Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

# -*- coding: utf-8 -*- 

r""" 

C-Finite Sequences 

 

C-finite infinite sequences satisfy homogenous linear recurrences with constant coefficients: 

 

.. MATH:: 

 

a_{n+d} = c_0a_n + c_1a_{n+1} + \cdots + c_{d-1}a_{n+d-1}, \quad d>0. 

 

CFiniteSequences are completely defined by their ordinary generating function (o.g.f., which 

is always a :mod:`fraction <sage.rings.fraction_field_element>` of 

:mod:`polynomials <sage.rings.polynomial.polynomial_element>` over `\mathbb{Z}` or `\mathbb{Q}` ). 

 

EXAMPLES:: 

 

sage: fibo = CFiniteSequence(x/(1-x-x^2)) # the Fibonacci sequence 

sage: fibo 

C-finite sequence, generated by x/(-x^2 - x + 1) 

sage: fibo.parent() 

The ring of C-Finite sequences in x over Rational Field 

sage: fibo.parent().category() 

Category of commutative rings 

sage: C.<x> = CFiniteSequences(QQ); 

sage: fibo.parent() == C 

True 

sage: C 

The ring of C-Finite sequences in x over Rational Field 

sage: C(x/(1-x-x^2)) 

C-finite sequence, generated by x/(-x^2 - x + 1) 

sage: C(x/(1-x-x^2)) == fibo 

True 

sage: var('y') 

y 

sage: CFiniteSequence(y/(1-y-y^2)) 

C-finite sequence, generated by y/(-y^2 - y + 1) 

sage: CFiniteSequence(y/(1-y-y^2)) == fibo 

False 

 

Finite subsets of the sequence are accessible via python slices:: 

 

sage: fibo[137] #the 137th term of the Fibonacci sequence 

19134702400093278081449423917 

sage: fibo[137] == fibonacci(137) 

True 

sage: fibo[0:12] 

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] 

sage: fibo[14:4:-2] 

[377, 144, 55, 21, 8] 

 

They can be created also from the coefficients and start values of a recurrence:: 

 

sage: r = C.from_recurrence([1,1],[0,1]) 

sage: r == fibo 

True 

 

Given enough values, the o.g.f. of a C-finite sequence 

can be guessed:: 

 

sage: r = C.guess([0,1,1,2,3,5,8]) 

sage: r == fibo 

True 

 

.. SEEALSO:: 

 

:func:`fibonacci`, :class:`BinaryRecurrenceSequence` 

 

AUTHORS: 

 

- Ralf Stephan (2014): initial version 

 

REFERENCES: 

 

.. [GK82] Daniel H. Greene and Donald E. (1982), "2.1.1 Constant 

coefficients - A) Homogeneous equations", Mathematics for the Analysis 

of Algorithms (2nd ed.), Birkhauser, p. 17. 

.. [KP11] Manuel Kauers and Peter Paule. The Concrete Tetrahedron. 

Springer-Verlag, 2011. 

.. [SZ94] Bruno Salvy and Paul Zimmermann. - Gfun: a Maple package for 

the manipulation of generating and holonomic functions in one variable. 

- Acm transactions on mathematical software, 20.2:163-177, 1994. 

.. [Z11] Doron Zeilberger. "The C-finite ansatz." The Ramanujan Journal 

(2011): 1-10. 

""" 

 

#***************************************************************************** 

# Copyright (C) 2014 Ralf Stephan <gtrwst9@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six.moves import range 

from six import add_metaclass 

 

from sage.categories.fields import Fields 

from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass 

from sage.rings.ring import CommutativeRing 

from sage.rings.integer import Integer 

from sage.rings.integer_ring import ZZ 

from sage.rings.rational_field import QQ 

from sage.arith.all import gcd 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.rings.polynomial.polynomial_ring import PolynomialRing_general 

from sage.rings.laurent_series_ring import LaurentSeriesRing 

from sage.rings.power_series_ring import PowerSeriesRing 

from sage.rings.fraction_field import FractionField 

from sage.structure.element import FieldElement 

from sage.structure.unique_representation import UniqueRepresentation 

 

from sage.interfaces.gp import Gp 

from sage.misc.all import sage_eval 

 

_gp = None 

 

def CFiniteSequences(base_ring, names = None, category = None): 

r""" 

Return the ring of C-Finite sequences. 

 

The ring is defined over a base ring (`\mathbb{Z}` or `\mathbb{Q}` ) 

and each element is represented by its ordinary generating function (ogf) 

which is a rational function over the base ring. 

 

INPUT: 

 

- ``base_ring`` -- the base ring to construct the fraction field 

representing the C-Finite sequences 

- ``names`` -- (optional) the list of variables. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: C 

The ring of C-Finite sequences in x over Rational Field 

sage: C.an_element() 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: C.category() 

Category of commutative rings 

sage: C.one() 

Finite sequence [1], offset = 0 

sage: C.zero() 

Constant infinite sequence 0. 

sage: C(x) 

Finite sequence [1], offset = 1 

sage: C(1/x) 

Finite sequence [1], offset = -1 

sage: C((-x + 2)/(-x^2 - x + 1)) 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

 

TESTS:: 

 

sage: TestSuite(C).run() 

""" 

if isinstance(base_ring, PolynomialRing_general): 

polynomial_ring = base_ring 

base_ring = polynomial_ring.base_ring() 

if names is None: 

names = ['x'] 

elif len(names)>1: 

raise NotImplementedError("Multidimensional o.g.f. not implemented.") 

if category is None: 

category = Fields() 

if not(base_ring in (QQ, ZZ)): 

raise ValueError("O.g.f. base not rational.") 

polynomial_ring = PolynomialRing(base_ring, names) 

return CFiniteSequences_generic(polynomial_ring, category) 

 

 

@add_metaclass(InheritComparisonClasscallMetaclass) 

class CFiniteSequence(FieldElement): 

r""" 

Create a C-finite sequence given its ordinary generating function. 

