Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

""" 

PPL Backend 

  

AUTHORS: 

  

- Risan (2012-02): initial implementation 

  

- Jeroen Demeyer (2014-08-04) allow rational coefficients for 

constraints and objective function (:trac:`16755`) 

""" 

  

#***************************************************************************** 

# Copyright (C) 2010 Risan <ptrrsn.1@gmail.com> 

# Copyright (C) 2014 Jeroen Demeyer <jdemeyer@cage.ugent.be> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

  

from sage.numerical.mip import MIPSolverException 

from sage.libs.ppl import MIP_Problem, Variable, Variables_Set, Linear_Expression, Constraint, Generator 

from sage.rings.integer cimport Integer 

from sage.rings.rational cimport Rational 

from .generic_backend cimport GenericBackend 

from copy import copy 

  

cdef class PPLBackend(GenericBackend): 

  

""" 

MIP Backend that uses the exact MIP solver from the Parma Polyhedra Library. 

  

General backend testsuite:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: TestSuite(p).run(skip="_test_pickling") 

""" 

  

cdef object mip 

cdef list Matrix 

cdef list row_lower_bound 

cdef list row_upper_bound 

cdef list col_lower_bound 

cdef list col_upper_bound 

cdef list objective_function 

cdef list row_name_var 

cdef list col_name_var 

cdef int is_maximize 

cdef str name 

cdef object integer_variables 

  

# Common denominator for objective function in self.mip (not for the constant term) 

cdef Integer obj_denominator 

  

def __cinit__(self, maximization = True, base_ring = None): 

""" 

Constructor 

  

EXAMPLES:: 

  

sage: p = MixedIntegerLinearProgram(solver = "PPL") 

  

TESTS: 

  

Raise an error if a ``base_ring`` is requested that is not supported:: 

  

sage: p = MixedIntegerLinearProgram(solver = "PPL", base_ring=AA) 

Traceback (most recent call last): 

... 

TypeError: The PPL backend only supports rational data. 

""" 

  

if base_ring is not None: 

from sage.rings.all import QQ 

if base_ring is not QQ: 

raise TypeError('The PPL backend only supports rational data.') 

  

self.Matrix = [] 

self.row_lower_bound = [] 

self.row_upper_bound = [] 

self.col_lower_bound = [] 

self.col_upper_bound = [] 

self.objective_function = [] 

self.row_name_var = [] 

self.col_name_var = [] 

self.name = '' 

self.obj_constant_term = Rational(0) 

self.obj_denominator = Integer(1) 

self.integer_variables = set() 

  

if maximization: 

self.set_sense(+1) 

else: 

self.set_sense(-1) 

  

cpdef base_ring(self): 

from sage.rings.all import QQ 

return QQ 

  

cpdef zero(self): 

return self.base_ring()(0) 

  

cpdef __copy__(self): 

""" 

Returns a copy of self. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = MixedIntegerLinearProgram(solver = "PPL") 

sage: b = p.new_variable() 

sage: p.add_constraint(b[1] + b[2] <= 6) 

sage: p.set_objective(b[1] + b[2]) 

sage: cp = copy(p.get_backend()) 

sage: cp.solve() 

0 

sage: cp.get_objective_value() 

6 

""" 

cdef PPLBackend cp = type(self)() 

cp.Matrix = [row[:] for row in self.Matrix] 

cp.row_lower_bound = self.row_lower_bound[:] 

cp.row_upper_bound = self.row_upper_bound[:] 

cp.col_lower_bound = self.col_lower_bound[:] 

cp.col_upper_bound = self.col_upper_bound[:] 

cp.objective_function = self.objective_function[:] 

cp.row_name_var = self.row_name_var[:] 

cp.col_name_var = self.col_name_var[:] 

cp.name = self.name 

cp.obj_constant_term = self.obj_constant_term 

cp.obj_denominator = self.obj_denominator 

cp.integer_variables = copy(self.integer_variables) 

cp.is_maximize = self.is_maximize 

return cp 

  

def init_mip(self): 

""" 

