)] 

 

In an object comprised of hexadecimal numbers:: 

 

sage: A = HexadecimalStrings() 

sage: M = A([1, 2, 4, 6, 2, 4, 15]) 

sage: sorted(M.character_count().items()) 

[(1, 1), (2, 2), (4, 2), (6, 1), (f, 1)] 

 

In an object comprised of radix-64 characters:: 

 

sage: A = Radix64Strings() 

sage: M = A([1, 2, 63, 45, 45, 10]); M 

BC/ttK 

sage: sorted(M.character_count().items()) 

[(B, 1), (C, 1), (K, 1), (t, 2), (/, 1)] 

 

TESTS: 

 

Empty strings return no counts of character frequency:: 

 

sage: M = AlphabeticStrings().encoding("") 

sage: M.character_count() 

{} 

sage: M = BinaryStrings().encoding("") 

sage: M.character_count() 

{} 

sage: A = OctalStrings() 

sage: M = A([]) 

sage: M.character_count() 

{} 

sage: A = HexadecimalStrings() 

sage: M = A([]) 

sage: M.character_count() 

{} 

sage: A = Radix64Strings() 

sage: M = A([]) 

sage: M.character_count() 

{} 

""" 

# the character frequency, i.e. the character count 

CF = {} 

for e in self: 

if e in CF: 

CF[e] += 1 

else: 

CF.setdefault(e, 1) 

return CF 

 

def frequency_distribution(self, length=1, prec=0): 

""" 

Returns the probability space of character frequencies. The output 

of this method is different from that of the method 

:func:`characteristic_frequency() 

<sage.monoids.string_monoid.AlphabeticStringMonoid.characteristic_frequency>`. 

One can think of the characteristic frequency probability of an 

element in an alphabet `A` as the expected probability of that element 

occurring. Let `S` be a string encoded using elements of `A`. The 

frequency probability distribution corresponding to `S` provides us 

with the frequency probability of each element of `A` as observed 

occurring in `S`. Thus one distribution provides expected 

probabilities, while the other provides observed probabilities. 

 

INPUT: 

 

- ``length`` -- (default ``1``) if ``length=1`` then consider the 

probability space of monogram frequency, i.e. probability 

distribution of single characters. If ``length=2`` then consider 

the probability space of digram frequency, i.e. probability 

distribution of pairs of characters. This method currently 

supports the generation of probability spaces for monogram 

frequency (``length=1``) and digram frequency (``length=2``). 

 

- ``prec`` -- (default ``0``) a non-negative integer representing 

the precision (in number of bits) of a floating-point number. The 

default value ``prec=0`` means that we use 53 bits to represent 

the mantissa of a floating-point number. For more information on 

the precision of floating-point numbers, see the function 

:func:`RealField() <sage.rings.real_mpfr.RealField>` or refer to the module 

:mod:`real_mpfr <sage.rings.real_mpfr>`. 

 

EXAMPLES: 

 

Capital letters of the English alphabet:: 

 

sage: M = AlphabeticStrings().encoding("abcd") 

sage: L = M.frequency_distribution().function() 

sage: sorted(L.items()) 

<BLANKLINE> 

[(A, 0.250000000000000), 

(B, 0.250000000000000), 

(C, 0.250000000000000), 

(D, 0.250000000000000)] 

 

The binary number system:: 

 

sage: M = BinaryStrings().encoding("abcd") 

sage: L = M.frequency_distribution().function() 

sage: sorted(L.items()) 

[(0, 0.593750000000000), (1, 0.406250000000000)] 

 

The hexadecimal number system:: 

 

sage: M = HexadecimalStrings().encoding("abcd") 

sage: L = M.frequency_distribution().function() 

sage: sorted(L.items()) 

<BLANKLINE> 

[(1, 0.125000000000000), 

(2, 0.125000000000000), 

(3, 0.125000000000000), 

(4, 0.125000000000000), 

(6, 0.500000000000000)] 

 

Get the observed frequency probability distribution of digrams in the 

string "ABCD". This string consists of the following digrams: "AB", 

"BC", and "CD". Now find out the frequency probability of each of 

these digrams as they occur in the string "ABCD":: 

 

sage: M = AlphabeticStrings().encoding("abcd") 

sage: D = M.frequency_distribution(length=2).function() 

sage: sorted(D.items()) 

[(AB, 0.333333333333333), (BC, 0.333333333333333), (CD, 0.333333333333333)] 

""" 

if not length in (1, 2): 

raise NotImplementedError("Not implemented") 

if prec == 0: 

RR = RealField() 

else: 

RR = RealField(prec) 

S = self.parent() 

n = S.ngens() 

if length == 1: 

Alph = S.gens() 

else: 

Alph = tuple([ x*y for x in S.gens() for y in S.gens() ]) 

X = {} 

N = len(self)-length+1 

eps = RR(Integer(1)/N) 

for i in range(N): 

c = self[i:i+length] 

if c in X: 

X[c] += eps 

else: 

X[c] = eps 

# Return a dictionary of probability distribution. This should 

# allow for easier parsing of the dictionary. 

from sage.probability.random_variable import DiscreteProbabilitySpace 

return DiscreteProbabilitySpace(Alph, X, RR)