 

INPUT: 

 

- ``ogf`` -- a rational function, the ordinary generating function 

(can be a an element from the symbolic ring, fraction field or polynomial 

ring) 

 

OUTPUT: 

 

- A CFiniteSequence object 

 

EXAMPLES:: 

 

sage: CFiniteSequence((2-x)/(1-x-x^2)) # the Lucas sequence 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: CFiniteSequence(x/(1-x)^3) # triangular numbers 

C-finite sequence, generated by x/(-x^3 + 3*x^2 - 3*x + 1) 

 

Polynomials are interpreted as finite sequences, or recurrences of degree 0:: 

 

sage: CFiniteSequence(x^2-4*x^5) 

Finite sequence [1, 0, 0, -4], offset = 2 

sage: CFiniteSequence(1) 

Finite sequence [1], offset = 0 

 

This implementation allows any polynomial fraction as o.g.f. by interpreting 

any power of `x` dividing the o.g.f. numerator or denominator as a right or left shift 

of the sequence offset:: 

 

sage: CFiniteSequence(x^2+3/x) 

Finite sequence [3, 0, 0, 1], offset = -1 

sage: CFiniteSequence(1/x+4/x^3) 

Finite sequence [4, 0, 1], offset = -3 

sage: P = LaurentPolynomialRing(QQ.fraction_field(), 'X') 

sage: X=P.gen() 

sage: CFiniteSequence(1/(1-X)) 

C-finite sequence, generated by 1/(-X + 1) 

 

The o.g.f. is always normalized to get a denominator constant coefficient of `+1`:: 

 

sage: CFiniteSequence(1/(x-2)) 

C-finite sequence, generated by -1/2/(-1/2*x + 1) 

 

The given ``ogf`` is used to create an appropriate parent: it can 

be a symbolic expression, a polynomial , or a fraction field element 

as long as it can be coerced into a proper fraction field over the 

rationals:: 

 

sage: var('x') 

x 

sage: f1 = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: P.<x> = QQ[] 

sage: f2 = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f1 == f2 

True 

sage: f1.parent() 

The ring of C-Finite sequences in x over Rational Field 

sage: f1.ogf().parent() 

Fraction Field of Univariate Polynomial Ring in x over Rational Field 

sage: CFiniteSequence(log(x)) 

Traceback (most recent call last): 

... 

TypeError: unable to convert log(x) to a rational 

 

TESTS:: 

 

sage: P.<x> = QQ[] 

sage: CFiniteSequence(0.1/(1-x)) 

C-finite sequence, generated by 1/10/(-x + 1) 

sage: CFiniteSequence(pi/(1-x)) 

Traceback (most recent call last): 

... 

TypeError: unable to convert -pi to a rational 

sage: P.<x,y> = QQ[] 

sage: CFiniteSequence(x*y) 

Traceback (most recent call last): 

... 

NotImplementedError: Multidimensional o.g.f. not implemented. 

""" 

@staticmethod 

def __classcall_private__(cls, ogf): 

r""" 

Ensures that elements created by :class:`CFiniteSequence` have the same 

parent than the ones created by the parent itself and follow the category 

framework (they should be instance of :class:`CFiniteSequences` automatic 

element class). 

 

This method is called before the ``__init__`` method, it checks the 

o.g.f to create the appropriate parent. 

 

INPUT: 

 

- ``ogf`` - a rational function 

 

TESTS:: 

 

sage: f1 = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f1 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: C.<x> = CFiniteSequences(QQ); 

sage: f2 = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f2 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: f3 = C((2-x)/(1-x-x^2)) 

sage: f3 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: f1 == f2 and f2 == f3 

True 

sage: f1.parent() == f2.parent() and f2.parent() == f3.parent() 

True 

sage: type(f1) 

<class 'sage.rings.cfinite_sequence.CFiniteSequences_generic_with_category.element_class'> 

sage: type(f1) == type(f2) and type(f2) == type(f3) 

True 

sage: CFiniteSequence(log(x)) 

Traceback (most recent call last): 

... 

TypeError: unable to convert log(x) to a rational 

sage: CFiniteSequence(pi) 

Traceback (most recent call last): 

... 

