Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

r""" 

Platonic Solids 

 

EXAMPLES: The five platonic solids in a row: 

 

:: 

 

sage: G = tetrahedron((0,-3.5,0), color='blue') + cube((0,-2,0),color=(.25,0,.5)) 

sage: G += octahedron(color='red') + dodecahedron((0,2,0), color='orange') 

sage: G += icosahedron(center=(0,4,0), color='yellow') 

sage: G.show(aspect_ratio=[1,1,1]) 

 

.. PLOT:: 

 

G = tetrahedron((0,-3.5,0), color='blue') + cube((0,-2,0),color=(.25,0,.5)) 

G += octahedron(color='red') + dodecahedron((0,2,0), color='orange') 

G += icosahedron(center=(0,4,0), color='yellow') 

sphinx_plot(G) 

 

All the platonic solids in the same place:: 

 

sage: G = tetrahedron(color='blue',opacity=0.7) 

sage: G += cube(color=(.25,0,.5), opacity=0.7) 

sage: G += octahedron(color='red', opacity=0.7) 

sage: G += dodecahedron(color='orange', opacity=0.7) + icosahedron(opacity=0.7) 

sage: G.show(aspect_ratio=[1,1,1]) 

 

.. PLOT:: 

 

G = tetrahedron(color='blue',opacity=0.7) 

G += cube(color=(.25,0,.5), opacity=0.7) 

G += octahedron(color='red', opacity=0.7) 

G += dodecahedron(color='orange', opacity=0.7) + icosahedron(opacity=0.7) 

sphinx_plot(G) 

 

Display nice faces only:: 

 

sage: icosahedron().stickers(['red','blue'], .075, .1) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(icosahedron().stickers(['red','blue'], .075, .1)) 

 

AUTHORS: 

 

- Robert Bradshaw (2007, 2008): initial version 

 

- William Stein 

""" 

from __future__ import absolute_import 

 

 

#***************************************************************************** 

# Copyright (C) 2007 Robert Bradshaw <robertwb@math.washington.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.rings.all import RDF 

from sage.matrix.constructor import matrix 

from .shapes import Box, ColorCube 

from .shapes2 import frame3d 

from .index_face_set import IndexFaceSet 

 

 

def index_face_set(face_list, point_list, enclosed, **kwds): 

""" 

Helper function that creates ``IndexFaceSet`` object for the 

tetrahedron, dodecahedron, and icosahedron. 

 

INPUT: 

 

- ``face_list`` -- list of faces, given explicitly from the 

solid invocation 

 

- ``point_list`` -- list of points, given explicitly from the 

solid invocation 

 

- ``enclosed`` -- boolean (default passed is always ``True`` 

for these solids) 

 

TESTS: 

 

Verify that these are working and passing on keywords:: 

 

sage: tetrahedron(center=(2,0,0),size=2,color='red') 

Graphics3d Object 

 

:: 

 

sage: dodecahedron(center=(2,0,0),size=2,color='red') 

Graphics3d Object 

 

:: 

 

sage: icosahedron(center=(2,0,0),size=2,color='red') 

Graphics3d Object 

""" 

if 'center' in kwds: 

center = kwds['center'] 

del kwds['center'] 

else: 

center = (0, 0, 0) 

if 'size' in kwds: 

size = kwds['size'] 

del kwds['size'] 

else: 

size = 1 

I = IndexFaceSet(face_list, point_list, enclosed=enclosed, **kwds) 

return prep(I, center, size, kwds) 

 

 

def prep(G, center, size, kwds): 

""" 

Helper function that scales and translates the platonic 

solid, and passes extra keywords on. 

