Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

r""" 

Givaro Field Elements 

  

Sage includes the Givaro finite field library, for highly optimized 

arithmetic in finite fields. 

  

.. NOTE:: 

  

The arithmetic is performed by the Givaro C++ library which uses 

Zech logs internally to represent finite field elements. This 

implementation is the default finite extension field implementation 

in Sage for the cardinality less than `2^{16}`, as it is a lot 

faster than the PARI implementation. Some functionality in this 

class however is implemented using PARI. 

  

EXAMPLES:: 

  

sage: k = GF(5); type(k) 

<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'> 

sage: k = GF(5^2,'c'); type(k) 

<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'> 

sage: k = GF(2^16,'c'); type(k) 

<class 'sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e_with_category'> 

sage: k = GF(3^16,'c'); type(k) 

<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_category'> 

  

sage: n = previous_prime_power(2^16 - 1) 

sage: while is_prime(n): 

....: n = previous_prime_power(n) 

sage: factor(n) 

251^2 

sage: k = GF(n,'c'); type(k) 

<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'> 

  

AUTHORS: 

  

- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-06-05) 

- William Stein (2006-12-07): editing, lots of docs, etc. 

- Robert Bradshaw (2007-05-23): is_square/sqrt, pow. 

  

""" 

  

#***************************************************************************** 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

from __future__ import absolute_import, print_function 

  

from cysignals.signals cimport sig_on, sig_off 

  

include "sage/libs/ntl/decl.pxi" 

from cypari2.paridecl cimport * 

  

from sage.misc.randstate cimport randstate, current_randstate 

from sage.rings.finite_rings.finite_field_base cimport FiniteField 

from sage.rings.ring cimport Ring 

from .element_pari_ffelt cimport FiniteFieldElement_pari_ffelt 

from sage.structure.richcmp cimport richcmp 

from sage.structure.sage_object cimport SageObject 

from sage.structure.element cimport Element, ModuleElement, RingElement 

import operator 

import sage.arith.all 

import sage.rings.finite_rings.finite_field_constructor as finite_field 

  

import sage.interfaces.gap 

from sage.libs.pari.all import pari 

from cypari2.gen cimport Gen 

  

from sage.structure.parent cimport Parent 

  

from sage.misc.superseded import deprecated_function_alias 

  

cdef object is_IntegerMod 

cdef object Integer 

cdef object Rational 

cdef object ConwayPolynomials 

cdef object conway_polynomial 

cdef object MPolynomial 

cdef object Polynomial 

cdef object FreeModuleElement 

  

cdef void late_import(): 

""" 

Late import of modules 

""" 

global is_IntegerMod, \ 

Integer, \ 

Rational, \ 

ConwayPolynomials, \ 

conway_polynomial, \ 

MPolynomial, \ 

Polynomial, \ 

FreeModuleElement 

  

if is_IntegerMod is not None: 

return 

  

import sage.rings.finite_rings.integer_mod 

is_IntegerMod = sage.rings.finite_rings.integer_mod.is_IntegerMod 

  

import sage.rings.integer 

Integer = sage.rings.integer.Integer 

  

import sage.rings.rational 

Rational = sage.rings.rational.Rational 

  

import sage.databases.conway 

ConwayPolynomials = sage.databases.conway.ConwayPolynomials 

  

import sage.rings.finite_rings.finite_field_constructor 

conway_polynomial = sage.rings.finite_rings.conway_polynomials.conway_polynomial 

  

import sage.rings.polynomial.multi_polynomial_element 

MPolynomial = sage.rings.polynomial.multi_polynomial_element.MPolynomial 

  

import sage.rings.polynomial.polynomial_element 

Polynomial = sage.rings.polynomial.polynomial_element.Polynomial 

  

import sage.modules.free_module_element 

FreeModuleElement = sage.modules.free_module_element.FreeModuleElement 

  

cdef class Cache_givaro(SageObject): 

def __init__(self, parent, unsigned int p, unsigned int k, modulus, repr="poly", cache=False): 

""" 

Finite Field. 

  

These are implemented using Zech logs and the 

cardinality must be less than `2^{16}`. By default Conway polynomials 

are used as minimal polynomial. 

  

INPUT: 

  

- ``q`` -- `p^n` (must be prime power) 

  

- ``name`` -- variable used for poly_repr (default: ``'a'``) 

  

- ``modulus`` -- a polynomial to use as modulus. 

  

- ``repr`` -- (default: 'poly') controls the way elements are printed 

to the user: 

  

- 'log': repr is :meth:`~FiniteField_givaroElement.log_repr()` 

- 'int': repr is :meth:`~FiniteField_givaroElement.int_repr()` 

- 'poly': repr is :meth:`~FiniteField_givaroElement.poly_repr()` 

  

- ``cache`` -- (default: ``False``) if ``True`` a cache of all 

elements of this field is created. Thus, arithmetic does not 

create new elements which speeds calculations up. Also, if many 

elements are needed during a calculation this cache reduces the 

memory requirement as at most :meth:`order()` elements are created. 

  

OUTPUT: 

  

Givaro finite field with characteristic `p` and cardinality `p^n`. 

  

EXAMPLES: 

  

By default Conway polynomials are used:: 

  

sage: k.<a> = GF(2**8) 

sage: -a ^ k.degree() 

a^4 + a^3 + a^2 + 1 

sage: f = k.modulus(); f 

x^8 + x^4 + x^3 + x^2 + 1 

  

You may enforce a modulus:: 

  

sage: P.<x> = PolynomialRing(GF(2)) 

sage: f = x^8 + x^4 + x^3 + x + 1 # Rijndael polynomial 

sage: k.<a> = GF(2^8, modulus=f) 

sage: k.modulus() 

x^8 + x^4 + x^3 + x + 1 

sage: a^(2^8) 

a 

  

You may enforce a random modulus:: 

  

sage: k = GF(3**5, 'a', modulus='random') 

sage: k.modulus() # random polynomial 

x^5 + 2*x^4 + 2*x^3 + x^2 + 2 

  

For binary fields, you may ask for a minimal weight polynomial:: 