TypeError: unable to convert pi to a rational 

sage: var('y') 

y 

sage: f4 = CFiniteSequence((2-y)/(1-y-y^2)) 

sage: f4 

C-finite sequence, generated by (-y + 2)/(-y^2 - y + 1) 

sage: f4 == f1 

False 

sage: f4.parent() == f1.parent() 

False 

sage: f4.parent() 

The ring of C-Finite sequences in y over Rational Field 

""" 

 

br = ogf.base_ring() 

if not(br in (QQ, ZZ)): 

br = QQ # if the base ring of the o.g.f is not QQ, we force it to QQ and see if the o.g.f converts nicely 

 

# trying to figure out the ogf variables 

variables = [] 

if not ogf in br: 

if hasattr(ogf, 'variables'): 

variables = ogf.variables() 

elif hasattr(ogf.parent(), 'gens'): 

variables = ogf.parent().gens() 

# for some reason, fraction field elements don't have the variables 

# method, but symbolic elements don't have the gens method so we check both 

 

if len(variables)==0: 

parent = CFiniteSequences(QQ) # if we cannot find variables, we create the default parent (with x) 

else: 

parent = CFiniteSequences(QQ, variables) 

return parent(ogf) # if ogf cannot be converted to a fraction field, this will break and raise the proper error 

 

def __init__(self, parent, ogf): 

r""" 

Initialize the C-Finite sequence. 

 

The ``__init__`` method can only be called by the :class:`CFiniteSequences` 

class. By Default, a class call reaches the ``__classcall_private__`` 

which first creates a proper parent and then call the ``__init__``. 

 

INPUT: 

 

- ``ogf`` -- the ordinary generating function, a fraction of polynomials over the rationals 

- ``parent`` -- the parent of the C-Finite sequence, an occurrence of :class:`CFiniteSequences` 

 

OUTPUT: 

 

- A CFiniteSequence object 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C((2-x)/(1-x-x^2)) # indirect doctest 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

""" 

 

br = parent.base_ring() 

ogf = parent.fraction_field()(ogf) 

P = parent.polynomial_ring() 

num = ogf.numerator() 

den = ogf.denominator() 

 

FieldElement.__init__(self, parent) 

 

if den == 1: 

self._c = [] 

self._off = num.valuation() 

self._deg = 0 

if ogf == 0: 

self._a = [0] 

else: 

self._a = P((num / (P.gen()) ** self._off)).list() 

else: 

 

# Transform the ogf numerator and denominator to canonical form 

# to get the correct offset, degree, and recurrence coeffs and 

# start values. 

self._off = 0 

self._deg = 0 

x = P.gen() 

if num.constant_coefficient() == 0: 

self._off = num.valuation() 

num = P(num / x ** self._off) 

elif den.constant_coefficient() == 0: 

self._off = -den.valuation() 

den = P(den * x ** self._off) 

f = den.constant_coefficient() 

num = P(num / f) 

den = P(den / f) 

f = gcd(num, den) 

num = P(num / f) 

den = P(den / f) 

self._deg = den.degree() 

self._c = [-den.list()[i] for i in range(1, self._deg + 1)] 

if self._off >= 0: 

num = x ** self._off * num 

else: 

den = x ** (-self._off) * den 

 

# determine start values (may be different from _get_item_ values) 

alen = max(self._deg, num.degree() + 1) 

R = LaurentSeriesRing(br, parent.variable_name(), default_prec=alen) 

rem = num % den 

if den != 1: 

self._a = R(num / den).list() 

self._aa = R(rem / den).list()[:self._deg] # needed for _get_item_ 

else: 

self._a = num.list() 

if len(self._a) < alen: 

self._a.extend([0] * (alen - len(self._a))) 

 

ogf = num / den 

 

self._ogf = ogf 

 

 

def _repr_(self): 

""" 

Return textual definition of sequence. 

 

TESTS:: 

 

sage: CFiniteSequence(1/x^5) 

Finite sequence [1], offset = -5 

sage: CFiniteSequence(x^3) 

Finite sequence [1], offset = 3 

""" 

if self._deg == 0: 

if self.ogf() == 0: 

return 'Constant infinite sequence 0.' 

else: 

return 'Finite sequence ' + str(self._a) + ', offset = ' + str(self._off) 

else: 

return 'C-finite sequence, generated by ' + str(self.ogf()) 

 

def __hash__(self): 

r""" 

Hash value for C finite sequence. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: hash(C((2-x)/(1-x-x^2))) # random 

42 

""" 

return hash(self.parent()) ^ hash(self._ogf) 

 

def _add_(self, other): 

""" 

Addition of C-finite sequences. 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C(1/(1-2*x)) 

sage: r[0:5] # a(n) = 2^n 

[1, 2, 4, 8, 16] 

sage: s = C.from_recurrence([1],[1]) 

sage: (r + s)[0:5] # a(n) = 2^n + 1 

[2, 3, 5, 9, 17] 

sage: r + 0 == r 

True 

sage: (r + x^2)[0:5] 

[1, 2, 5, 8, 16] 

sage: (r + 3/x)[-1] 

3 

sage: r = CFiniteSequence(x) 

sage: r + 0 == r 

True 

sage: CFiniteSequence(0) + CFiniteSequence(0) 

Constant infinite sequence 0. 

""" 

return CFiniteSequence(self.ogf() + other.numerator() / other.denominator()) 

 

def _sub_(self, other): 

""" 

Subtraction of C-finite sequences. 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C(1/(1-2*x)) 

sage: r[0:5] # a(n) = 2^n 

[1, 2, 4, 8, 16] 

sage: s = C.from_recurrence([1],[1]) 

sage: (r - s)[0:5] # a(n) = 2^n + 1 

[0, 1, 3, 7, 15] 

""" 

return CFiniteSequence(self.ogf() - other.numerator() / other.denominator()) 

 

def _mul_(self, other): 

""" 

Multiplication of C-finite sequences. 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.guess([1,2,3,4,5,6]) 

sage: (r*r)[0:6] # self-convolution 

[1, 4, 10, 20, 35, 56] 

sage: r = C(x) 

sage: r*1 == r 

True 

sage: r*-1 

Finite sequence [-1], offset = 1 

sage: C(0) * C(1) 

Constant infinite sequence 0. 