Converting the matrix form of the MIP Problem to PPL MIP_Problem. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver="PPL") 

sage: p.base_ring() 

Rational Field 

sage: type(p.zero()) 

<type 'sage.rings.rational.Rational'> 

sage: p.init_mip() 

""" 

  

self.mip = MIP_Problem() 

  

# Common denominator (for objective function and every constraint) 

cdef Integer denom, newdenom 

  

self.mip.add_space_dimensions_and_embed(len(self.objective_function)) 

  

# Integrality 

  

ivar = Variables_Set() 

for i in self.integer_variables: 

ivar.insert(Variable(i)) 

self.mip.add_to_integer_space_dimensions(ivar) 

  

# Objective function 

mip_obj = Linear_Expression(0) 

denom = Integer(1) 

for i in range(len(self.objective_function)): 

coeff = self.objective_function[i] * denom 

newdenom = coeff.denominator() 

if newdenom != 1: 

assert newdenom >= 2 

denom *= newdenom 

mip_obj *= newdenom 

coeff *= newdenom 

mip_obj = mip_obj + Linear_Expression(coeff * Variable(i)) 

self.mip.set_objective_function(mip_obj) 

self.obj_denominator = denom 

 

# Constraints 

for i in range(len(self.Matrix)): 

l = Linear_Expression(0) 

denom = Integer(1) 

for j in range(len(self.Matrix[i])): 

coeff = self.Matrix[i][j] * denom 

newdenom = coeff.denominator() 

if newdenom != 1: 

assert newdenom >= 2 

denom *= newdenom 

l *= newdenom 

coeff *= newdenom 

l = l + Linear_Expression(coeff * Variable(j)) 

self.mip._add_rational_constraint(l, denom, self.row_lower_bound[i], self.row_upper_bound[i]) 

  

assert len(self.col_lower_bound) == len(self.col_upper_bound) 

for i in range(len(self.col_lower_bound)): 

self.mip._add_rational_constraint(Variable(i), 1, self.col_lower_bound[i], self.col_upper_bound[i]) 

  

if self.is_maximize == 1: 

self.mip.set_optimization_mode('maximization') 

else: 

self.mip.set_optimization_mode('minimization') 

  

cpdef int add_variable(self, lower_bound=0, upper_bound=None, binary=False, continuous=False, integer=False, obj=0, name=None) except -1: 

""" 

Add a variable. 

  

This amounts to adding a new column to the matrix. By default, 

the variable is both positive and real. 

  

It has not been implemented for selecting the variable type yet. 

  

INPUT: 

  

- ``lower_bound`` -- the lower bound of the variable (default: 0) 

  

- ``upper_bound`` -- the upper bound of the variable (default: ``None``) 

  

- ``binary`` -- ``True`` if the variable is binary (default: ``False``). 

  

- ``continuous`` -- ``True`` if the variable is binary (default: ``True``). 

  

- ``integer`` -- ``True`` if the variable is binary (default: ``False``). 

  

- ``obj`` -- (optional) coefficient of this variable in the objective function (default: 0) 

  

- ``name`` -- an optional name for the newly added variable (default: ``None``). 

  

OUTPUT: The index of the newly created variable 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.add_variable() 

0 

sage: p.ncols() 

1 

sage: p.add_variable(lower_bound=-2) 

1 

sage: p.add_variable(name='x',obj=2/3) 

2 

sage: p.col_name(2) 

'x' 

sage: p.objective_coefficient(2) 

2/3 

sage: p.add_variable(integer=True) 

3 

""" 

cdef int vtype = int(bool(binary)) + int(bool(continuous)) + int(bool(integer)) 

if vtype == 0: 

continuous = True 

elif vtype != 1: 

raise ValueError("Exactly one parameter of 'binary', 'integer' and 'continuous' must be 'True'.") 

