Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

r""" 

Asymptotic Expansions --- Miscellaneous 

 

AUTHORS: 

 

- Daniel Krenn (2015) 

 

ACKNOWLEDGEMENT: 

 

- Benjamin Hackl, Clemens Heuberger and Daniel Krenn are supported by the 

Austrian Science Fund (FWF): P 24644-N26. 

 

- Benjamin Hackl is supported by the Google Summer of Code 2015. 

 

 

Functions, Classes and Methods 

============================== 

""" 

 

#***************************************************************************** 

# Copyright (C) 2015 Daniel Krenn <dev@danielkrenn.at> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from __future__ import print_function, absolute_import 

from six.moves import range 

 

 

def repr_short_to_parent(s): 

r""" 

Helper method for the growth group factory, which converts a short 

representation string to a parent. 

 

INPUT: 

 

- ``s`` -- a string, short representation of a parent. 

 

OUTPUT: 

 

A parent. 

 

The possible short representations are shown in the examples below. 

 

EXAMPLES:: 

 

sage: from sage.rings.asymptotic.misc import repr_short_to_parent 

sage: repr_short_to_parent('ZZ') 

Integer Ring 

sage: repr_short_to_parent('QQ') 

Rational Field 

sage: repr_short_to_parent('SR') 

Symbolic Ring 

sage: repr_short_to_parent('NN') 

Non negative integer semiring 

 

TESTS:: 

 

sage: repr_short_to_parent('abcdef') 

Traceback (most recent call last): 

... 

ValueError: Cannot create a parent out of 'abcdef'. 

> *previous* NameError: name 'abcdef' is not defined 

""" 

from sage.misc.sage_eval import sage_eval 

try: 

P = sage_eval(s) 

except Exception as e: 

raise combine_exceptions( 

ValueError("Cannot create a parent out of '%s'." % (s,)), e) 

 

from sage.misc.lazy_import import LazyImport 

if type(P) is LazyImport: 

P = P._get_object() 

 

from sage.structure.parent import is_Parent 

if not is_Parent(P): 

raise ValueError("'%s' does not describe a parent." % (s,)) 

return P 

 

 

def parent_to_repr_short(P): 

r""" 

Helper method which generates a short(er) representation string 

out of a parent. 

 

INPUT: 

 

- ``P`` -- a parent. 

 

OUTPUT: 

 

A string. 

 

EXAMPLES:: 

 

sage: from sage.rings.asymptotic.misc import parent_to_repr_short 

sage: parent_to_repr_short(ZZ) 

'ZZ' 

sage: parent_to_repr_short(QQ) 

'QQ' 

sage: parent_to_repr_short(SR) 

'SR' 

sage: parent_to_repr_short(ZZ['x']) 

'ZZ[x]' 

sage: parent_to_repr_short(QQ['d, k']) 

'QQ[d, k]' 

sage: parent_to_repr_short(QQ['e']) 

'QQ[e]' 

sage: parent_to_repr_short(SR[['a, r']]) 

'SR[[a, r]]' 

sage: parent_to_repr_short(Zmod(3)) 

'Ring of integers modulo 3' 

sage: parent_to_repr_short(Zmod(3)['g']) 

'Univariate Polynomial Ring in g over Ring of integers modulo 3' 

""" 

from sage.rings.integer_ring import ZZ 

from sage.rings.rational_field import QQ 

from sage.symbolic.ring import SR 

from sage.rings.polynomial.polynomial_ring import is_PolynomialRing 

from sage.rings.polynomial.multi_polynomial_ring_generic import is_MPolynomialRing 

from sage.rings.power_series_ring import is_PowerSeriesRing 

def abbreviate(P): 

if P is ZZ: 

return 'ZZ' 

elif P is QQ: 

return 'QQ' 

elif P is SR: 

return 'SR' 

raise ValueError('Cannot abbreviate %s.' % (P,)) 

 

poly = is_PolynomialRing(P) or is_MPolynomialRing(P) 

from sage.rings import multi_power_series_ring 

power = is_PowerSeriesRing(P) or \ 

multi_power_series_ring.is_MPowerSeriesRing(P) 

 

if poly or power: 

if poly: 

op, cl = ('[', ']') 

else: 

op, cl = ('[[', ']]') 

try: 

s = abbreviate(P.base_ring()) + op + ', '.join(P.variable_names()) + cl 

except ValueError: 

s = str(P) 

else: 

try: 

s = abbreviate(P) 

except ValueError: 

s = str(P) 

 

return s 

 

 

def split_str_by_op(string, op, strip_parentheses=True): 

r""" 

Split the given string into a tuple of substrings arising by 

splitting by ``op`` and taking care of parentheses. 