""" 

return CFiniteSequence(self.ogf() * other.numerator() / other.denominator()) 

 

def _div_(self, other): 

""" 

Division of C-finite sequences. 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.guess([1,2,3,4,5,6]) 

sage: (r/2)[0:6] 

[1/2, 1, 3/2, 2, 5/2, 3] 

sage: s = C(x) 

sage: s/(s*-1 + 1) 

C-finite sequence, generated by x/(-x + 1) 

""" 

return CFiniteSequence(self.ogf() / (other.numerator() / other.denominator())) 

 

def coefficients(self): 

""" 

Return the coefficients of the recurrence representation of the 

C-finite sequence. 

 

OUTPUT: 

 

- A list of values 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: lucas = C((2-x)/(1-x-x^2)) # the Lucas sequence 

sage: lucas.coefficients() 

[1, 1] 

""" 

return self._c 

 

def __eq__(self, other): 

""" 

Compare two CFiniteSequences. 

 

EXAMPLES:: 

 

sage: f = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f2 = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f == f2 

True 

sage: f == (2-x)/(1-x-x^2) 

False 

sage: (2-x)/(1-x-x^2) == f 

False 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.from_recurrence([1,1],[2,1]) 

sage: s = C.from_recurrence([-1],[1]) 

sage: r == s 

False 

sage: r = C.from_recurrence([-1],[1]) 

sage: s = C(1/(1+x)) 

sage: r == s 

True 

""" 

if not isinstance(other, CFiniteSequence): 

return False 

return self.ogf() == other.ogf() 

 

def __ne__(self, other): 

""" 

Compare two CFiniteSequences. 

 

EXAMPLES:: 

 

sage: f = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f2 = CFiniteSequence((2-x)/(1-x-x^2)) 

sage: f != f2 

False 

sage: f != (2-x)/(1-x-x^2) 

True 

sage: (2-x)/(1-x-x^2) != f 

True 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.from_recurrence([1,1],[2,1]) 

sage: s = C.from_recurrence([-1],[1]) 

sage: r != s 

True 

sage: r = C.from_recurrence([-1],[1]) 

sage: s = C(1/(1+x)) 

sage: r != s 

False 

""" 

return not self.__eq__(other) 

 

def __getitem__(self, key): 

r""" 

Return a slice of the sequence. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.from_recurrence([3,3],[2,1]) 

sage: r[2] 

9 

sage: r[101] 

16158686318788579168659644539538474790082623100896663971001 

sage: r = C(1/(1-x)) 

sage: r[5] 

1 

sage: r = C(x) 

sage: r[0] 

0 

sage: r[1] 

1 

sage: r = C(0) 

sage: r[66] 

0 

sage: lucas = C.from_recurrence([1,1],[2,1]) 

sage: lucas[5:10] 

[11, 18, 29, 47, 76] 

sage: r = C((2-x)/x/(1-x-x*x)) 

sage: r[0:4] 

[1, 3, 4, 7] 

sage: r = C(1-2*x^2) 

sage: r[0:4] 

[1, 0, -2, 0] 

sage: r[-1:4] # not tested, python will not allow this! 

[0, 1, 0 -2, 0] 

sage: r = C((-2*x^3 + x^2 + 1)/(-2*x + 1)) 

sage: r[0:5] # handle ogf > 1 

[1, 2, 5, 8, 16] 

sage: r[-2] 

0 

sage: r = C((-2*x^3 + x^2 - x + 1)/(2*x^2 - 3*x + 1)) 

sage: r[0:5] 

[1, 2, 5, 9, 17] 

sage: s=C((1-x)/(-x^2 - x + 1)) 

sage: s[0:5] 

[1, 0, 1, 1, 2] 

sage: s=C((1+x^20+x^40)/(1-x^12)/(1-x^30)) 

sage: s[0:20] 

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

sage: s=C(1/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^12))) 

sage: s[999998] 

289362268629630 

""" 

if isinstance(key, slice): 

m = max(key.start, key.stop) 

return [self[ii] for ii in range(*key.indices(m + 1))] 

elif isinstance(key, (int, Integer)): 

from sage.matrix.constructor import Matrix 

d = self._deg 

if (self._off <= key and key < self._off + len(self._a)): 

return self._a[key - self._off] 

elif d == 0: 

return 0 

(quo, rem) = self.numerator().quo_rem(self.denominator()) 

wp = quo[key - self._off] 

if key < self._off: 

return wp 

A = Matrix(QQ, 1, d, self._c) 

B = Matrix.identity(QQ, d - 1) 

C = Matrix(QQ, d - 1, 1, 0) 

if quo == 0: 

V = Matrix(QQ, d, 1, self._a[:d][::-1]) 

else: 

V = Matrix(QQ, d, 1, self._aa[:d][::-1]) 

M = Matrix.block([[A], [B, C]], subdivide=False) 

 

return wp + list(M ** (key - self._off) * V)[d - 1][0] 

else: 

raise TypeError("invalid argument type") 

 

def ogf(self): 

""" 

Return the ordinary generating function associated with 

the CFiniteSequence. 