  

for i in range(len(self.Matrix)): 

self.Matrix[i].append(0) 

self.col_lower_bound.append(lower_bound) 

self.col_upper_bound.append(upper_bound) 

self.objective_function.append(obj) 

self.col_name_var.append(name) 

  

n = len(self.objective_function) - 1 

if binary: 

self.set_variable_type(n,0) 

elif integer: 

self.set_variable_type(n,1) 

  

return n 

  

cpdef int add_variables(self, int n, lower_bound=0, upper_bound=None, binary=False, continuous=True, integer=False, obj=0, names=None) except -1: 

""" 

Add ``n`` variables. 

  

This amounts to adding new columns to the matrix. By default, 

the variables are both positive and real. 

  

It has not been implemented for selecting the variable type yet. 

  

INPUT: 

  

- ``n`` -- the number of new variables (must be > 0) 

  

- ``lower_bound`` -- the lower bound of the variable (default: 0) 

  

- ``upper_bound`` -- the upper bound of the variable (default: ``None``) 

  

- ``binary`` -- ``True`` if the variable is binary (default: ``False``). 

  

- ``continuous`` -- ``True`` if the variable is binary (default: ``True``). 

  

- ``integer`` -- ``True`` if the variable is binary (default: ``False``). 

  

- ``obj`` -- (optional) coefficient of all variables in the objective function (default: 0) 

  

- ``names`` -- optional list of names (default: ``None``) 

  

OUTPUT: The index of the variable created last. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.add_variables(5) 

4 

sage: p.ncols() 

5 

sage: p.add_variables(2, lower_bound=-2.0, obj=42.0, names=['a','b']) 

6 

  

TESTS: 

  

Check that arguments are used:: 

  

sage: p.col_bounds(5) # tol 1e-8 

(-2.0, None) 

sage: p.col_name(5) 

'a' 

sage: p.objective_coefficient(5) # tol 1e-8 

42.0 

""" 

if binary or integer: 

raise NotImplementedError("The PPL backend in Sage only supports continuous variables") 

for k in range(n): 

for i in range(len(self.Matrix)): 

self.Matrix[i].append(0) 

self.col_lower_bound.append(lower_bound) 

self.col_upper_bound.append(upper_bound) 

self.objective_function.append(obj) 

if names is not None: 

self.col_name_var.append(names[k]) 

else: 

self.col_name_var.append(None) 

return len(self.objective_function) - 1 

  

cpdef set_variable_type(self, int variable, int vtype): 

""" 

Set the type of a variable. 

  

INPUT: 

  

- ``variable`` (integer) -- the variable's id 

  

- ``vtype`` (integer) : 

  

* 1 Integer 

* 0 Binary 

* -1 Continuous 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(5) 

4 

sage: p.set_variable_type(0,1) 

sage: p.is_variable_integer(0) 

True 

sage: p.set_variable_type(3,0) 

sage: p.is_variable_integer(3) or p.is_variable_binary(3) 

True 

sage: p.col_bounds(3) # tol 1e-6 

(0, 1) 

sage: p.set_variable_type(3, -1) 

sage: p.is_variable_continuous(3) 

True 

  

TESTS: 

  

Test that an exception is raised when an invalid type is passed:: 

  

sage: p.set_variable_type(3, -2) 

Traceback (most recent call last): 

... 

ValueError: ... 

""" 

if vtype == -1: 

if variable in self.integer_variables: 

self.integer_variables.remove(variable) 

elif vtype == 0: 

self.integer_variables.add(variable) 

self.variable_lower_bound(variable, 0) 

self.variable_upper_bound(variable, 1) 

elif vtype == 1: 

self.integer_variables.add(variable) 

else: 

raise ValueError("Invalid variable type: {}".format(vtype)) 

  

cpdef set_sense(self, int sense): 

""" 

Set the direction (maximization/minimization). 