 

INPUT: 

 

- ``center`` -- 3-tuple indicating the center (default passed 

from :func:`index_face_set` is the origin `(0,0,0)`) 

 

- ``size`` -- number indicating amount to scale by (default 

passed from :func:`index_face_set` is 1) 

 

- ``kwds`` -- a dictionary of keywords, passed from solid 

invocation by :func:`index_face_set` 

 

TESTS: 

 

Verify that scaling and moving the center work together properly, 

and that keywords are passed (see :trac:`10796`):: 

 

sage: octahedron(center=(2,0,0),size=2,color='red') 

Graphics3d Object 

""" 

if size != 1: 

G = G.scale(size) 

if center != (0, 0, 0): 

G = G.translate(center) 

G._set_extra_kwds(kwds) 

return G 

 

 

def tetrahedron(center=(0, 0, 0), size=1, **kwds): 

""" 

A 3d tetrahedron. 

 

INPUT: 

 

- ``center`` -- (default: (0,0,0)) 

 

- ``size`` -- (default: 1) 

 

- ``color`` -- a string (``"red"``, ``"green"``, etc) 

or a tuple (r, g, b) with r, g, b numbers between 0 and 1 

 

- ``opacity`` -- (default: 1) if less than 1 then is 

transparent 

 

EXAMPLES: A default colored tetrahedron at the origin:: 

 

sage: tetrahedron() 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(tetrahedron()) 

 

A transparent green tetrahedron in front of a solid red one:: 

 

sage: tetrahedron(opacity=0.8, color='green') + tetrahedron((-2,1,0),color='red') 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(tetrahedron(opacity=0.8, color='green') + tetrahedron((-2,1,0),color='red')) 

 

A translucent tetrahedron sharing space with a sphere:: 

 

sage: tetrahedron(color='yellow',opacity=0.7) + sphere(size=.5, color='red') 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(tetrahedron(color='yellow',opacity=0.7) + sphere(size = .5, color='red')) 

 

A big tetrahedron:: 

 

sage: tetrahedron(size=10) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(tetrahedron(size=10)) 

 

A wide tetrahedron:: 

 

sage: tetrahedron(aspect_ratio=[1,1,1]).scale((4,4,1)) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(tetrahedron(aspect_ratio=[1,1,1]).scale((4,4,1))) 

 

A red and blue tetrahedron touching noses:: 

 

sage: tetrahedron(color='red') + tetrahedron((0,0,-2)).scale([1,1,-1]) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(tetrahedron(color='red') + tetrahedron((0,0,-2)).scale([1,1,-1])) 

 

A Dodecahedral complex of 5 tetrahedra (a more elaborate example 

from Peter Jipsen):: 

 

sage: v=(sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3) 

sage: t=acos(sqrt(5.)/3)/2 

sage: t1=tetrahedron(aspect_ratio=(1,1,1), opacity=0.5).rotateZ(t) 

sage: t2=tetrahedron(color='red', opacity=0.5).rotateZ(t).rotate(v,2*pi/5) 

sage: t3=tetrahedron(color='green', opacity=0.5).rotateZ(t).rotate(v,4*pi/5) 

sage: t4=tetrahedron(color='yellow', opacity=0.5).rotateZ(t).rotate(v,6*pi/5) 

sage: t5=tetrahedron(color='orange', opacity=0.5).rotateZ(t).rotate(v,8*pi/5) 

sage: show(t1+t2+t3+t4+t5, frame=False, zoom=1.3) 

 

.. PLOT:: 

 

v=(sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3) 

t=acos(sqrt(5.)/3)/2 

t1=tetrahedron(aspect_ratio=(1,1,1), opacity=0.5).rotateZ(t) 

t2=tetrahedron(color='red', opacity=0.5).rotateZ(t).rotate(v,2*pi/5) 

t3=tetrahedron(color='green', opacity=0.5).rotateZ(t).rotate(v,4*pi/5) 

t4=tetrahedron(color='yellow', opacity=0.5).rotateZ(t).rotate(v,6*pi/5) 

t5=tetrahedron(color='orange', opacity=0.5).rotateZ(t).rotate(v,8*pi/5) 

sphinx_plot(t1+t2+t3+t4+t5) 

 

AUTHORS: 

 