  

sage: k = GF(2**10, 'a', modulus='minimal_weight') 

sage: k.modulus() 

x^10 + x^3 + 1 

""" 

# we are calling late_import here because this constructor is 

# called at least once before any arithmetic is performed. 

late_import() 

  

cdef intvec cPoly 

  

self.parent = <Parent?> parent 

  

if repr=='poly': 

self.repr = 0 

elif repr=='log': 

self.repr = 1 

elif repr=='int': 

self.repr = 2 

else: 

raise RuntimeError 

  

if k == 1: 

sig_on() 

self.objectptr = gfq_factorypk(p, k) 

else: 

# Givaro does not support this when k == 1 

for coeff in modulus: 

cPoly.push_back(<int>coeff) 

sig_on() 

self.objectptr = gfq_factorypkp(p, k, cPoly) 

  

self._zero_element = make_FiniteField_givaroElement(self, self.objectptr.zero) 

self._one_element = make_FiniteField_givaroElement(self, self.objectptr.one) 

sig_off() 

  

parent._zero_element = self._zero_element 

parent._one_element = self._one_element 

if cache: 

self._array = self.gen_array() 

self._has_array = True 

  

cdef gen_array(self): 

""" 

Generates an array/list/tuple containing all elements of ``self`` 

indexed by their power with respect to the internal generator. 

""" 

cdef int i 

  

array = list() 

for i from 0 <= i < self.order_c(): 

array.append(make_FiniteField_givaroElement(self,i) ) 

return tuple(array) 

  

def __dealloc__(self): 

""" 

Free the memory occupied by this Givaro finite field. 

""" 

delete(self.objectptr) 

  

cpdef int characteristic(self): 

""" 

Return the characteristic of this field. 

  

EXAMPLES:: 

  

sage: p = GF(19^3,'a')._cache.characteristic(); p 

19 

""" 

return self.objectptr.characteristic() 

  

def order(self): 

""" 

Returns the order of this field. 

  

EXAMPLES:: 

  

sage: K.<a> = GF(9) 

sage: K._cache.order() 

9 

""" 

return Integer(self.order_c()) 

  

cpdef int order_c(self): 

""" 

Returns the order of this field. 

  

EXAMPLES:: 

  

sage: K.<a> = GF(9) 

sage: K._cache.order_c() 

9 

""" 

return self.objectptr.cardinality() 

  

cpdef int exponent(self): 

r""" 

Returns the degree of this field over `\GF{p}`. 

  

EXAMPLES:: 

  

sage: K.<a> = GF(9); K._cache.exponent() 

2 

""" 

return self.objectptr.exponent() 

  

def random_element(self, *args, **kwds): 

""" 

Return a random element of ``self``. 

  

EXAMPLES:: 

  

sage: k = GF(23**3, 'a') 

sage: e = k._cache.random_element(); e 

2*a^2 + 14*a + 21 

sage: type(e) 

<type 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement'> 

  

sage: P.<x> = PowerSeriesRing(GF(3^3, 'a')) 

sage: P.random_element(5) 

2*a + 2 + (a^2 + a + 2)*x + (2*a + 1)*x^2 + (2*a^2 + a)*x^3 + 2*a^2*x^4 + O(x^5) 

""" 

cdef int seed = current_randstate().c_random() 

cdef int res 

cdef GivRandom generator = GivRandomSeeded(seed) 

res = self.objectptr.random(generator,res) 

return make_FiniteField_givaroElement(self,res) 

  

cpdef FiniteField_givaroElement element_from_data(self, e): 

""" 

Coerces several data types to ``self``. 

  

INPUT: 

  

- ``e`` -- data to coerce in. 

  

EXAMPLES:: 

  

sage: k = GF(3^8, 'a') 

sage: type(k) 

<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'> 

sage: e = k.vector_space().gen(1); e 

(0, 1, 0, 0, 0, 0, 0, 0) 

sage: k(e) #indirect doctest 

a 

  

TESTS: 

  

Check coercion of large integers:: 

  

sage: k(-5^13) 

1 

sage: k(2^31) 

2 

sage: k(int(10^19)) 

1 

sage: k(2^63) 

2 

sage: k(2^100) 

1 

sage: k(int(2^100)) 

1 

sage: k(long(2^100)) 

1 

sage: k(-2^100) 

2 

  

Check coercion of incompatible fields:: 

  

sage: x=GF(7).random_element() 

sage: k(x) 

Traceback (most recent call last): 

... 

TypeError: unable to coerce from a finite field other than the prime subfield 

  

For more examples, see 

``finite_field_givaro.FiniteField_givaro._element_constructor_`` 

""" 

cdef int res 

cdef int g 

cdef int x 

cdef int e_int 

  

cdef FiniteField_givaroElement to_add 

######## 

  

if isinstance(e, FiniteField_givaroElement): 

if e.parent() is self.parent: 

return e 

if e.parent() == self.parent: 

return make_FiniteField_givaroElement(self,(<FiniteField_givaroElement>e).element) 

if e.parent() is self.parent.prime_subfield() or e.parent() == self.parent.prime_subfield(): 

res = self.int_to_log(int(e)) 

else: 

raise TypeError("unable to coerce from a finite field other than the prime subfield") 

  

elif isinstance(e, int) or \ 

isinstance(e, Integer) or \ 

isinstance(e, long) or is_IntegerMod(e): 

try: 

e_int = e % self.characteristic() 

res = self.objectptr.initi(res, e_int) 

except ArithmeticError: 

raise TypeError("unable to coerce from a finite field other than the prime subfield") 

elif e is None: 

e_int = 0 

res = self.objectptr.initi(res, e_int) 

  

elif isinstance(e, float): 

e_int = int(e) % self.characteristic() 

res = self.objectptr.initd(res, e_int) 

  

elif isinstance(e, str): 

return self.parent(eval(e.replace("^","**"),self.parent.gens_dict())) 