 

INPUT: 

 

- ``string`` -- a string. 

 

- ``op`` -- a string. This is used by 

:python:`str.split <library/stdtypes.html#str.split>`. 

Thus, if this is ``None``, then any whitespace string is a 

separator and empty strings are removed from the result. 

 

- ``strip_parentheses`` -- (default: ``True``) a boolean. 

 

OUTPUT: 

 

A tuple of strings. 

 

TESTS:: 

 

sage: from sage.rings.asymptotic.misc import split_str_by_op 

sage: split_str_by_op('x^ZZ', '*') 

('x^ZZ',) 

sage: split_str_by_op('log(x)^ZZ * y^QQ', '*') 

('log(x)^ZZ', 'y^QQ') 

sage: split_str_by_op('log(x)**ZZ * y**QQ', '*') 

('log(x)**ZZ', 'y**QQ') 

sage: split_str_by_op('a^b * * c^d', '*') 

Traceback (most recent call last): 

... 

ValueError: 'a^b * * c^d' is invalid since a '*' follows a '*'. 

sage: split_str_by_op('a^b * (c*d^e)', '*') 

('a^b', 'c*d^e') 

 

:: 

 

sage: split_str_by_op('(a^b)^c', '^') 

('a^b', 'c') 

sage: split_str_by_op('a^(b^c)', '^') 

('a', 'b^c') 

 

:: 

 

sage: split_str_by_op('(a) + (b)', op='+', strip_parentheses=True) 

('a', 'b') 

sage: split_str_by_op('(a) + (b)', op='+', strip_parentheses=False) 

('(a)', '(b)') 

sage: split_str_by_op(' ( t ) ', op='+', strip_parentheses=False) 

('( t )',) 

 

:: 

 

sage: split_str_by_op(' ( t ) ', op=None) 

('t',) 

sage: split_str_by_op(' ( t )s', op=None) 

('(t)s',) 

sage: split_str_by_op(' ( t ) s', op=None) 

('t', 's') 

 

:: 

 

sage: split_str_by_op('(e^(n*log(n)))^SR.subring(no_variables=True)', '*') 

('(e^(n*log(n)))^SR.subring(no_variables=True)',) 

""" 

def is_balanced(s): 

open = 0 

for l in s: 

if l == '(': 

open += 1 

elif l == ')': 

open -= 1 

if open < 0: 

return False 

return bool(open == 0) 

 

factors = list() 

balanced = True 

if string and op is not None and string.startswith(op): 

raise ValueError("'%s' is invalid since it starts with a '%s'." % 

(string, op)) 

for s in string.split(op): 

if not s: 

factors[-1] += op 

balanced = False 

continue 

if not s.strip(): 

raise ValueError("'%s' is invalid since a '%s' follows a '%s'." % 

(string, op, op)) 

if not balanced: 

s = factors.pop() + (op if op else '') + s 

balanced = is_balanced(s) 

factors.append(s) 

 

if not balanced: 

raise ValueError("Parentheses in '%s' are not balanced." % (string,)) 

 

def strip(s): 

s = s.strip() 

if not s: 

return s 

if strip_parentheses and s[0] == '(' and s[-1] == ')': 

t = s[1:-1] 

if is_balanced(t): 

s = t 

return s.strip() 

 

return tuple(strip(f) for f in factors) 

 

 

def repr_op(left, op, right=None, latex=False): 

r""" 

Create a string ``left op right`` with 

taking care of parentheses in its operands. 

 

INPUT: 

 

- ``left`` -- an element. 

 

- ``op`` -- a string. 

 

- ``right`` -- an alement. 

 

- ``latex`` -- (default: ``False``) a boolean. If set, then 

LaTeX-output is returned. 