  

INPUT: 

  

- ``sense`` (integer) : 

  

* +1 => Maximization 

* -1 => Minimization 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.is_maximization() 

True 

sage: p.set_sense(-1) 

sage: p.is_maximization() 

False 

""" 

if sense == 1: 

self.is_maximize = 1 

else: 

self.is_maximize = 0 

  

cpdef objective_coefficient(self, int variable, coeff=None): 

""" 

Set or get the coefficient of a variable in the objective 

function 

  

INPUT: 

  

- ``variable`` (integer) -- the variable's id 

  

- ``coeff`` (integer) -- its coefficient 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variable() 

0 

sage: p.objective_coefficient(0) 

0 

sage: p.objective_coefficient(0,2) 

sage: p.objective_coefficient(0) 

2 

""" 

if coeff is not None: 

self.objective_function[variable] = coeff 

else: 

return self.objective_function[variable] 

  

cpdef set_objective(self, list coeff, d=0): 

""" 

Set the objective function. 

  

INPUT: 

  

- ``coeff`` -- a list of real values, whose ith element is the 

coefficient of the ith variable in the objective function. 

  

EXAMPLES:: 

  

sage: p = MixedIntegerLinearProgram(solver="PPL") 

sage: x = p.new_variable(nonnegative=True) 

sage: p.add_constraint(x[0]*5 + x[1]/11 <= 6) 

sage: p.set_objective(x[0]) 

sage: p.solve() 

6/5 

sage: p.set_objective(x[0]/2 + 1) 

sage: p.show() 

Maximization: 

1/2 x_0 + 1 

<BLANKLINE> 

Constraints: 

constraint_0: 5 x_0 + 1/11 x_1 <= 6 

Variables: 

x_0 is a continuous variable (min=0, max=+oo) 

x_1 is a continuous variable (min=0, max=+oo) 

sage: p.solve() 

8/5 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(5) 

4 

sage: p.set_objective([1, 1, 2, 1, 3]) 

sage: [p.objective_coefficient(x) for x in range(5)] 

[1, 1, 2, 1, 3] 

""" 

for i in range(len(coeff)): 

self.objective_function[i] = coeff[i] 

self.obj_constant_term = Rational(d) 

  

cpdef set_verbosity(self, int level): 

""" 

Set the log (verbosity) level. Not Implemented. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.set_verbosity(0) 

""" 

  

cpdef add_linear_constraint(self, coefficients, lower_bound, upper_bound, name=None): 

""" 

Add a linear constraint. 

  

INPUT: 

  

- ``coefficients`` -- an iterable with ``(c,v)`` pairs where ``c`` 

is a variable index (integer) and ``v`` is a value (real 

value). 

  

- ``lower_bound`` -- a lower bound, either a real value or ``None`` 

  

- ``upper_bound`` -- an upper bound, either a real value or ``None`` 

  

- ``name`` -- an optional name for this row (default: ``None``) 

  

EXAMPLES:: 

  

sage: p = MixedIntegerLinearProgram(solver="PPL") 

sage: x = p.new_variable(nonnegative=True) 

sage: p.add_constraint(x[0]/2 + x[1]/3 <= 2/5) 

sage: p.set_objective(x[1]) 

sage: p.solve() 

6/5 

sage: p.add_constraint(x[0] - x[1] >= 1/10) 

sage: p.solve() 

21/50 

sage: p.set_max(x[0], 1/2) 

sage: p.set_min(x[1], 3/8) 

sage: p.solve() 

2/5 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(5) 

4 

sage: p.add_linear_constraint(zip(range(5), range(5)), 2.0, 2.0) 

sage: p.row(0) 

([1, 2, 3, 4], [1, 2, 3, 4]) 

sage: p.row_bounds(0) 

(2.00000000000000, 2.00000000000000) 

sage: p.add_linear_constraint( zip(range(5), range(5)), 1.0, 1.0, name='foo') 

sage: p.row_name(-1) 

'foo' 

""" 

last = len(self.Matrix) 

self.Matrix.append([]) 

for i in range(len(self.objective_function)): 

self.Matrix[last].append(0) 

for a in coefficients: 

self.Matrix[last][a[0]] = a[1] 

  

self.row_lower_bound.append(lower_bound) 

self.row_upper_bound.append(upper_bound) 

self.row_name_var.append(name) 

  

cpdef add_col(self, list indices, list coeffs): 

""" 

Add a column. 