- Robert Bradshaw and William Stein 

""" 

RR = RDF 

one = RR.one() 

sqrt2 = RR(2).sqrt() 

sqrt6 = RR(6).sqrt() 

point_list = [(0,0,1), 

(2*sqrt2/3, 0, -one/3), 

( -sqrt2/3, sqrt6/3, -one/3), 

( -sqrt2/3, -sqrt6/3, -one/3)] 

face_list = [[0,1,2],[1,3,2],[0,2,3],[0,3,1]] 

if 'aspect_ratio' not in kwds: 

kwds['aspect_ratio'] = [1, 1, 1] 

return index_face_set(face_list, point_list, enclosed=True, center=center, size=size, **kwds) 

 

 

def cube(center=(0, 0, 0), size=1, color=None, frame_thickness=0, 

frame_color=None, **kwds): 

""" 

A 3D cube centered at the origin with default side lengths 1. 

 

INPUT: 

 

- ``center`` -- (default: (0,0,0)) 

 

- ``size`` -- (default: 1) the side lengths of the 

cube 

 

- ``color`` -- a string that describes a color; this 

can also be a list of 3-tuples or strings length 6 or 3, in which 

case the faces (and oppositive faces) are colored. 

 

- ``frame_thickness`` -- (default: 0) if positive, 

then thickness of the frame 

 

- ``frame_color`` -- (default: None) if given, gives 

the color of the frame 

 

- ``opacity`` -- (default: 1) if less than 1 then it's 

transparent 

 

EXAMPLES: 

 

A simple cube:: 

 

sage: cube() 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube()) 

 

A red cube:: 

 

sage: cube(color="red") 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube(color="red")) 

 

A transparent grey cube that contains a red cube:: 

 

sage: cube(opacity=0.8, color='grey') + cube(size=3/4) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube(opacity=0.8, color='grey') + cube(size=3/4)) 

 

A transparent colored cube:: 

 

sage: cube(color=['red', 'green', 'blue'], opacity=0.5) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube(color=['red', 'green', 'blue'], opacity=0.5)) 

 

A bunch of random cubes:: 

 

sage: v = [(random(), random(), random()) for _ in [1..30]] 

sage: sum([cube((10*a,10*b,10*c), size=random()/3, color=(a,b,c)) for a,b,c in v]) 

Graphics3d Object 

 

.. PLOT:: 

 

v = [(random(), random(), random()) for _ in range(30)] 

sphinx_plot(sum([cube((10*a,10*b,10*c), size=random()/3, color=(a,b,c)) for a,b,c in v])) 

 

Non-square cubes (boxes):: 

 

sage: cube(aspect_ratio=[1,1,1]).scale([1,2,3]) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube(aspect_ratio=[1,1,1]).scale([1,2,3])) 

 

:: 

 

sage: cube(color=['red', 'blue', 'green'],aspect_ratio=[1,1,1]).scale([1,2,3]) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube(color=['red', 'blue', 'green'],aspect_ratio=[1,1,1]).scale([1,2,3])) 

 

And one that is colored:: 

 

sage: cube(color=['red', 'blue', 'green', 'black', 'white', 'orange'], 

....: aspect_ratio=[1,1,1]).scale([1,2,3]) 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(cube(color=['red', 'blue', 'green', 'black', 'white', 'orange'],aspect_ratio=[1,1,1]).scale([1,2,3])) 

 

A nice translucent color cube with a frame:: 

 

sage: c = cube(color=['red', 'blue', 'green'], frame=False, frame_thickness=2, 

....: frame_color='brown', opacity=0.8) 

sage: c 

Graphics3d Object 

 

.. PLOT:: 

 

c = cube(color=['red', 'blue', 'green'], frame=False, frame_thickness=2,frame_color='brown', opacity=0.8) 

sphinx_plot(c) 

 

A raytraced color cube with frame and transparency:: 

 

sage: c.show(viewer='tachyon') 

 