 

OUTPUT: 

 

A string. 

 

EXAMPLES:: 

 

sage: from sage.rings.asymptotic.misc import repr_op 

sage: repr_op('a^b', '^', 'c') 

'(a^b)^c' 

 

TESTS:: 

 

sage: repr_op('a-b', '^', 'c') 

'(a-b)^c' 

sage: repr_op('a+b', '^', 'c') 

'(a+b)^c' 

 

:: 

 

sage: print(repr_op(r'\frac{1}{2}', '^', 'c', latex=True)) 

\left(\frac{1}{2}\right)^c 

""" 

left = str(left) 

right = str(right) if right is not None else '' 

 

def add_parentheses(s, op): 

if op == '^': 

signals = ('^', '/', '*', '-', '+', ' ') 

else: 

return s 

if any(sig in s for sig in signals) or latex and s.startswith(r'\frac'): 

if latex: 

return r'\left({}\right)'.format(s) 

else: 

return '({})'.format(s) 

else: 

return s 

 

return add_parentheses(left, op) + op + add_parentheses(right, op) 

 

 

def combine_exceptions(e, *f): 

r""" 

Helper function which combines the messages of the given exceptions. 

 

INPUT: 

 

- ``e`` -- an exception. 

 

- ``*f`` -- exceptions. 

 

OUTPUT: 

 

An exception. 

 

EXAMPLES:: 

 

sage: from sage.rings.asymptotic.misc import combine_exceptions 

sage: raise combine_exceptions(ValueError('Outer.'), TypeError('Inner.')) 

Traceback (most recent call last): 

... 

ValueError: Outer. 

> *previous* TypeError: Inner. 

sage: raise combine_exceptions(ValueError('Outer.'), 

....: TypeError('Inner1.'), TypeError('Inner2.')) 

Traceback (most recent call last): 

... 

ValueError: Outer. 

> *previous* TypeError: Inner1. 

> *and* TypeError: Inner2. 

sage: raise combine_exceptions(ValueError('Outer.'), 

....: combine_exceptions(TypeError('Middle.'), 

....: TypeError('Inner.'))) 

Traceback (most recent call last): 

... 

ValueError: Outer. 

> *previous* TypeError: Middle. 

>> *previous* TypeError: Inner. 

""" 

import re 

msg = ('\n *previous* ' + 

'\n *and* '.join("%s: %s" % (ff.__class__.__name__, str(ff)) for ff in f)) 

msg = re.sub(r'^([>]* \*previous\*)', r'>\1', msg, flags=re.MULTILINE) 

msg = re.sub(r'^([>]* \*and\*)', r'>\1', msg, flags=re.MULTILINE) 

msg = str(e.args if len(e.args) > 1 else e.args[0]) + msg 

e.args = (msg,) 

return e 

 

 

def substitute_raise_exception(element, e): 

r""" 

Raise an error describing what went wrong with the substitution. 

 

INPUT: 

 

- ``element`` -- an element. 

 

- ``e`` -- an exception which is included in the raised error 

message. 

 

OUTPUT: 

 

Raise an exception of the same type as ``e``. 

 

TESTS:: 

 

sage: from sage.rings.asymptotic.misc import substitute_raise_exception 

sage: substitute_raise_exception(x, Exception('blub')) 

Traceback (most recent call last): 

... 

Exception: Cannot substitute in x in Symbolic Ring. 

> *previous* Exception: blub 

""" 

raise combine_exceptions( 

type(e)('Cannot substitute in %s in %s.' % 

(element, element.parent())), e) 

 

 

def merge_overlapping(A, B, key=None): 

r""" 

Merge the two overlapping tuples/lists. 

 

INPUT: 

 

- ``A`` -- a list or tuple (type has to coincide with type of ``B``). 

 

- ``B`` -- a list or tuple (type has to coincide with type of ``A``). 

 

- ``key`` -- (default: ``None``) a function. If ``None``, then the 

identity is used. This ``key``-function applied on an element 

of the list/tuple is used for comparison. Thus elements with the 

same key are considered as equal. 

 

OUTPUT: 

 

A pair of lists or tuples (depending on the type of ``A`` and ``B``). 