  

INPUT: 

  

- ``indices`` (list of integers) -- this list contains the 

indices of the constraints in which the variable's 

coefficient is nonzero 

  

- ``coeffs`` (list of real values) -- associates a coefficient 

to the variable in each of the constraints in which it 

appears. Namely, the ith entry of ``coeffs`` corresponds to 

the coefficient of the variable in the constraint 

represented by the ith entry in ``indices``. 

  

.. NOTE:: 

  

``indices`` and ``coeffs`` are expected to be of the same 

length. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.nrows() 

0 

sage: p.add_linear_constraints(5, 0, None) 

sage: p.add_col(list(range(5)), list(range(5))) 

sage: p.nrows() 

5 

""" 

for i in range(len(self.Matrix)): 

self.Matrix[i].append(0) 

for i in range(len(indices)): 

self.Matrix[indices[i]][len(self.Matrix[indices[i]]) - 1] = coeffs[i] 

  

self.col_lower_bound.append(None) 

self.col_upper_bound.append(None) 

self.objective_function.append(0) 

self.col_name_var.append(None) 

  

cpdef add_linear_constraints(self, int number, lower_bound, upper_bound, names=None): 

""" 

Add constraints. 

  

INPUT: 

  

- ``number`` (integer) -- the number of constraints to add. 

  

- ``lower_bound`` -- a lower bound, either a real value or ``None`` 

  

- ``upper_bound`` -- an upper bound, either a real value or ``None`` 

  

- ``names`` -- an optional list of names (default: ``None``) 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(5) 

4 

sage: p.add_linear_constraints(5, None, 2) 

sage: p.row(4) 

([], []) 

sage: p.row_bounds(4) 

(None, 2) 

""" 

for i in range(number): 

self.Matrix.append([]) 

for j in range(len(self.objective_function)): 

self.Matrix[i].append(0) 

self.row_lower_bound.append(lower_bound) 

self.row_upper_bound.append(upper_bound) 

if names is not None: 

self.row_name_var.append(names[i]) 

else: 

self.row_name_var.append(None) 

  

cpdef int solve(self) except -1: 

# integer example copied from cplex_backend.pyx 

""" 

Solve the problem. 

  

.. NOTE:: 

  

This method raises ``MIPSolverException`` exceptions when 

the solution can not be computed for any reason (none 

exists, or the solver was not able to find it, etc...) 

  

EXAMPLES: 

  

A linear optimization problem:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_linear_constraints(5, 0, None) 

sage: p.add_col(list(range(5)), list(range(5))) 

sage: p.solve() 

0 

  

An unbounded problem:: 

  

sage: p.objective_coefficient(0,1) 

sage: p.solve() 

Traceback (most recent call last): 

... 

MIPSolverException: ... 

  

An integer optimization problem:: 

  

sage: p = MixedIntegerLinearProgram(solver='PPL') 

sage: x = p.new_variable(integer=True, nonnegative=True) 

sage: p.add_constraint(2*x[0] + 3*x[1], max = 6) 

sage: p.add_constraint(3*x[0] + 2*x[1], max = 6) 

sage: p.set_objective(x[0] + x[1] + 7) 

sage: p.solve() 

9 

""" 

self.init_mip() 

  

ans = self.mip.solve() 

  

if ans['status'] == 'optimized': 

pass 

elif ans['status'] == 'unbounded': 

raise MIPSolverException("PPL : Solution is unbounded") 

elif ans['status'] == 'unfeasible': 

raise MIPSolverException("PPL : There is no feasible solution") 

  

return 0 

  

cpdef get_objective_value(self): 

""" 

Return the exact value of the objective function. 

  

.. NOTE:: 

  

Behaviour is undefined unless ``solve`` has been called before. 