 

This is always a fraction of polynomials in the base ring. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.from_recurrence([2],[1]) 

sage: r.ogf() 

1/(-2*x + 1) 

sage: C(0).ogf() 

0 

""" 

return self._ogf 

 

def numerator(self): 

r""" 

Return the numerator of the o.g.f of ``self``. 

 

EXAMPLES:: 

 

sage: f = CFiniteSequence((2-x)/(1-x-x^2)); f 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: f.numerator() 

-x + 2 

""" 

return self.ogf().numerator() 

 

def denominator(self): 

r""" 

Return the numerator of the o.g.f of ``self``. 

 

EXAMPLES:: 

 

sage: f = CFiniteSequence((2-x)/(1-x-x^2)); f 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: f.denominator() 

-x^2 - x + 1 

""" 

return self.ogf().denominator() 

 

def recurrence_repr(self): 

""" 

Return a string with the recurrence representation of 

the C-finite sequence. 

 

OUTPUT: 

 

- A string 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: C((2-x)/(1-x-x^2)).recurrence_repr() 

'Homogenous linear recurrence with constant coefficients of degree 2: a(n+2) = a(n+1) + a(n), starting a(0...) = [2, 1]' 

sage: C(x/(1-x)^3).recurrence_repr() 

'Homogenous linear recurrence with constant coefficients of degree 3: a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n), starting a(1...) = [1, 3, 6]' 

sage: C(1).recurrence_repr() 

'Finite sequence [1], offset 0' 

sage: r = C((-2*x^3 + x^2 - x + 1)/(2*x^2 - 3*x + 1)) 

sage: r.recurrence_repr() 

'Homogenous linear recurrence with constant coefficients of degree 2: a(n+2) = 3*a(n+1) - 2*a(n), starting a(0...) = [1, 2, 5, 9]' 

sage: r = CFiniteSequence(x^3/(1-x-x^2)) 

sage: r.recurrence_repr() 

'Homogenous linear recurrence with constant coefficients of degree 2: a(n+2) = a(n+1) + a(n), starting a(3...) = [1, 1, 2, 3]' 

""" 

if self._deg == 0: 

return 'Finite sequence %s, offset %d' % (str(self._a), self._off) 

else: 

if self._c[0] == 1: 

cstr = 'a(n+%d) = a(n+%d)' % (self._deg, self._deg - 1) 

elif self._c[0] == -1: 

cstr = 'a(n+%d) = -a(n+%d)' % (self._deg, self._deg - 1) 

else: 

cstr = 'a(n+%d) = %s*a(n+%d)' % (self._deg, str(self._c[0]), self._deg - 1) 

for i in range(1, self._deg): 

j = self._deg - i - 1 

if self._c[i] < 0: 

if self._c[i] == -1: 

cstr = cstr + ' - a(n+%d)' % (j,) 

else: 

cstr = cstr + ' - %d*a(n+%d)' % (-(self._c[i]), j) 

elif self._c[i] > 0: 

if self._c[i] == 1: 

cstr = cstr + ' + a(n+%d)' % (j,) 

else: 

cstr = cstr + ' + %d*a(n+%d)' % (self._c[i], j) 

cstr = cstr.replace('+0', '') 

astr = ', starting a(%s...) = [' % str(self._off) 

maxwexp = self.numerator().quo_rem(self.denominator())[0].degree() + 1 

for i in range(maxwexp + self._deg): 

astr = astr + str(self[self._off + i]) + ', ' 

astr = astr[:-2] + ']' 

return 'Homogenous linear recurrence with constant coefficients of degree ' + str(self._deg) + ': ' + cstr + astr 

 

def series(self, n): 

""" 

Return the Laurent power series associated with the 

CFiniteSequence, with precision `n`. 

 

INPUT: 

 

- `n` -- a nonnegative integer 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: r = C.from_recurrence([-1,2],[0,1]) 

sage: s = r.series(4); s 

x + 2*x^2 + 3*x^3 + 4*x^4 + O(x^5) 

sage: type(s) 

<type 'sage.rings.laurent_series_ring_element.LaurentSeries'> 

""" 

R = LaurentSeriesRing(QQ, 'x', default_prec=n) 

return R(self.ogf()) 

 

def closed_form(self, n = 'n'): 

""" 

Return a symbolic expression in ``n``, which equals the n-th term of 

the sequence. 

 

It is a well-known property of C-finite sequences ``a_n`` that they 

have a closed form of the type: 

 

.. MATH:: 

 

a_n = \sum_{i=1}^d c_i(n) \cdot r_i^n, 

 

where ``r_i`` are the roots of the characteristic equation and 

``c_i(n)`` is a polynomial (whose degree equals the multiplicity of 

``r_i`` minus one). This is a natural generalization of Binet's 

formula for Fibonacci numbers. See, for instance, [KP, Theorem 4.1]. 

 

Note that if the o.g.f. has a polynomial part, that is, if the 

numerator degree is not strictly less than the denominator degree, 

then this closed form holds only when ``n`` exceeds the degree of that 

polynomial part. In that case, the returned expression will differ 

from the sequence for small ``n``. 