This shows :trac:`11272` has been fixed:: 

 

sage: cube(center=(10, 10, 10), size=0.5).bounding_box() 

((9.75, 9.75, 9.75), (10.25, 10.25, 10.25)) 

 

AUTHORS: 

 

- William Stein 

""" 

if isinstance(color, (list, tuple)) and len(color) > 0 and isinstance(color[0], (list,tuple,str)): 

B = ColorCube(size=[0.5,0.5,0.5], colors=color, **kwds) 

else: 

if color is not None: 

kwds['color'] = color 

B = Box(0.5, 0.5, 0.5, **kwds) 

if frame_thickness > 0: 

if frame_color is None: 

B += frame3d((-0.5,-0.5,-0.5),(0.5,0.5,0.5), thickness=frame_thickness) 

else: 

B += frame3d((-0.5,-0.5,-0.5),(0.5,0.5,0.5), thickness=frame_thickness, color=frame_color) 

return prep(B, center, size, kwds) 

 

 

def octahedron(center=(0, 0, 0), size=1, **kwds): 

r""" 

Return an octahedron. 

 

INPUT: 

 

- ``center`` -- (default: (0,0,0)) 

 

- ``size`` -- (default: 1) 

 

- ``color`` -- a string that describes a color; this 

can also be a list of 3-tuples or strings length 6 or 3, in which 

case the faces (and oppositive faces) are colored. 

 

- ``opacity`` -- (default: 1) if less than 1 then is 

transparent 

 

EXAMPLES:: 

 

sage: G = octahedron((1,4,3), color='orange') 

sage: G += octahedron((0,2,1), size=2, opacity=0.6) 

sage: G 

Graphics3d Object 

 

.. PLOT:: 

 

G = octahedron((1,4,3), color='orange') 

G += octahedron((0,2,1), size=2, opacity=0.6) 

sphinx_plot(G) 

 

""" 

kwds['enclosed'] = True 

if 'aspect_ratio' not in kwds: 

kwds['aspect_ratio'] = [1, 1, 1] 

return prep(Box(1,1,1).dual(**kwds), center, size, kwds) 

 

 

def dodecahedron(center=(0, 0, 0), size=1, **kwds): 

r""" 

A dodecahedron. 

 

INPUT: 

 

- ``center`` -- (default: (0,0,0)) 

 

- ``size`` -- (default: 1) 

 

- ``color`` -- a string that describes a color; this 

can also be a list of 3-tuples or strings length 6 or 3, in which 

case the faces (and oppositive faces) are colored. 

 

- ``opacity`` -- (default: 1) if less than 1 then is transparent 

 

EXAMPLES: A plain Dodecahedron:: 

 

sage: dodecahedron() 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(dodecahedron()) 

 

A translucent dodecahedron that contains a black sphere:: 

 

sage: G = dodecahedron(color='orange', opacity=0.8) 

sage: G += sphere(size=0.5, color='black') 

sage: G 

Graphics3d Object 

 

.. PLOT:: 

 

G = dodecahedron(color='orange', opacity=0.8) 

G += sphere(size=0.5, color='black') 

sphinx_plot(G) 

 

CONSTRUCTION: This is how we construct a dodecahedron. We let one 

point be `Q = (0,1,0)`. 

 

Now there are three points spaced equally on a circle around the 

north pole. The other requirement is that the angle between them be 

the angle of a pentagon, namely `3\pi/5`. This is enough to 

determine them. Placing one on the `xz`-plane we have. 

 

`P_1 = \left(t, 0, \sqrt{1-t^2}\right)` 

 

`P_2 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2}\right)` 

 

`P_3 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2}\right)` 

 

Solving 

`\frac{(P_1-Q) \cdot (P_2-Q)}{|P_1-Q||P_2-Q|} = \cos(3\pi/5)` 

we get `t = 2/3`. 

