Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

# -*- coding: utf-8 -*-* 

r""" 

Integer factorization functions 

  

AUTHORS: 

  

- Andre Apitzsch (2011-01-13): initial version 

  

""" 

  

#***************************************************************************** 

# Copyright (C) 2010 André Apitzsch <andre.apitzsch@st.ovgu.de> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

from sage.ext.stdsage cimport PY_NEW 

from sage.libs.gmp.mpz cimport * 

  

from sage.rings.integer cimport Integer 

from sage.rings.fast_arith import prime_range 

from sage.structure.factorization_integer import IntegerFactorization 

from math import floor 

from sage.misc.misc_c import prod 

  

cdef extern from "limits.h": 

long LONG_MAX 

  

cpdef aurifeuillian(n, m, F=None, bint check=True): 

r""" 

Return the Aurifeuillian factors `F_n^\pm(m^2n)`. 

  

This is based off Theorem 3 of [Brent93]_. 

  

INPUT: 

  

- ``n`` -- integer 

- ``m`` -- integer 

- ``F`` -- integer (default: ``None``) 

- ``check`` -- boolean (default: ``True``) 

  

OUTPUT: 

  

A list of factors. 

  

EXAMPLES:: 

  

sage: from sage.rings.factorint import aurifeuillian 

sage: aurifeuillian(2,2) 

[5, 13] 

sage: aurifeuillian(2,2^5) 

[1985, 2113] 

sage: aurifeuillian(5,3) 

[1471, 2851] 

sage: aurifeuillian(15,1) 

[19231, 142111] 

sage: aurifeuillian(12,3) 

Traceback (most recent call last): 

... 

ValueError: n has to be square-free 

sage: aurifeuillian(1,2) 

Traceback (most recent call last): 

... 

ValueError: n has to be greater than 1 

sage: aurifeuillian(2,0) 

Traceback (most recent call last): 

... 

ValueError: m has to be positive 

  

.. NOTE:: 

  

There is no need to set `F`. It's only for increasing speed 

of :meth:`factor_aurifeuillian()`. 

  

REFERENCES: 

  

.. [Brent93] Richard P. Brent. 

*On computing factors of cyclotomic polynomials*. 

Mathematics of Computation. **61** (1993). No. 203. pp 131-149. 

:arXiv:`1004.5466v1`. http://www.jstor.org/stable/2152941 

""" 

from sage.arith.all import euler_phi 

from sage.rings.real_mpfi import RealIntervalField 

if check: 

if not n.is_squarefree(): 

raise ValueError("n has to be square-free") 

if n < 2: 

raise ValueError("n has to be greater than 1") 

if m < 1: 

raise ValueError("m has to be positive") 

x = m**2*n 

cdef Py_ssize_t y = euler_phi(2*n)//2 

if F is None: 

from sage.rings.polynomial.cyclotomic import cyclotomic_value 

if n%2: 

if n%4 == 3: 

s = -1 

else: 

s = 1 

F = cyclotomic_value(n, s*x) 

else: 

F = cyclotomic_value(n//2, -x**2) 

if n == 2: 

F = -F 

cdef Py_ssize_t j 

tmp = 0 

for j in range(y): 

tmp += n.kronecker(2*j + 1) / ((2*j + 1) * x**j) 

prec = Integer(150) 

R = RealIntervalField(prec) 

Fm = R(F).sqrt() * R(-1/m*tmp).exp() 

while Fm.upper().round() != Fm.lower().round(): 

prec *= 2 

R = RealIntervalField(prec) 

Fm = R(F).sqrt() * R(-1/m*tmp).exp() 

Fm = Fm.upper().round() 

assert (not check or Fm.divides(F)) 

return [Fm, F // Fm] 

  

cpdef factor_aurifeuillian(n, check=True): 

r""" 

Return Aurifeuillian factors of `n` if `n = x^{(2k-1)x} \pm 1` 

(where the sign is '-' if x = 1 mod 4, and '+' otherwise) else `n` 

  

INPUT: 

  

- ``n`` -- integer 

  

OUTPUT: 

  

List of factors of `n` found by Aurifeuillian factorization. 