  

elif isinstance(e, FreeModuleElement): 

if self.parent.vector_space() != e.parent(): 

raise TypeError("e.parent must match self.vector_space") 

ret = self._zero_element 

for i in range(len(e)): 

e_int = e[i] % self.characteristic() 

res = self.objectptr.initi(res, e_int) 

to_add = make_FiniteField_givaroElement(self, res) 

ret = ret + to_add*self.parent.gen()**i 

return ret 

  

elif isinstance(e, MPolynomial): 

if e.is_constant(): 

return self.parent(e.constant_coefficient()) 

else: 

raise TypeError("no coercion defined") 

  

elif isinstance(e, Polynomial): 

if e.is_constant(): 

return self.parent(e.constant_coefficient()) 

else: 

return e.change_ring(self.parent)(self.parent.gen()) 

  

elif isinstance(e, Rational): 

num = e.numer() 

den = e.denom() 

return self.parent(num)/self.parent(den) 

  

elif isinstance(e, Gen): 

pass # handle this in next if clause 

  

elif isinstance(e, FiniteFieldElement_pari_ffelt): 

# Reduce to pari 

e = e.__pari__() 

  

elif sage.interfaces.gap.is_GapElement(e): 

from sage.interfaces.gap import gfq_gap_to_sage 

return gfq_gap_to_sage(e, self.parent) 

  

elif isinstance(e, list): 

if len(e) > self.exponent(): 

# could reduce here... 

raise ValueError("list is too long") 

ret = self._zero_element 

for i in range(len(e)): 

e_int = e[i] % self.characteristic() 

res = self.objectptr.initi(res, e_int) 

to_add = make_FiniteField_givaroElement(self, res) 

ret = ret + to_add*self.parent.gen()**i 

return ret 

  

else: 

raise TypeError("unable to coerce %r" % type(e)) 

  

cdef GEN t 

cdef long c 

if isinstance(e, Gen): 

sig_on() 

t = (<Gen>e).g 

if typ(t) == t_FFELT: 

t = FF_to_FpXQ(t) 

else: 

t = liftall_shallow(t) 

  

if typ(t) == t_INT: 

res = self.int_to_log(itos(t)) 

sig_off() 

elif typ(t) == t_POL: 

res = self._zero_element 

  

g = self.objectptr.indeterminate() 

x = self.objectptr.one 

  

for i from 0 <= i <= degpol(t): 

c = gtolong(gel(t, i+2)) 

res = self.objectptr.axpyin(res, self.int_to_log(c), x) 

x = self.objectptr.mul(x,x,g) 

sig_off() 

else: 

raise TypeError("bad PARI type %r" % e.type()) 

  

return make_FiniteField_givaroElement(self,res) 

  

cpdef FiniteField_givaroElement gen(self): 

""" 

Returns a generator of the field. 

  

EXAMPLES:: 

  

sage: K.<a> = GF(625) 

sage: K._cache.gen() 

a 

""" 

cdef int g 

if self.objectptr.exponent() == 1: 

self.objectptr.initi(g, -self.parent.modulus()[0]) 

else: 

g = self.objectptr.indeterminate() 

return make_FiniteField_givaroElement(self, g) 

  

cpdef int log_to_int(self, int n) except -1: 

r""" 

Given an integer `n` this method returns `i` where `i` 

satisfies `g^n = i` where `g` is the generator of ``self``; the 

result is interpreted as an integer. 

  

INPUT: 

  

- ``n`` -- log representation of a finite field element 

  

OUTPUT: 

  

integer representation of a finite field element. 

  

EXAMPLES:: 

  

sage: k = GF(2**8, 'a') 

sage: k._cache.log_to_int(4) 

16 

sage: k._cache.log_to_int(20) 

180 

""" 

if n < 0: 

raise IndexError("Cannot serve negative exponent %d"%n) 

elif n >= self.order_c(): 

raise IndexError("n=%d must be < self.order()"%n) 

  

cdef int r 

sig_on() 

self.objectptr.convert(r, n) 

sig_off() 

return r 

  

cpdef int int_to_log(self, int n) except -1: 

r""" 

Given an integer `n` this method returns `i` where `i` satisfies 

`g^i = n \mod p` where `g` is the generator and `p` is the 

characteristic of ``self``. 

  

INPUT: 

  

- ``n`` -- integer representation of an finite field element 

  

OUTPUT: 

  

log representation of ``n`` 

  

EXAMPLES:: 

  

sage: k = GF(7**3, 'a') 

sage: k._cache.int_to_log(4) 

228 

sage: k._cache.int_to_log(3) 

57 

sage: k.gen()^57 

3 

""" 

cdef int r 

sig_on() 

self.objectptr.initi(r,n) 

sig_off() 

return r 

  

def fetch_int(self, int n): 

r""" 

Given an integer ``n`` return a finite field element in ``self`` 

which equals ``n`` under the condition that :meth:`gen()` is set to 

:meth:`characteristic()`. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(2^8) 

sage: k._cache.fetch_int(8) 

a^3 

sage: e = k._cache.fetch_int(151); e 

a^7 + a^4 + a^2 + a + 1 

sage: 2^7 + 2^4 + 2^2 + 2 + 1 

151 

""" 

cdef GivaroGfq *k = self.objectptr 

cdef int ret = k.zero 

cdef int a = k.indeterminate() 

cdef int at = k.one 

cdef int ch = k.characteristic() 

cdef int t, i 

  

if n<0 or n>k.cardinality(): 

raise TypeError("n must be between 0 and self.order()") 

  

for i from 0 <= i < k.exponent(): 

t = k.initi(t, n % ch) 

ret = k.axpy(ret, t, at, ret) 

at = k.mul(at,at,a) 

n //= ch 

return make_FiniteField_givaroElement(self, ret) 

  

def _element_repr(self, FiniteField_givaroElement e): 

""" 

Wrapper for log, int, and poly representations. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: k._cache._element_repr(a^20) 

'2*a^3 + 2*a^2 + 2' 

  

sage: k = FiniteField(3^4,'a', impl='givaro', repr='int') 

sage: a = k.gen() 

sage: k._cache._element_repr(a^20) 

'74' 

  

sage: k = FiniteField(3^4,'a', impl='givaro', repr='log') 

sage: a = k.gen() 

sage: k._cache._element_repr(a^20) 

'20' 

""" 

if self.repr==0: 

return self._element_poly_repr(e) 

elif self.repr==1: 

return self._element_log_repr(e) 

else: 

return self._element_int_repr(e) 

  

def _element_log_repr(self, FiniteField_givaroElement e): 

""" 

Return ``str(i)`` where ``self` is ``gen^i`` with ``gen`` 

being the *internal* multiplicative generator of this finite 

field. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: k._cache._element_log_repr(a^20) 

'20' 

sage: k._cache._element_log_repr(a) 

'1' 

""" 

return str(int(e.element)) 

  

def _element_int_repr(self, FiniteField_givaroElement e): 

r""" 

Return integer representation of ``e``. 