 

Now we have 6 points `R_1, ..., R_6` to close the three 

top pentagons. These can be found by mirroring `P_2` and 

`P_3` by the `yz`-plane and rotating around the 

`y`-axis by the angle `\theta` from `Q` to 

`P_1`. Note that `\cos(\theta) = t = 2/3` and so 

`\sin(\theta) = \sqrt{5}/3`. Rotation gives us the other 

four. 

 

Now we reflect through the origin for the bottom half. 

 

AUTHORS: 

 

- Robert Bradshaw, William Stein 

""" 

RR = RDF 

one = RR(1) 

sqrt3 = RR(3).sqrt(); 

sqrt5 = RR(5).sqrt() 

R3 = RR**3 

rot = matrix(RR, [[ -one/2,-sqrt3/2, 0], 

[ sqrt3/2, -one/2, 0], 

[ 0, 0, 1]]) 

rot2 = rot*rot 

 

# The top 

Q = R3([0,0,1]) 

# The first ring 

P1 = R3([2*one/3, 0, sqrt5/3]) 

# The second ring 

R1 = R3([sqrt5/3, 1/sqrt3, one/3]) 

R2 = R3([sqrt5/3, -1/sqrt3, one/3]) 

 

top = [Q, P1, rot*P1, rot2*P1, R1, rot*R2, rot*R1, rot2*R2, rot2*R1, R2] 

point_list = top + [-p for p in reversed(top)] 

 

top_faces = [[0,1,4,5,2], 

[0,2,6,7,3], 

[0,3,8,9,1], 

[1,9,13,12,4], 

[2,5,11,10,6], 

[3,7,15,14,8]] 

face_list = top_faces + [[19-p for p in reversed(f)] for f in top_faces] 

 

if 'aspect_ratio' not in kwds: 

kwds['aspect_ratio'] = [1,1,1] 

return index_face_set(face_list, point_list, enclosed=True, center=center, size=size, **kwds) 

 

# if style == 'vertices' or style == 'edges': 

# from sage.plot.colors import rainbow 

# colors = rainbow(len(vs), 'rgbtuple') 

# #vertex_spheres = [Box(.05, .05, .05, color=color).translate(p) for p in vs] 

# vertex_spheres = [Box(.05, .05, .05, color=c).translate(p) for p,c in zip(vs,colors)] 

# faces = IndexFaceSet([[tuple(vs[i]) for i in f] for f in face_list]) 

# vertex_spheres += [faces.stickers(['red','yellow','blue','purple','black','orange'], .1, .1)] # [faces] 

# return Graphics3dGroup(vertex_spheres) 

 

 

def icosahedron(center=(0, 0, 0), size=1, **kwds): 

r""" 

An icosahedron. 

 

INPUT: 

 

- ``center`` -- (default: (0, 0, 0)) 

 

- ``size`` -- (default: 1) 

 

- ``color`` -- a string that describes a color; this 

can also be a list of 3-tuples or strings length 6 or 3, in which 

case the faces (and oppositive faces) are colored. 

 

- ``opacity`` -- (default: 1) if less than 1 then is transparent 

 

EXAMPLES:: 

 

sage: icosahedron() 

Graphics3d Object 

 

.. PLOT:: 

 

sphinx_plot(icosahedron()) 

 

Two icosahedra at different positions of different sizes. :: 

 

sage: p = icosahedron((-1/2,0,1), color='orange') 

sage: p += icosahedron((2,0,1), size=1/2, color='red', aspect_ratio=[1,1,1]) 

sage: p 

Graphics3d Object 

 

.. PLOT:: 

 

p = icosahedron((-1/2,0,1), color='orange') 

p += icosahedron((2,0,1), size = 0.5, color='red', aspect_ratio=[1,1,1]) 

sphinx_plot(p) 

 

""" 

kwds['enclosed'] = True 

if 'aspect_ratio' not in kwds: 

kwds['aspect_ratio'] = [1, 1, 1] 

return prep(dodecahedron().dual(**kwds), center, size, kwds)