 

.. NOTE:: 

 

Suppose we can decompose the list `A=ac` and `B=cb` with 

lists `a`, `b`, `c`, where `c` is nonempty. Then 

:func:`merge_overlapping` returns the pair `(acb, acb)`. 

 

Suppose a ``key``-function is specified and `A=ac_A` and 

`B=c_Bb`, where the list of keys of the elements of `c_A` 

equals the list of keys of the elements of `c_B`. Then 

:func:`merge_overlapping` returns the pair `(ac_Ab, ac_Bb)`. 

 

After unsuccessfully merging `A=ac` and `B=cb`, 

a merge of `A=ca` and `B=bc` is tried. 

 

TESTS:: 

 

sage: from sage.rings.asymptotic.misc import merge_overlapping 

sage: def f(L, s): 

....: return list((ell, s) for ell in L) 

sage: key = lambda k: k[0] 

sage: merge_overlapping(f([0..3], 'a'), f([5..7], 'b'), key) 

Traceback (most recent call last): 

... 

ValueError: Input does not have an overlap. 

sage: merge_overlapping(f([0..2], 'a'), f([4..7], 'b'), key) 

Traceback (most recent call last): 

... 

ValueError: Input does not have an overlap. 

sage: merge_overlapping(f([4..7], 'a'), f([0..2], 'b'), key) 

Traceback (most recent call last): 

... 

ValueError: Input does not have an overlap. 

sage: merge_overlapping(f([0..3], 'a'), f([3..4], 'b'), key) 

([(0, 'a'), (1, 'a'), (2, 'a'), (3, 'a'), (4, 'b')], 

[(0, 'a'), (1, 'a'), (2, 'a'), (3, 'b'), (4, 'b')]) 

sage: merge_overlapping(f([3..4], 'a'), f([0..3], 'b'), key) 

([(0, 'b'), (1, 'b'), (2, 'b'), (3, 'a'), (4, 'a')], 

[(0, 'b'), (1, 'b'), (2, 'b'), (3, 'b'), (4, 'a')]) 

sage: merge_overlapping(f([0..1], 'a'), f([0..4], 'b'), key) 

([(0, 'a'), (1, 'a'), (2, 'b'), (3, 'b'), (4, 'b')], 

[(0, 'b'), (1, 'b'), (2, 'b'), (3, 'b'), (4, 'b')]) 

sage: merge_overlapping(f([0..3], 'a'), f([0..1], 'b'), key) 

([(0, 'a'), (1, 'a'), (2, 'a'), (3, 'a')], 

[(0, 'b'), (1, 'b'), (2, 'a'), (3, 'a')]) 

sage: merge_overlapping(f([0..3], 'a'), f([1..3], 'b'), key) 

([(0, 'a'), (1, 'a'), (2, 'a'), (3, 'a')], 

[(0, 'a'), (1, 'b'), (2, 'b'), (3, 'b')]) 

sage: merge_overlapping(f([1..3], 'a'), f([0..3], 'b'), key) 

([(0, 'b'), (1, 'a'), (2, 'a'), (3, 'a')], 

[(0, 'b'), (1, 'b'), (2, 'b'), (3, 'b')]) 

sage: merge_overlapping(f([0..6], 'a'), f([3..4], 'b'), key) 

([(0, 'a'), (1, 'a'), (2, 'a'), (3, 'a'), (4, 'a'), (5, 'a'), (6, 'a')], 

[(0, 'a'), (1, 'a'), (2, 'a'), (3, 'b'), (4, 'b'), (5, 'a'), (6, 'a')]) 

sage: merge_overlapping(f([0..3], 'a'), f([1..2], 'b'), key) 

([(0, 'a'), (1, 'a'), (2, 'a'), (3, 'a')], 

[(0, 'a'), (1, 'b'), (2, 'b'), (3, 'a')]) 

sage: merge_overlapping(f([1..2], 'a'), f([0..3], 'b'), key) 

([(0, 'b'), (1, 'a'), (2, 'a'), (3, 'b')], 

[(0, 'b'), (1, 'b'), (2, 'b'), (3, 'b')]) 

sage: merge_overlapping(f([1..3], 'a'), f([1..3], 'b'), key) 