  

Elements of this field are represented as ints in as follows: 

for `e \in \GF{p}[x]` with `e = a_0 + a_1x + a_2x^2 + \cdots`, `e` is 

represented as: `n = a_0 + a_1 p + a_2 p^2 + \cdots`. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: k._cache._element_int_repr(a^20) 

'74' 

""" 

return str(e.integer_representation()) 

  

def _element_poly_repr(self, FiniteField_givaroElement e, varname = None): 

""" 

Return a polynomial expression in the generator of ``self``. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: k._cache._element_poly_repr(a^20) 

'2*a^3 + 2*a^2 + 2' 

""" 

if varname is None: 

variable = self.parent.variable_name() 

else: 

variable = varname 

  

quo = self.log_to_int(e.element) 

b = int(self.characteristic()) 

  

ret = "" 

for i in range(self.exponent()): 

coeff = quo%b 

if coeff != 0: 

if i>0: 

if coeff==1: 

coeff="" 

else: 

coeff=str(coeff)+"*" 

if i>1: 

ret = coeff + variable + "^" + str(i) + " + " + ret 

else: 

ret = coeff + variable + " + " + ret 

else: 

ret = str(coeff) + " + " + ret 

quo = quo/b 

if ret == '': 

return "0" 

return ret[:-3] 

  

def a_times_b_plus_c(self,FiniteField_givaroElement a, FiniteField_givaroElement b, FiniteField_givaroElement c): 

""" 

Return ``a*b + c``. This is faster than multiplying ``a`` and ``b`` 

first and adding ``c`` to the result. 

  

INPUT: 

  

- ``a,b,c`` -- :class:`FiniteField_givaroElement` 

  

EXAMPLES:: 

  

sage: k.<a> = GF(2**8) 

sage: k._cache.a_times_b_plus_c(a,a,k(1)) 

a^2 + 1 

""" 

cdef int r 

  

r = self.objectptr.axpy(r, a.element, b.element, c.element) 

return make_FiniteField_givaroElement(self,r) 

  

def a_times_b_minus_c(self,FiniteField_givaroElement a, FiniteField_givaroElement b, FiniteField_givaroElement c): 

""" 

Return ``a*b - c``. 

  

INPUT: 

  

- ``a,b,c`` -- :class:`FiniteField_givaroElement` 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3**3) 

sage: k._cache.a_times_b_minus_c(a,a,k(1)) 

a^2 + 2 

""" 

cdef int r 

  

r = self.objectptr.axmy(r, a.element, b.element, c.element, ) 

return make_FiniteField_givaroElement(self,r) 

  

def c_minus_a_times_b(self,FiniteField_givaroElement a, 

FiniteField_givaroElement b, FiniteField_givaroElement c): 

""" 

Return ``c - a*b``. 

  

INPUT: 

  

- ``a,b,c`` -- :class:`FiniteField_givaroElement` 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3**3) 

sage: k._cache.c_minus_a_times_b(a,a,k(1)) 

2*a^2 + 1 

""" 

cdef int r 

  

r = self.objectptr.maxpy(r , a.element, b.element, c.element, ) 

return make_FiniteField_givaroElement(self,r) 

  

def __reduce__(self): 

""" 

For pickling. 

  

TESTS:: 

  

sage: k.<a> = GF(3^8) 

sage: TestSuite(a).run() 

""" 

p, k = self.order().factor()[0] 

if self.repr == 0: 

rep = 'poly' 

elif self.repr == 1: 

rep = 'log' 

elif self.repr == 2: 

rep = 'int' 

return unpickle_Cache_givaro, (self.parent, p, k, self.parent.polynomial(), rep, self._has_array) 

  

cdef FiniteField_givaroElement _new_c(self, int value): 

return make_FiniteField_givaroElement(self, value) 

  

  

def unpickle_Cache_givaro(parent, p, k, modulus, rep, cache): 

""" 

EXAMPLES:: 

  

sage: k = GF(3**7, 'a') 

sage: loads(dumps(k)) == k # indirect doctest 

True 

""" 

return Cache_givaro(parent, p, k, modulus, rep, cache) 

  

cdef class FiniteField_givaro_iterator: 

""" 

Iterator over :class:`FiniteField_givaro` elements. We iterate 

multiplicatively, as powers of a fixed internal generator. 

  

EXAMPLES:: 

  

sage: for x in GF(2^2,'a'): print(x) 

0 

a 

a + 1 

1 

""" 

  

def __init__(self, Cache_givaro cache): 

""" 

EXAMPLES:: 

  

sage: k.<a> = GF(3^4) 

sage: i = iter(k) # indirect doctest 

sage: i 

Iterator over Finite Field in a of size 3^4 

""" 

self._cache = cache 

self.iterator = -1 

  

def __next__(self): 

""" 

EXAMPLES:: 

  

sage: k.<a> = GF(3^4) 

sage: i = iter(k) # indirect doctest 

sage: next(i) 

0 

sage: next(i) 

a 

""" 

  

self.iterator=self.iterator+1 

  

if self.iterator==self._cache.order_c(): 

self.iterator = -1 

raise StopIteration 

  

return make_FiniteField_givaroElement(self._cache,self.iterator) 

  

def __repr__(self): 

""" 

EXAMPLES:: 

  

sage: k.<a> = GF(3^4) 

sage: i = iter(k) 

sage: i # indirect doctest 

Iterator over Finite Field in a of size 3^4 

""" 

return "Iterator over %s"%self._cache.parent 

  

def __iter__(self): 

""" 

EXAMPLES:: 

  

sage: K.<a> = GF(4) 

sage: K.list() # indirect doctest 

[0, a, a + 1, 1] 

""" 

return self 

  

cdef class FiniteField_givaroElement(FinitePolyExtElement): 

""" 

An element of a (Givaro) finite field. 