  

EXAMPLES:: 

  

sage: from sage.rings.factorint import factor_aurifeuillian as fa 

sage: fa(2^6+1) 

[5, 13] 

sage: fa(2^58+1) 

[536838145, 536903681] 

sage: fa(3^3+1) 

[4, 1, 7] 

sage: fa(5^5-1) 

[4, 11, 71] 

sage: prod(_) == 5^5-1 

True 

sage: fa(2^4+1) 

[17] 

sage: fa((6^2*3)^3+1) 

[109, 91, 127] 

  

TESTS:: 

  

sage: for n in [2,3,5,6,30,31,33]: 

....: for m in [8,96,109201283]: 

....: s = -1 if n % 4 == 1 else 1 

....: y = (m^2*n)^n + s 

....: F = fa(y) 

....: assert(len(F) > 0 and prod(F) == y) 

  

REFERENCES: 

  

- http://mathworld.wolfram.com/AurifeuilleanFactorization.html 

- [Brent93]_ Theorem 3 

""" 

if n in [-2, -1, 0, 1, 2]: 

return [n] 

cdef int exp = 1 

for s in [-1, 1]: 

x, exp = (n - s).perfect_power() 

if exp > 1: 

# factorization is possible if x = m^2 * n and exp = n, n squarefree 

# We have the freedom to replace exp by exp/a and x by x^a. If a is even, 

# n = 1 and we've gotten nowhere. So set n as the squarefree part of x, 

# and m^2 the remainder. We can replace exp by exp/(2a+1) as long as we 

# replace (m^2 * n) by (m^2 * n)^(2a + 1) = (m^(2a + 1) * n^a)^2 * n. 

# In particular, n needs to be a divisor of both x and exp (as well as being squarefree). 

a_guess = x.gcd(exp) 

m = x // a_guess 

# n_guess is small, so we can factor it. 

a = 1 

for p, e in a_guess.factor(): 

v = m.valuation(p) 

if v + e % 2: 

# one factor of p remains in a. 

a *= p 

if e > 1: 

m *= p**(e-1) 

else: 

# all factors of p go to m 

m *= p**e 

if a == 1 or (a % 4 == 1 and s == 1) or (a % 4 != 1 and s == -1): continue 

m, r = m.sqrtrem() 

if r: continue 

exp_adjust = exp // a 

if exp_adjust % 2 == 0: continue 

m = m**exp_adjust * a**(exp_adjust//2) 

F = aurifeuillian(a, m, check=False) 

rem = prod(F) 

if check and not rem.divides(n): 

raise RuntimeError("rem=%s, F=%s, n=%s, m=%s"%(rem, F, n, m)) 

rem = n // rem 

if rem != 1: 

return [rem] + F 

return F 

return [n] 

  

def factor_cunningham(m, proof=None): 

r""" 

Return factorization of self obtained using trial division 

for all primes in the so called Cunningham table. This is 

efficient if self has some factors of type `b^n+1` or `b^n-1`, 

with `b` in `\{2,3,5,6,7,10,11,12\}`. 

  

You need to install an optional package to use this method, 

this can be done with the following command line: 

``sage -i cunningham_tables``. 

  

INPUT: 

  

- ``proof`` -- bool (default: ``None``); whether or not to 

prove primality of each factor, this is only for factors 

not in the Cunningham table 

  

EXAMPLES:: 

  

sage: from sage.rings.factorint import factor_cunningham 

sage: factor_cunningham(2^257-1) # optional - cunningham 

535006138814359 * 1155685395246619182673033 * 374550598501810936581776630096313181393 

sage: factor_cunningham((3^101+1)*(2^60).next_prime(),proof=False) # optional - cunningham 

2^2 * 379963 * 1152921504606847009 * 1017291527198723292208309354658785077827527 

  