([(1, 'a'), (2, 'a'), (3, 'a')], 

[(1, 'b'), (2, 'b'), (3, 'b')]) 

""" 

if key is None: 

Akeys = A 

Bkeys = B 

else: 

Akeys = tuple(key(a) for a in A) 

Bkeys = tuple(key(b) for b in B) 

 

def find_overlapping_index(A, B): 

if len(B) > len(A) - 2: 

raise StopIteration 

matches = iter(i for i in range(1, len(A) - len(B)) 

if A[i:i+len(B)] == B) 

return next(matches) 

 

def find_mergedoverlapping_index(A, B): 

""" 

Return in index i where to merge two overlapping tuples/lists ``A`` and ``B``. 

 

Then ``A + B[i:]`` or ``A[:-i] + B`` are the merged tuples/lists. 

 

Adapted from http://stackoverflow.com/a/30056066/1052778. 

""" 

matches = iter(i for i in range(min(len(A), len(B)), 0, -1) 

if A[-i:] == B[:i]) 

return next(matches, 0) 

 

i = find_mergedoverlapping_index(Akeys, Bkeys) 

if i > 0: 

return A + B[i:], A[:-i] + B 

 

i = find_mergedoverlapping_index(Bkeys, Akeys) 

if i > 0: 

return B[:-i] + A, B + A[i:] 

 

try: 

i = find_overlapping_index(Akeys, Bkeys) 

except StopIteration: 

pass 

else: 

return A, A[:i] + B + A[i+len(B):] 

 

try: 

i = find_overlapping_index(Bkeys, Akeys) 

except StopIteration: 

pass 

else: 

return B[:i] + A + B[i+len(A):], B 

 

raise ValueError('Input does not have an overlap.') 

 

 

def log_string(element, base=None): 

r""" 

Return a representation of the log of the given element to the 

given base. 

 

INPUT: 

 

- ``element`` -- an object. 

 

- ``base`` -- an object or ``None``. 

 

OUTPUT: 

 

A string. 

 

EXAMPLES:: 

 

sage: from sage.rings.asymptotic.misc import log_string 

sage: log_string(3) 

'log(3)' 

sage: log_string(3, base=42) 

'log(3, base=42)' 

""" 

basestr = ', base=' + str(base) if base else '' 

return 'log(%s%s)' % (element, basestr) 

 

 

class NotImplementedOZero(NotImplementedError): 

r""" 

A special :python:`NotImplementedError<library/exceptions.html#exceptions.NotImplementedError>` 

which is raised when the result is O(0) which means 0 

for sufficiently large values of the variable. 

""" 

def __init__(self, data=None, var=None): 

r""" 

INPUT: 

 

- ``data`` -- (default: ``None``) an :class:`AsymptoticRing` or a string. 

 

- ``var`` -- (default: ``None``) a string. 

 

TESTS:: 

 

sage: A = AsymptoticRing('n^ZZ', ZZ) 

sage: from sage.rings.asymptotic.misc import NotImplementedOZero 

sage: raise NotImplementedOZero(A) 

Traceback (most recent call last): 

... 

NotImplementedOZero: The error term in the result is O(0) 

which means 0 for sufficiently large n. 

sage: raise NotImplementedOZero('something') 

Traceback (most recent call last): 

... 

NotImplementedOZero: something 

sage: raise NotImplementedOZero(var='m') 

Traceback (most recent call last): 

... 

NotImplementedOZero: The error term in the result is O(0) 

which means 0 for sufficiently large m. 

""" 

from .asymptotic_ring import AsymptoticRing 

if isinstance(data, AsymptoticRing) or var is not None: 

if var is None: 

var = ', '.join(str(g) for g in data.gens()) 

message = ('The error term in the result is O(0) ' 

'which means 0 for sufficiently ' 

'large {}.'.format(var)) 

else: 

message = data 

super(NotImplementedOZero, self).__init__(message) 

 

 

def transform_category(category, 

subcategory_mapping, axiom_mapping, 

initial_category=None): 

r""" 

Transform ``category`` to a new category according to the given 

mappings. 

 

INPUT: 

 

- ``category`` -- a category. 