""" 

  

def __init__(FiniteField_givaroElement self, parent ): 

""" 

Initializes an element in parent. It's much better to use 

parent(<value>) or any specialized method of parent 

like gen() instead. In general do not call this 

constructor directly. 

  

Alternatively you may provide a value which is directly 

assigned to this element. So the value must represent the 

log_g of the value you wish to assign. 

  

INPUT: 

  

- ``parent`` -- base field 

  

OUTPUT: 

  

A finite field element. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(5^2) 

sage: from sage.rings.finite_rings.element_givaro import FiniteField_givaroElement 

sage: FiniteField_givaroElement(k) 

0 

  

""" 

FinitePolyExtElement.__init__(self, parent) 

self._cache = parent._cache 

self.element = 0 

  

cdef FiniteField_givaroElement _new_c(self, int value): 

return make_FiniteField_givaroElement(self._cache, value) 

  

def __dealloc__(FiniteField_givaroElement self): 

pass 

  

def _repr_(FiniteField_givaroElement self): 

""" 

EXAMPLES:: 

  

sage: k.<FOOBAR> = GF(3^4) 

sage: FOOBAR #indirect doctest 

FOOBAR 

  

sage: k.<FOOBAR> = GF(3^4,repr='log') 

sage: FOOBAR 

1 

  

sage: k.<FOOBAR> = GF(3^4,repr='int') 

sage: FOOBAR 

3 

""" 

return self._cache._element_repr(self) 

  

def _element(self): 

""" 

Return the int internally representing this element. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4) 

sage: (a^2 + 1)._element() 

58 

""" 

return self.element 

  

def __nonzero__(FiniteField_givaroElement self): 

r""" 

Return ``True`` if ``self != k(0)``. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: a.is_zero() 

False 

sage: k(0).is_zero() 

True 

""" 

return not self._cache.objectptr.isZero(self.element) 

  

def is_one(FiniteField_givaroElement self): 

r""" 

Return ``True`` if ``self == k(1)``. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: a.is_one() 

False 

sage: k(1).is_one() 

True 

""" 

return self._cache.objectptr.isOne(self.element) 

  

def is_unit(FiniteField_givaroElement self): 

""" 

Return ``True`` if self is nonzero, so it is a unit as an element of 

the finite field. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^4); k 

Finite Field in a of size 3^4 

sage: a.is_unit() 

True 

sage: k(0).is_unit() 

False 

""" 

return not (<Cache_givaro>self._cache).objectptr.isZero(self.element) 

# **WARNING** Givaro seems to define unit to mean in the prime field, 

# which is totally wrong! It's a confusion with the underlying polynomial 

# representation maybe?? That's why the following is commented out. 

# return (<FiniteField_givaro>self._parent).objectptr.isunit(self.element) 

  

  

def is_square(FiniteField_givaroElement self): 

""" 

Return ``True`` if ``self`` is a square in ``self.parent()`` 

  

ALGORITHM: 

  

Elements are stored as powers of generators, so we simply check 

to see if it is an even power of a generator. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(9); k 

Finite Field in a of size 3^2 

sage: a.is_square() 

False 

sage: v = set([x^2 for x in k]) 

sage: [x.is_square() for x in v] 

[True, True, True, True, True] 

sage: [x.is_square() for x in k if not x in v] 

[False, False, False, False] 

  

TESTS:: 

  

sage: K = GF(27, 'a') 

sage: set([a*a for a in K]) == set([a for a in K if a.is_square()]) 

True 

sage: K = GF(25, 'a') 

sage: set([a*a for a in K]) == set([a for a in K if a.is_square()]) 

True 

sage: K = GF(16, 'a') 

sage: set([a*a for a in K]) == set([a for a in K if a.is_square()]) 

True 

""" 

cdef Cache_givaro cache = <Cache_givaro>self._cache 

if cache.objectptr.characteristic() == 2: 

return True 

elif self.element == cache.objectptr.one: 

return True 

else: 

return self.element % 2 == 0 

  

def sqrt(FiniteField_givaroElement self, extend=False, all=False): 

""" 

Return a square root of this finite field element in its 

parent, if there is one. Otherwise, raise a ``ValueError``. 

  

INPUT: 

  

- ``extend`` -- bool (default: ``True``); if ``True``, return a 

square root in an extension ring, if necessary. Otherwise, 

raise a ``ValueError`` if the root is not in the base ring. 

  

.. WARNING:: 

  

this option is not implemented! 

  

- ``all`` -- bool (default: ``False``); if ``True``, return all square 

roots of ``self``, instead of just one. 

  

.. WARNING:: 

  

The ``extend`` option is not implemented (yet). 

  

ALGORITHM: 

  

``self`` is stored as `a^k` for some generator `a`. 

Return `a^{k/2}` for even `k`. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(7^2) 

sage: k(2).sqrt() 

3 

sage: k(3).sqrt() 

2*a + 6 

sage: k(3).sqrt()**2 

3 

sage: k(4).sqrt() 

2 

sage: k.<a> = GF(7^3) 

sage: k(3).sqrt() 

Traceback (most recent call last): 

... 

ValueError: must be a perfect square. 