 

EXAMPLES:: 

 

sage: CFiniteSequence(1/(1-x)).closed_form() 

1 

sage: CFiniteSequence(x^2/(1-x)).closed_form() 

1 

sage: CFiniteSequence(1/(1-x^2)).closed_form() 

1/2*(-1)^n + 1/2 

sage: CFiniteSequence(1/(1+x^3)).closed_form() 

1/3*(-1)^n + 1/3*(1/2*I*sqrt(3) + 1/2)^n + 1/3*(-1/2*I*sqrt(3) + 1/2)^n 

sage: CFiniteSequence(1/(1-x)/(1-2*x)/(1-3*x)).closed_form() 

9/2*3^n - 4*2^n + 1/2 

 

Binet's formula for the Fibonacci numbers:: 

 

sage: CFiniteSequence(x/(1-x-x^2)).closed_form() 

sqrt(1/5)*(1/2*sqrt(5) + 1/2)^n - sqrt(1/5)*(-1/2*sqrt(5) + 1/2)^n 

sage: [_.subs(n=k).full_simplify() for k in range(6)] 

[0, 1, 1, 2, 3, 5] 

 

sage: CFiniteSequence((4*x+3)/(1-2*x-5*x^2)).closed_form() 

1/2*(sqrt(6) + 1)^n*(7*sqrt(1/6) + 3) - 1/2*(-sqrt(6) + 1)^n*(7*sqrt(1/6) - 3) 

 

Examples with multiple roots:: 

 

sage: CFiniteSequence(x*(x^2+4*x+1)/(1-x)^5).closed_form() 

1/4*n^4 + 1/2*n^3 + 1/4*n^2 

sage: CFiniteSequence((1+2*x-x^2)/(1-x)^4/(1+x)^2).closed_form() 

1/12*n^3 - 1/8*(-1)^n*(n + 1) + 3/4*n^2 + 43/24*n + 9/8 

sage: CFiniteSequence(1/(1-x)^3/(1-2*x)^4).closed_form() 

4/3*(n^3 - 3*n^2 + 20*n - 36)*2^n + 1/2*n^2 + 19/2*n + 49 

sage: CFiniteSequence((x/(1-x-x^2))^2).closed_form() 

1/5*(n - sqrt(1/5))*(1/2*sqrt(5) + 1/2)^n + 1/5*(n + sqrt(1/5))*(-1/2*sqrt(5) + 1/2)^n 

""" 

from sage.arith.all import binomial 

from sage.rings.qqbar import QQbar 

 

from sage.symbolic.ring import SR 

n = SR(n) 

expr = SR(0) 

 

R = FractionField(PolynomialRing(QQbar, self.parent().variable_name())) 

ogf = R(self.ogf()) 

 

__, parts = ogf.partial_fraction_decomposition(decompose_powers=False) 

for part in parts: 

denom = part.denominator().factor() 

denom_base, denom_exp = denom[0] 

 

# denominator is of the form (x+b)^{m+1} 

m = denom_exp - 1 

b = denom_base.constant_coefficient() 

# check that the partial fraction decomposition was indeed done correctly 

# (that is, there is only one factor, of degree 1, and monic) 

assert len(denom) == 1 and len(denom_base.list()) == 2 and denom_base.list()[1] == 1 and denom.unit() == 1 

 

r = SR((-1/b).radical_expression()) 

c = SR(0) 

for (k, a) in enumerate(part.numerator().list()): 

a = QQbar(a) 

c += binomial(n+m-k,m) * SR(((-1)**k*a*b**(k-m-1)).radical_expression()) 

 

expr += c.expand() * r**n 

 

return expr 

 

 

class CFiniteSequences_generic(CommutativeRing, UniqueRepresentation): 

r""" 

The class representing the ring of C-Finite Sequences 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: from sage.rings.cfinite_sequence import CFiniteSequences_generic 

sage: isinstance(C,CFiniteSequences_generic) 

True 

sage: type(C) 

<class 'sage.rings.cfinite_sequence.CFiniteSequences_generic_with_category'> 

sage: C 

The ring of C-Finite sequences in x over Rational Field 

""" 

 

Element = CFiniteSequence 

def __init__(self, polynomial_ring, category): 

r""" 

Create the ring of CFiniteSequences over ``base_ring`` 

 

INPUT: 

 

- ``base_ring`` -- the base ring for the o.g.f (either ``QQ`` or ``ZZ``) 

- ``names`` -- an iterable of variables (shuould contain only one variable) 

- ``category`` -- the category of the ring (default: ``Fields()``) 

 

TESTS:: 

 

sage: C.<y> = CFiniteSequences(QQ); C 

The ring of C-Finite sequences in y over Rational Field 

sage: C.<x> = CFiniteSequences(QQ); C 

The ring of C-Finite sequences in x over Rational Field 

sage: C.<x> = CFiniteSequences(ZZ); C 

The ring of C-Finite sequences in x over Integer Ring 

sage: C.<x,y> = CFiniteSequences(ZZ) 

Traceback (most recent call last): 

... 

NotImplementedError: Multidimensional o.g.f. not implemented. 

sage: C.<x> = CFiniteSequences(CC) 

Traceback (most recent call last): 

... 

ValueError: O.g.f. base not rational. 