 

- ``subcategory_mapping`` -- a list (or other iterable) of triples 

``(from, to, mandatory)``, where 

 

- ``from`` and ``to`` are categories and 

- ``mandatory`` is a boolean. 

 

- ``axiom_mapping`` -- a list (or other iterable) of triples 

``(from, to, mandatory)``, where 

 

- ``from`` and ``to`` are strings describing axioms and 

- ``mandatory`` is a boolean. 

 

- ``initial_category`` -- (default: ``None``) a category. When 

transforming the given category, this ``initial_category`` is 

used as a starting point of the result. This means the resulting 

category will be a subcategory of ``initial_category``. 

If ``initial_category`` is ``None``, then the 

:class:`category of objects <sage.categories.objects.Objects>` 

is used. 

 

OUTPUT: 

 

A category. 

 

.. NOTE:: 

 

Consider a subcategory mapping ``(from, to, mandatory)``. If 

``category`` is a subcategory of ``from``, then the 

returned category will be a subcategory of ``to``. Otherwise and 

if ``mandatory`` is set, then an error is raised. 

 

Consider an axiom mapping ``(from, to, mandatory)``. If 

``category`` is has axiom ``from``, then the 

returned category will have axiom ``to``. Otherwise and 

if ``mandatory`` is set, then an error is raised. 

 

EXAMPLES:: 

 

sage: from sage.rings.asymptotic.misc import transform_category 

sage: from sage.categories.additive_semigroups import AdditiveSemigroups 

sage: from sage.categories.additive_monoids import AdditiveMonoids 

sage: from sage.categories.additive_groups import AdditiveGroups 

sage: S = [ 

....: (Sets(), Sets(), True), 

....: (Posets(), Posets(), False), 

....: (AdditiveMagmas(), Magmas(), False)] 

sage: A = [ 

....: ('AdditiveAssociative', 'Associative', False), 

....: ('AdditiveUnital', 'Unital', False), 

....: ('AdditiveInverse', 'Inverse', False), 

....: ('AdditiveCommutative', 'Commutative', False)] 

sage: transform_category(Objects(), S, A) 

Traceback (most recent call last): 

... 

ValueError: Category of objects is not 

a subcategory of Category of sets. 

sage: transform_category(Sets(), S, A) 

Category of sets 

sage: transform_category(Posets(), S, A) 

Category of posets 

sage: transform_category(AdditiveSemigroups(), S, A) 

Category of semigroups 

sage: transform_category(AdditiveMonoids(), S, A) 

Category of monoids 

sage: transform_category(AdditiveGroups(), S, A) 

Category of groups 

sage: transform_category(AdditiveGroups().AdditiveCommutative(), S, A) 

Category of commutative groups 

 

:: 

 

sage: transform_category(AdditiveGroups().AdditiveCommutative(), S, A, 

....: initial_category=Posets()) 

Join of Category of commutative groups 

and Category of posets 

 

:: 

 

sage: transform_category(ZZ.category(), S, A) 

Category of commutative groups 

sage: transform_category(QQ.category(), S, A) 

Category of commutative groups 

sage: transform_category(SR.category(), S, A) 

Category of commutative groups 

sage: transform_category(Fields(), S, A) 

Category of commutative groups 

sage: transform_category(ZZ['t'].category(), S, A) 

Category of commutative groups 

 

:: 

 

sage: A[-1] = ('Commutative', 'AdditiveCommutative', True) 

sage: transform_category(Groups(), S, A) 

Traceback (most recent call last): 

... 

ValueError: Category of groups does not have 

axiom Commutative. 

""" 

if initial_category is None: 

from sage.categories.objects import Objects 

result = Objects() 

else: 

result = initial_category 

 

for A, B, mandatory in subcategory_mapping: 

if category.is_subcategory(A): 

result &= B 

elif mandatory: 

raise ValueError('%s is not a subcategory of %s.' % 

(category, A)) 

 

axioms = category.axioms() 

for A, B, mandatory in axiom_mapping: 

if A in axioms: 

result = result._with_axiom(B) 

elif mandatory: 

raise ValueError('%s does not have axiom %s.' % 

(category, A)) 

 

return result