  

TESTS:: 

  

sage: K = GF(49, 'a') 

sage: all([a.sqrt()*a.sqrt() == a for a in K if a.is_square()]) 

True 

sage: K = GF(27, 'a') 

sage: all([a.sqrt()*a.sqrt() == a for a in K if a.is_square()]) 

True 

sage: K = GF(8, 'a') 

sage: all([a.sqrt()*a.sqrt() == a for a in K if a.is_square()]) 

True 

sage: K.<a>=FiniteField(9) 

sage: a.sqrt(extend = False, all = True) 

[] 

  

""" 

if all: 

if self.is_square(): 

a = self.sqrt() 

return [a, -a] if -a != a else [a] 

return [] 

cdef Cache_givaro cache = <Cache_givaro>self._cache 

if self.element == cache.objectptr.one: 

return make_FiniteField_givaroElement(cache, cache.objectptr.one) 

elif self.element % 2 == 0: 

return make_FiniteField_givaroElement(cache, self.element/2) 

elif cache.objectptr.characteristic() == 2: 

return make_FiniteField_givaroElement(cache, (cache.objectptr.cardinality() - 1 + self.element)/2) 

elif extend: 

raise NotImplementedError # TODO: fix this once we have nested embeddings of finite fields 

else: 

raise ValueError("must be a perfect square.") 

  

cpdef _add_(self, right): 

""" 

Add two elements. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(9**2) 

sage: b^10 + 2*b # indirect doctest 

2*b^3 + 2*b^2 + 2*b + 1 

""" 

cdef int r 

r = self._cache.objectptr.add(r, self.element , 

(<FiniteField_givaroElement>right).element ) 

return make_FiniteField_givaroElement(self._cache,r) 

  

cpdef _mul_(self, right): 

""" 

Multiply two elements. 

  

EXAMPLES:: 

  

sage: k.<c> = GF(7**4) 

sage: 3*c # indirect doctest 

3*c 

sage: c*c 

c^2 

""" 

cdef int r 

r = self._cache.objectptr.mul(r, self.element, 

(<FiniteField_givaroElement>right).element) 

return make_FiniteField_givaroElement(self._cache,r) 

  

cpdef _div_(self, right): 

""" 

Divide two elements 

  

EXAMPLES:: 

  

sage: k.<g> = GF(2**8) 

sage: g/g # indirect doctest 

1 

  

sage: k(1) / k(0) 

Traceback (most recent call last): 

... 

ZeroDivisionError: division by zero in finite field 

""" 

cdef int r 

if (<FiniteField_givaroElement>right).element == 0: 

raise ZeroDivisionError('division by zero in finite field') 

r = self._cache.objectptr.div(r, self.element, 

(<FiniteField_givaroElement>right).element) 

return make_FiniteField_givaroElement(self._cache,r) 

  

cpdef _sub_(self, right): 

""" 

Subtract two elements. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3**4) 

sage: k(3) - k(1) # indirect doctest 

2 

sage: 2*a - a^2 

2*a^2 + 2*a 

""" 

cdef int r 

r = self._cache.objectptr.sub(r, self.element, 

(<FiniteField_givaroElement>right).element) 

return make_FiniteField_givaroElement(self._cache,r) 

  

def __neg__(FiniteField_givaroElement self): 

""" 

Negative of an element. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(9); k 

Finite Field in a of size 3^2 

sage: -a 

2*a 

""" 

cdef int r 

  

r = self._cache.objectptr.neg(r, self.element) 

return make_FiniteField_givaroElement(self._cache,r) 

  

def __invert__(FiniteField_givaroElement self): 

""" 

Return the multiplicative inverse of an element. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(9); k 

Finite Field in a of size 3^2 

sage: ~a 

a + 2 

sage: ~a*a 

1 

  

TESTS: 

  

Check that trying to invert zero raises an error 

(see :trac:`12217`):: 

  

sage: F = GF(25, 'a') 

sage: z = F(0) 

sage: ~z 

Traceback (most recent call last): 

... 

ZeroDivisionError: division by zero in finite field 

  

""" 

cdef int r 

if self.element == 0: 

raise ZeroDivisionError('division by zero in finite field') 

self._cache.objectptr.inv(r, self.element) 

return make_FiniteField_givaroElement(self._cache,r) 

  

def __pow__(FiniteField_givaroElement self, exp, other): 

""" 

EXAMPLES:: 

  

sage: K.<a> = GF(3^3, 'a') 

sage: a^3 == a*a*a 

True 

sage: b = a+1 

sage: b^5 == b^2 * b^3 

True 

sage: b^(-1) == 1/b 

True 

sage: b = K(-1) 

sage: b^2 == 1 

True 

  

TESTS: 

  

The following checks that :trac:`7923` is resolved:: 

  

sage: K.<a> = GF(3^10) 

sage: b = a^9 + a^7 + 2*a^6 + a^4 + a^3 + 2*a^2 + a + 2 

sage: b^(71*7381) == (b^71)^7381 

True 

  

We define ``0^0`` to be unity, :trac:`13897`:: 

  

sage: K.<a> = GF(3^10) 

sage: K(0)^0 

1 

  

The value returned from ``0^0`` should belong to our ring:: 

  

sage: K.<a> = GF(3^10) 

sage: type(K(0)^0) == type(K(0)) 

True 

  

ALGORITHM: 

  

Givaro objects are stored as integers `i` such that ``self`` `= a^i`, 

where `a` is a generator of `K` (though not necessarily the one 

returned by ``K.gens()``). Now it is trivial to compute 

`(a^i)^e = a^{i \cdot e}`, and reducing the exponent 

mod the multiplicative order of `K`. 

  

AUTHOR: 

  

- Robert Bradshaw 

""" 

if not isinstance(exp, (int, Integer)): 

_exp = Integer(exp) 

if _exp != exp: 

raise ValueError("exponent must be an integer") 

exp = _exp 

  

cdef Cache_givaro cache = self._cache 

  

if (cache.objectptr).isOne(self.element): 

return self 

  

elif exp == 0: 

return make_FiniteField_givaroElement(cache, cache.objectptr.one) 

  

elif (cache.objectptr).isZero(self.element): 

if exp < 0: 

raise ZeroDivisionError('division by zero in finite field') 

return make_FiniteField_givaroElement(cache, cache.objectptr.zero) 

  

cdef int order = (cache.order_c()-1) 

cdef int r = exp % order 

  

if r == 0: 

return make_FiniteField_givaroElement(cache, cache.objectptr.one) 