""" 

base_ring = polynomial_ring.base_ring() 

self._polynomial_ring = polynomial_ring 

self._fraction_field = FractionField(self._polynomial_ring) 

CommutativeRing.__init__(self,base_ring, self._polynomial_ring.gens(), category) 

 

def _repr_(self): 

r""" 

Return the string representation of ``self`` 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: C 

The ring of C-Finite sequences in x over Rational Field 

""" 

return "The ring of C-Finite sequences in {} over {}".format(self.gen(), self.base_ring()) 

 

def _element_constructor_(self, ogf): 

r""" 

Construct a C-Finite Sequence 

 

INPUT: 

 

- ``ogf`` -- the ordinary generating function, a fraction of polynomials over the rationals 

 

TESTS:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: C((2-x)/(1-x-x^2)) 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

sage: C(x/(1-x)^3) 

C-finite sequence, generated by x/(-x^3 + 3*x^2 - 3*x + 1) 

sage: C(x^2-4*x^5) 

Finite sequence [1, 0, 0, -4], offset = 2 

sage: C(x^2+3/x) 

Finite sequence [3, 0, 0, 1], offset = -1 

sage: C(1/x + 4/x^3) 

Finite sequence [4, 0, 1], offset = -3 

sage: P = LaurentPolynomialRing(QQ.fraction_field(), 'X') 

sage: X = P.gen() 

sage: C(1/(1-X)) 

C-finite sequence, generated by 1/(-x + 1) 

sage: C = CFiniteSequences(QQ) 

sage: C(x) 

Finite sequence [1], offset = 1 

""" 

ogf = self.fraction_field()(ogf) 

return self.element_class(self, ogf) 

 

def ngens(self): 

r""" 

Return the number of generators of ``self`` 

 

EXAMPLES:: 

 

sage: from sage.rings.cfinite_sequence import CFiniteSequences 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C.ngens() 

1 

""" 

return 1 

 

def gen(self,i=0): 

r""" 

Return the i-th generator of ``self``. 

 

INPUT: 

 

- ``i`` -- an integer (default:0) 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C.gen() 

x 

sage: x == C.gen() 

True 

 

TESTS:: 

 

sage: C.gen(2) 

Traceback (most recent call last): 

... 

ValueError: The ring of C-Finite sequences in x over Rational Field has only one generator (i=0) 

""" 

if i!= 0: 

raise ValueError("{} has only one generator (i=0)".format(self)) 

return self.polynomial_ring().gen() 

 

def an_element(self): 

r""" 

Return an element of C-Finite Sequences. 

 

OUTPUT: 

 

The Lucas sequence. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C.an_element() 

C-finite sequence, generated by (-x + 2)/(-x^2 - x + 1) 

""" 

x = self.gen() 

return self((2-x)/(1-x-x**2)) 

 

def __contains__(self, x): 

""" 

Return True if x is an element of ``CFiniteSequences`` or 

canonically coerces to this ring. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: x in C 

True 

sage: 1/x in C 

True 

sage: 5 in C 

True 

sage: pi in C 

False 

sage: Cy.<y> = CFiniteSequences(QQ); 

sage: y in C 

False 

sage: y in Cy 

True 

""" 

if x.parent() == self: 

return True 

try: 

self._coerce_(x) 

except TypeError: 

return False 

return True 

 

 

def fraction_field(self): 

r""" 

Return the fraction field used to represent the elements of ``self``. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C.fraction_field() 

Fraction Field of Univariate Polynomial Ring in x over Rational Field 

""" 

return self._fraction_field 

 

def polynomial_ring(self): 

r""" 

Return the polynomial ring used to represent the elements of ``self``. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C.polynomial_ring() 

Univariate Polynomial Ring in x over Rational Field 

""" 

return self._polynomial_ring 

 

def _coerce_map_from_(self, S): 

""" 

A coercion from `S` exists, if `S` coerces into ``self``'s fraction 

field. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ); 

sage: C.has_coerce_map_from(C.fraction_field()) 

True 

sage: C.has_coerce_map_from(QQ) 

True 

sage: C.has_coerce_map_from(QQ[x]) 

True 

sage: C.has_coerce_map_from(ZZ) 

True 

""" 

if self.fraction_field().has_coerce_map_from(S): 

return True 

 

def from_recurrence(self, coefficients, values): 

""" 

Create a C-finite sequence given the coefficients $c$ and 

starting values $a$ of a homogenous linear recurrence. 

 

.. MATH:: 

 

a_{n+d} = c_0a_n + c_1a_{n+1} + \cdots + c_{d-1}a_{n+d-1}, \quad d\ge0. 

 

INPUT: 

 

- ``coefficients`` -- a list of rationals 

- ``values`` -- start values, a list of rationals 

 

OUTPUT: 

 

- A CFiniteSequence object 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: C.from_recurrence([1,1],[0,1]) # Fibonacci numbers 

C-finite sequence, generated by x/(-x^2 - x + 1) 

sage: C.from_recurrence([-1,2],[0,1]) # natural numbers 

C-finite sequence, generated by x/(x^2 - 2*x + 1) 

sage: r = C.from_recurrence([-1],[1]) 

sage: s = C.from_recurrence([-1],[1,-1]) 

sage: r == s 

True 

sage: r = C(x^3/(1-x-x^2)) 

sage: s = C.from_recurrence([1,1],[0,0,0,1,1]) 

sage: r == s 

True 

sage: C.from_recurrence(1,1) 

Traceback (most recent call last): 

... 

ValueError: Wrong type for recurrence coefficient list. 