  

EXAMPLES:: 

  

sage: p = MixedIntegerLinearProgram(solver="PPL") 

sage: x = p.new_variable(nonnegative=True) 

sage: p.add_constraint(5/13*x[0] + x[1]/2 == 8/7) 

sage: p.set_objective(5/13*x[0] + x[1]/2) 

sage: p.solve() 

8/7 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(2) 

1 

sage: p.add_linear_constraint([(0,1), (1,2)], None, 3) 

sage: p.set_objective([2, 5]) 

sage: p.solve() 

0 

sage: p.get_objective_value() 

15/2 

sage: p.get_variable_value(0) 

0 

sage: p.get_variable_value(1) 

3/2 

""" 

ans = self.mip.optimal_value() 

return ans / self.obj_denominator + self.obj_constant_term 

  

cpdef get_variable_value(self, int variable): 

""" 

Return the value of a variable given by the solver. 

  

.. NOTE:: 

  

Behaviour is undefined unless ``solve`` has been called before. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(2) 

1 

sage: p.add_linear_constraint([(0,1), (1, 2)], None, 3) 

sage: p.set_objective([2, 5]) 

sage: p.solve() 

0 

sage: p.get_objective_value() 

15/2 

sage: p.get_variable_value(0) 

0 

sage: p.get_variable_value(1) 

3/2 

""" 

g = self.mip.optimizing_point() 

return g.coefficient(Variable(variable)) / g.divisor() 

  

cpdef int ncols(self): 

""" 

Return the number of columns/variables. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.add_variables(2) 

1 

sage: p.ncols() 

2 

""" 

return len(self.objective_function) 

  

cpdef int nrows(self): 

""" 

Return the number of rows/constraints. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.nrows() 

0 

sage: p.add_linear_constraints(2, 2.0, None) 

sage: p.nrows() 

2 

""" 

return len(self.Matrix) 

  

cpdef bint is_maximization(self): 

""" 

Test whether the problem is a maximization 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.is_maximization() 

True 

sage: p.set_sense(-1) 

sage: p.is_maximization() 

False 

""" 

if self.is_maximize == 1: 

return 1 

else: 

return 0 

  

cpdef problem_name(self, char * name = NULL): 

""" 

Return or define the problem's name 

  

INPUT: 

  

- ``name`` (``char *``) -- the problem's name. When set to 

``NULL`` (default), the method returns the problem's name. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.problem_name("There once was a french fry") 

sage: print(p.problem_name()) 

There once was a french fry 

""" 

if name == NULL: 

return self.name 

self.name = str(<bytes>name) 

  

cpdef row(self, int i): 

""" 

Return a row 

  

INPUT: 

  

- ``index`` (integer) -- the constraint's id. 

  

OUTPUT: 

  

A pair ``(indices, coeffs)`` where ``indices`` lists the 

entries whose coefficient is nonzero, and to which ``coeffs`` 

associates their coefficient on the model of the 

``add_linear_constraint`` method. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(5) 

4 

sage: p.add_linear_constraint(zip(range(5), range(5)), 2, 2) 

sage: p.row(0) 

([1, 2, 3, 4], [1, 2, 3, 4]) 

sage: p.row_bounds(0) 

(2, 2) 

""" 

idx = [] 

coef = [] 

for j in range(len(self.Matrix[i])): 

if self.Matrix[i][j] != 0: 

idx.append(j) 

coef.append(self.Matrix[i][j]) 

return (idx, coef) 

  

cpdef row_bounds(self, int index): 

""" 

Return the bounds of a specific constraint. 

  

INPUT: 

  

- ``index`` (integer) -- the constraint's id. 

  

OUTPUT: 

  

A pair ``(lower_bound, upper_bound)``. Each of them can be set 

to ``None`` if the constraint is not bounded in the 

corresponding direction, and is a real value otherwise. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variables(5) 

4 

sage: p.add_linear_constraint(zip(range(5), range(5)), 2, 2) 

sage: p.row(0) 

([1, 2, 3, 4], [1, 2, 3, 4]) 

sage: p.row_bounds(0) 

(2, 2) 

""" 

return (self.row_lower_bound[index], self.row_upper_bound[index]) 

  

cpdef col_bounds(self, int index): 

""" 

Return the bounds of a specific variable. 

  

INPUT: 

  

- ``index`` (integer) -- the variable's id. 