  

cdef unsigned int r_unsigned 

if r < 0: 

r_unsigned = <unsigned int> r + order 

else: 

r_unsigned = <unsigned int>r 

cdef unsigned int elt_unsigned = <unsigned int>self.element 

cdef unsigned int order_unsigned = <unsigned int>order 

r = <int>(r_unsigned * elt_unsigned) % order_unsigned 

if r == 0: 

return make_FiniteField_givaroElement(cache, cache.objectptr.one) 

return make_FiniteField_givaroElement(cache, r) 

  

cpdef _richcmp_(left, right, int op): 

""" 

Comparison of finite field elements is correct or equality 

tests and somewhat random for ``<`` and ``>`` type of 

comparisons. This implementation performs these tests by 

comparing the underlying int representations. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(9); k 

Finite Field in a of size 3^2 

sage: a == k('a') 

True 

sage: a == a + 1 

False 

  

Even though inequality tests do return answers, they 

really make no sense as finite fields are unordered. Thus, 

you cannot rely on the result as it is implementation specific. 

  

:: 

  

sage: a < a^2 

True 

sage: a^2 < a 

False 

""" 

cdef Cache_givaro cache = (<FiniteField_givaroElement>left)._cache 

  

return richcmp(cache.log_to_int(left.element), 

cache.log_to_int((<FiniteField_givaroElement>right).element), op) 

  

def __int__(FiniteField_givaroElement self): 

""" 

Return the int representation of ``self``. When ``self`` is in the 

prime subfield, the integer returned is equal to ``self``, otherwise 

an error is raised. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: int(k(4)) 

4 

sage: int(b) 

Traceback (most recent call last): 

... 

TypeError: Cannot coerce element to an integer. 

  

""" 

cdef int self_int = self._cache.log_to_int(self.element) 

if self_int%self._cache.characteristic() != self_int: 

raise TypeError("Cannot coerce element to an integer.") 

return self_int 

  

def integer_representation(FiniteField_givaroElement self): 

""" 

Return the integer representation of ``self``. When ``self`` is in the 

prime subfield, the integer returned is equal to ``self``. 

  

Elements of this field are represented as integers as follows: 

given the element `e \in \GF{p}[x]` with 

`e = a_0 + a_1 x + a_2 x^2 + \cdots`, the integer representation 

is `a_0 + a_1 p + a_2 p^2 + \cdots`. 

  

OUTPUT: A Python ``int``. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: k(4).integer_representation() 

4 

sage: b.integer_representation() 

5 

sage: type(b.integer_representation()) 

<... 'int'> 

""" 

return self._cache.log_to_int(self.element) 

  

def _integer_(FiniteField_givaroElement self, ZZ=None): 

""" 

Convert ``self`` to an integer if it is in the prime subfield. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: k(4)._integer_() 

4 

sage: ZZ(b) 

Traceback (most recent call last): 

... 

TypeError: not in prime subfield 

""" 

cdef int a = self._cache.log_to_int(self.element) 

if a < self._cache.objectptr.characteristic(): 

return Integer(a) 

raise TypeError("not in prime subfield") 

  

def _log_to_int(FiniteField_givaroElement self): 

r""" 

Return the int representation of ``self``, as a Sage integer. 

  

Elements of this field are represented as ints as follows: 

given the element `e \in \GF{p}[x]` with 

`e = a_0 + a_1x + a_2x^2 + \cdots`, the int representation is 

`a_0 + a_1 p + a_2 p^2 + \cdots`. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: k(4)._log_to_int() 

4 

sage: b._log_to_int() 

5 

sage: type(b._log_to_int()) 

<type 'sage.rings.integer.Integer'> 

""" 

return Integer(self._cache.log_to_int(self.element)) 

  

log_to_int = deprecated_function_alias(11295, _log_to_int) 

  

def log(FiniteField_givaroElement self, base): 

""" 

Return the log to the base `b` of ``self``, i.e., an integer `n` 

such that `b^n =` ``self``. 

  

.. WARNING:: 

  

TODO -- This is currently implemented by solving the discrete 

log problem -- which shouldn't be needed because of how finite field 

elements are represented. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: a = b^7 

sage: a.log(b) 

7 

""" 

b = self.parent()(base) 

return sage.groups.generic.discrete_log(self, b) 

  

def _int_repr(FiniteField_givaroElement self): 

r""" 

Return the string representation of ``self`` as an int (as returned 

by :meth:`log_to_int`). 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: (b+1)._int_repr() 

'6' 

""" 

return self._cache._element_int_repr(self) 

  

int_repr = deprecated_function_alias(11295, _int_repr) 

  

def _log_repr(FiniteField_givaroElement self): 

r""" 

Return the log representation of ``self`` as a string. See the 

documentation of the ``_element_log_repr`` function of the 

parent field. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: (b+2)._log_repr() 

'15' 

""" 

return self._cache._element_log_repr(self) 

  

log_repr = deprecated_function_alias(11295, _log_repr) 

  

def _poly_repr(FiniteField_givaroElement self): 

r""" 

Return representation of this finite field element as a polynomial 

in the generator. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: (b+2)._poly_repr() 

'b + 2' 

""" 

return self._cache._element_poly_repr(self) 

  

poly_repr = deprecated_function_alias(11295, _poly_repr) 

  

def polynomial(FiniteField_givaroElement self, name=None): 

""" 

Return self viewed as a polynomial over 

``self.parent().prime_subfield()``. 

  

EXAMPLES:: 

  

sage: k.<b> = GF(5^2); k 

Finite Field in b of size 5^2 

sage: f = (b^2+1).polynomial(); f 

b + 4 

sage: type(f) 

<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'> 

sage: parent(f) 

Univariate Polynomial Ring in b over Finite Field of size 5 

""" 

cdef Cache_givaro cache = self._cache 

K = self.parent() 

quo = cache.log_to_int(self.element) 

b = int(cache.characteristic()) 

ret = [] 

for i in range(K.degree()): 

coeff = quo%b 

ret.append(coeff) 

quo = quo/b 

if not name is None and K.variable_name() != name: 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

return PolynomialRing(K.prime_subfield(), name)(ret) 

else: 

return K.polynomial_ring()(ret) 

  

def _magma_init_(self, magma): 

""" 

Return a string representation of self that MAGMA can 

understand. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(3^5) 

  

String rep of parent:: 

  

sage: k._magma_init_(magma) # optional - magma 

'SageCreateWithNames(ext<GF(3)|_sage_[...]![GF(3)!1,GF(3)!2,GF(3)!0,GF(3)!0,GF(3)!0,GF(3)!1]>,["a"])' 

  

Magma repr of element:: 

  

sage: a._magma_init_(magma) # optional - magma 

'_sage_[...]!(_sage_[...])' 