""" 

if not isinstance(coefficients, list): 

raise ValueError("Wrong type for recurrence coefficient list.") 

if not isinstance(values, list): 

raise ValueError("Wrong type for recurrence start value list.") 

deg = len(coefficients) 

 

co = coefficients[::-1] 

co.extend([0] * (len(values) - deg)) 

R = self.polynomial_ring() 

x = R.gen() 

den = -1 + sum([x ** (n + 1) * co[n] for n in range(deg)]) 

num = -values[0] + sum([x ** n * (-values[n] 

+ sum([values[k] * co[n - 1 - k] 

for k in range(n)])) 

for n in range(1, len(values))]) 

return self(num / den) 

 

def guess(self, sequence, algorithm='sage'): 

""" 

Return the minimal CFiniteSequence that generates the sequence. 

 

Assume the first value has index 0. 

 

INPUT: 

 

- ``sequence`` -- list of integers 

- ``algorithm`` -- string 

- 'sage' - the default is to use Sage's matrix kernel function 

- 'pari' - use Pari's implementation of LLL 

- 'bm' - use Sage's Berlekamp-Massey algorithm 

 

OUTPUT: 

 

- a CFiniteSequence, or 0 if none could be found 

 

With the default kernel method, trailing zeroes are chopped 

off before a guessing attempt. This may reduce the data 

below the accepted length of six values. 

 

EXAMPLES:: 

 

sage: C.<x> = CFiniteSequences(QQ) 

sage: C.guess([1,2,4,8,16,32]) 

C-finite sequence, generated by 1/(-2*x + 1) 

sage: r = C.guess([1,2,3,4,5]) 

Traceback (most recent call last): 

... 

ValueError: Sequence too short for guessing. 

 

With Berlekamp-Massey, if an odd number of values is given, the last one is dropped. 

So with an odd number of values the result may not generate the last value:: 

 

sage: r = C.guess([1,2,4,8,9], algorithm='bm'); r 

C-finite sequence, generated by 1/(-2*x + 1) 

sage: r[0:5] 

[1, 2, 4, 8, 16] 

""" 

S = self.polynomial_ring() 

if algorithm == 'bm': 

from sage.matrix.berlekamp_massey import berlekamp_massey 

if len(sequence) < 2: 

raise ValueError('Sequence too short for guessing.') 

R = PowerSeriesRing(QQ, 'x') 

if len(sequence) % 2 == 1: 

sequence = sequence[:-1] 

l = len(sequence) - 1 

denominator = S(berlekamp_massey(sequence).list()[::-1]) 

numerator = R(S(sequence) * denominator, prec=l).truncate() 

 

return CFiniteSequence(numerator / denominator) 

elif algorithm == 'pari': 

global _gp 

if len(sequence) < 6: 

raise ValueError('Sequence too short for guessing.') 

if _gp is None: 

_gp = Gp() 

_gp("ggf(v)=local(l,m,p,q,B);l=length(v);B=floor(l/2);\ 

if(B<3,return(0));m=matrix(B,B,x,y,v[x-y+B+1]);\ 

q=qflll(m,4)[1];if(length(q)==0,return(0));\ 

p=sum(k=1,B,x^(k-1)*q[k,1]);\ 

q=Pol(Pol(vector(l,n,v[l-n+1]))*p+O(x^(B+1)));\ 

if(polcoeff(p,0)<0,q=-q;p=-p);q=q/p;p=Ser(q+O(x^(l+1)));\ 

for(m=1,l,if(polcoeff(p,m-1)!=v[m],return(0)));q") 

_gp.set('gf', sequence) 

_gp("gf=ggf(gf)") 

num = S(sage_eval(_gp.eval("Vec(numerator(gf))"))[::-1]) 

den = S(sage_eval(_gp.eval("Vec(denominator(gf))"))[::-1]) 

if num == 0: 

return 0 

else: 

return CFiniteSequence(num / den) 

else: 

from sage.matrix.constructor import matrix 

from sage.functions.other import floor, ceil 

from numpy import trim_zeros 

l = len(sequence) 

while l > 0 and sequence[l-1] == 0: 

l -= 1 

sequence = sequence[:l] 

if l == 0: 

return 0 

if l < 6: 

raise ValueError('Sequence too short for guessing.') 

 

hl = ceil(ZZ(l)/2) 

A = matrix([sequence[k:k+hl] for k in range(hl)]) 

K = A.kernel() 

if K.dimension() == 0: 

return 0 

R = PolynomialRing(QQ, 'x') 

den = R(trim_zeros(K.basis()[-1].list()[::-1])) 

if den == 1: 

return 0 

offset = next((i for i, x in enumerate(sequence) if x!=0), None) 

S = PowerSeriesRing(QQ, 'x', default_prec=l-offset) 

num = S(R(sequence)*den).add_bigoh(floor(ZZ(l)/2+1)).truncate() 

if num == 0 or sequence != S(num/den).list(): 

return 0 

else: 

return CFiniteSequence(num / den) 

 

""" 

.. TODO:: 

 

sage: CFiniteSequence(x+x^2+x^3+x^4+x^5+O(x^6)) # not implemented 

sage: latex(r) # not implemented 

\big\{a_{n\ge0}\big|a_{n+2}=\sum_{i=0}^{1}c_ia_{n+i}, c=\{1,1\}, a_{n<2}=\{0,0,0,1\}\big\} 

sage: r.egf() # not implemented 

exp(2*x) 

sage: r = CFiniteSequence(1/(1-y-x*y), x) # not implemented 

"""