""" 

from sage.databases import cunningham_tables 

cunningham_prime_factors = cunningham_tables.cunningham_prime_factors() 

if m.nbits() < 100 or len(cunningham_prime_factors) == 0: 

return m.factor(proof=proof) 

n = Integer(m) 

L = [] 

for p in cunningham_prime_factors: 

if p > n: 

break 

if p.divides(n): 

v,n = n.val_unit(p) 

L.append( (p,v) ) 

if n.is_one(): 

return IntegerFactorization(L) 

else: 

return IntegerFactorization(L)*n.factor(proof=proof) 

  

cpdef factor_trial_division(m, long limit=LONG_MAX): 

r""" 

Return partial factorization of self obtained using trial division 

for all primes up to limit, where limit must fit in a C signed long. 

  

INPUT: 

  

- ``limit`` -- integer (default: ``LONG_MAX``) that fits in a C signed long 

  

EXAMPLES:: 

  

sage: from sage.rings.factorint import factor_trial_division 

sage: n = 920384092842390423848290348203948092384082349082 

sage: factor_trial_division(n, 1000) 

2 * 11 * 41835640583745019265831379463815822381094652231 

sage: factor_trial_division(n, 2000) 

2 * 11 * 1531 * 27325696005058797691594630609938486205809701 

  

TESTS: 

  

Test that :trac:`13692` is solved:: 

  

sage: from sage.rings.factorint import factor_trial_division 

sage: list(factor_trial_division(8)) 

[(2, 3)] 

  

""" 

cdef Integer n = PY_NEW(Integer), unit = PY_NEW(Integer), p = Integer(2) 

cdef long e 

  

n = Integer(m) 

if mpz_sgn(n.value) > 0: 

mpz_set_si(unit.value, 1) 

else: 

mpz_neg(n.value,n.value) 

mpz_set_si(unit.value, -1) 

  

F = [] 

while mpz_cmpabs_ui(n.value, 1): 

p = n.trial_division(bound=limit,start=mpz_get_ui(p.value)) 

e = mpz_remove(n.value, n.value, p.value) 

F.append((p,e)) 

  

return IntegerFactorization(F, unit=unit, unsafe=True, 

sort=False, simplify=False) 

  

  

def factor_using_pari(n, int_=False, debug_level=0, proof=None): 

r""" 

Factor this integer using PARI. 

  

This function returns a list of pairs, not a ``Factorization`` 

object. The first element of each pair is the factor, of type 

``Integer`` if ``int_`` is ``False`` or ``int`` otherwise, 

the second element is the positive exponent, of type ``int``. 

  

INPUT: 

  

- ``int_`` -- (default: ``False``), whether the factors are 

of type ``int`` instead of ``Integer`` 

  

- ``debug_level`` -- (default: 0), debug level of the call 

to PARI 

  

- ``proof`` -- (default: ``None``), whether the factors are 

required to be proven prime; if ``None``, the global default 

is used 

  

OUTPUT: 

  

A list of pairs. 

  

EXAMPLES:: 

  

sage: factor(-2**72 + 3, algorithm='pari') # indirect doctest 

-1 * 83 * 131 * 294971519 * 1472414939 

  

Check that PARI's debug level is properly reset (:trac:`18792`):: 

  

sage: alarm(0.5); factor(2^1000 - 1, verbose=5) 

Traceback (most recent call last): 

... 

AlarmInterrupt 

sage: pari.get_debug_level() 

0 

""" 

from sage.libs.pari.all import pari 

  

if proof is None: 

from sage.structure.proof.proof import get_flag 

proof = get_flag(proof, "arithmetic") 

  

prev = pari.get_debug_level() 

  

cdef Py_ssize_t i 

try: 

if prev != debug_level: 

pari.set_debug_level(debug_level) 

  

p, e = n.__pari__().factor(proof=proof) 

if int_: 

return [(int(p[i]), int(e[i])) for i in range(len(p))] 

else: 

return [(Integer(p[i]), int(e[i])) for i in range(len(p))] 

finally: 

if prev != debug_level: 

pari.set_debug_level(prev)