  

OUTPUT: 

  

A pair ``(lower_bound, upper_bound)``. Each of them can be set 

to ``None`` if the variable is not bounded in the 

corresponding direction, and is a real value otherwise. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variable() 

0 

sage: p.col_bounds(0) 

(0, None) 

sage: p.variable_upper_bound(0, 5) 

sage: p.col_bounds(0) 

(0, 5) 

""" 

return (self.col_lower_bound[index], self.col_upper_bound[index]) 

  

  

cpdef bint is_variable_binary(self, int index): 

""" 

Test whether the given variable is of binary type. 

  

INPUT: 

  

- ``index`` (integer) -- the variable's id 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.add_variable() 

0 

sage: p.is_variable_binary(0) 

False 

""" 

return index in self.integer_variables and self.col_bounds(index) == (0, 1) 

  

cpdef bint is_variable_integer(self, int index): 

""" 

Test whether the given variable is of integer type. 

  

INPUT: 

  

- ``index`` (integer) -- the variable's id 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.add_variable() 

0 

sage: p.is_variable_integer(0) 

False 

""" 

return index in self.integer_variables and self.col_bounds(index) != (0, 1) 

  

cpdef bint is_variable_continuous(self, int index): 

""" 

Test whether the given variable is of continuous/real type. 

  

INPUT: 

  

- ``index`` (integer) -- the variable's id 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.ncols() 

0 

sage: p.add_variable() 

0 

sage: p.is_variable_continuous(0) 

True 

""" 

return index not in self.integer_variables 

  

cpdef row_name(self, int index): 

""" 

Return the ``index`` th row name 

  

INPUT: 

  

- ``index`` (integer) -- the row's id 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_linear_constraints(1, 2, None, names=["Empty constraint 1"]) 

sage: p.row_name(0) 

'Empty constraint 1' 

""" 

if self.row_name_var[index] is not None: 

return self.row_name_var[index] 

return "constraint_" + repr(index) 

  

cpdef col_name(self, int index): 

""" 

Return the ``index`` th col name 

  

INPUT: 

  

- ``index`` (integer) -- the col's id 

  

- ``name`` (``char *``) -- its name. When set to ``NULL`` 

(default), the method returns the current name. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variable(name="I am a variable") 

0 

sage: p.col_name(0) 

'I am a variable' 

""" 

if self.col_name_var[index] is not None: 

return self.col_name_var[index] 

return "x_" + repr(index) 

  

cpdef variable_upper_bound(self, int index, value = False): 

""" 

Return or define the upper bound on a variable 

  

INPUT: 

  

- ``index`` (integer) -- the variable's id 

  

- ``value`` -- real value, or ``None`` to mean that the 

variable has not upper bound. When set to ``None`` 

(default), the method returns the current value. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variable() 

0 

sage: p.col_bounds(0) 

(0, None) 

sage: p.variable_upper_bound(0, 5) 

sage: p.col_bounds(0) 

(0, 5) 

sage: p.variable_upper_bound(0, None) 

sage: p.col_bounds(0) 

(0, None) 

""" 

if value is not False: 

self.col_upper_bound[index] = value 

else: 

return self.col_upper_bound[index] 

  

cpdef variable_lower_bound(self, int index, value = False): 

""" 

Return or define the lower bound on a variable 

  

INPUT: 

  

- ``index`` (integer) -- the variable's id 

  

- ``value`` -- real value, or ``None`` to mean that the 

variable has not lower bound. When set to ``None`` 

(default), the method returns the current value. 

  

EXAMPLES:: 

  

sage: from sage.numerical.backends.generic_backend import get_solver 

sage: p = get_solver(solver = "PPL") 

sage: p.add_variable() 

0 

sage: p.col_bounds(0) 

(0, None) 

sage: p.variable_lower_bound(0, 5) 

sage: p.col_bounds(0) 

(5, None) 

sage: p.variable_lower_bound(0, None) 

sage: p.col_bounds(0) 

(None, None) 

""" 

if value is not False: 

self.col_lower_bound[index] = value 

else: 

return self.col_lower_bound[index]