  

Because of caching the string representation of an element must 

not change:: 

  

sage: a._magma_init_(magma) == a._magma_init_(magma) # optional - magma 

True 

  

We test a conversion back and forth:: 

  

sage: k.<a> = GF(3^6) 

sage: b = magma(a^5 + 2*a^2 + 1) # optional - magma 

  

Note that small fields print using a log representation in Magma 

(unlike Sage):: 

  

sage: b # optional - magma 

a^436 

sage: b.sage() # optional - magma 

a^5 + 2*a^2 + 1 

""" 

R = magma(self.parent()) 

a = R.gen(1).name() 

return '%s!(%s)'%(R.name(), self._cache._element_poly_repr(self, a)) 

  

def multiplicative_order(FiniteField_givaroElement self): 

""" 

Return the multiplicative order of this field element. 

  

EXAMPLES:: 

  

sage: S.<b> = GF(5^2); S 

Finite Field in b of size 5^2 

sage: b.multiplicative_order() 

24 

sage: (b^6).multiplicative_order() 

4 

""" 

# TODO -- I'm sure this can be made vastly faster 

# using how elements are represented as a power of the generator ?? 

import sage.arith.all 

  

if self._multiplicative_order is not None: 

return self._multiplicative_order 

else: 

if self.is_zero(): 

raise ArithmeticError("Multiplicative order of 0 not defined.") 

n = (self._cache).order_c() - 1 

order = Integer(1) 

for p, e in sage.arith.all.factor(n): 

# Determine the power of p that divides the order. 

a = self**(n/(p**e)) 

while a != 1: 

order = order * p 

a = a**p 

  

self._multiplicative_order = order 

return order 

  

def __copy__(self): 

""" 

Return a copy of this element. Actually just returns ``self``, since 

finite field elements are immutable. 

  

EXAMPLES:: 

  

sage: S.<b> = GF(5^2); S 

Finite Field in b of size 5^2 

sage: c = copy(b); c 

b 

sage: c is b 

True 

sage: copy(5r) is 5r 

True 

""" 

return self 

  

def _gap_init_(FiniteField_givaroElement self): 

""" 

Return a string that evaluates to the GAP representation of 

this element. 

  

A ``NotImplementedError`` is raised if ``self.parent().modulus()`` is 

not a Conway polynomial, as the isomorphism of finite fields is 

not implemented yet. 

  

EXAMPLES:: 

  

sage: S.<b> = GF(5^2); S 

Finite Field in b of size 5^2 

sage: (4*b+3)._gap_init_() 

'Z(25)^3' 

sage: S(gap('Z(25)^3')) 

4*b + 3 

""" 

cdef Cache_givaro cache = self._cache 

if self == 0: 

return '0*Z(%s)'%cache.order_c() 

F = self.parent() 

if F.degree() == 1: 

# Find the root of unity used by Gap. See _gap_init_ in sage.rings.finite_rings.integer_mod 

from sage.interfaces.all import gap # here to reduce dependencies 

from sage.rings.finite_rings.integer_mod import mod 

g = int(gap.eval('Int(Z(%s))'%cache.order_c())) 

n = self.log(mod(g, cache.order_c())) 

return 'Z(%s)^%s'%(cache.order_c(), n) 

if not F.is_conway(): 

raise NotImplementedError("conversion of (Givaro) finite field element to GAP not implemented except for fields defined by Conway polynomials.") 

if cache.order_c() > 65536: 

raise TypeError("order (=%s) must be at most 65536." % F.order_c()) 

g = F.multiplicative_generator() 

n = self.log(g) 

return 'Z(%s)^%s'%(cache.order_c(), n) 

  

def __hash__(FiniteField_givaroElement self): 

""" 

Return the hash of this finite field element. We hash the parent 

and the underlying integer representation of this element. 

  

EXAMPLES:: 

  

sage: S.<a> = GF(5^3); S 

Finite Field in a of size 5^3 

sage: hash(a) 

5 

""" 

return hash(self.integer_representation()) 

  

def _vector_(FiniteField_givaroElement self, reverse=False): 

""" 

Return a vector in ``self.parent().vector_space()`` matching 

``self``. The most significant bit is to the right. 

  

INPUT: 

  

- ``reverse`` -- reverse the order of the bits from little endian to 

big endian. 

  

EXAMPLES:: 

  

sage: k.<a> = GF(2^4) 

sage: e = a^2 + 1 

sage: v = vector(e) 

sage: v 

(1, 0, 1, 0) 

sage: k(v) 

a^2 + 1 

  

sage: k.<a> = GF(3^4) 

sage: e = 2*a^2 + 1 

sage: v = vector(e) 

sage: v 

(1, 0, 2, 0) 

sage: k(v) 

2*a^2 + 1 

  

You can also compute the vector in the other order:: 

  

sage: e._vector_(reverse=True) 

(0, 2, 0, 1) 

""" 

#vector(foo) might pass in ZZ 

if isinstance(reverse, Parent): 

raise TypeError("Base field is fixed to prime subfield.") 

cdef Cache_givaro cache = self._cache 

k = self.parent() 

  

quo = cache.log_to_int(self.element) 

b = int(k.characteristic()) 

  

ret = [] 

for i in range(k.degree()): 

coeff = quo%b 

ret.append(coeff) 

quo = quo/b 

if reverse: 

ret = list(reversed(ret)) 

return k.vector_space()(ret) 

  

def __reduce__(FiniteField_givaroElement self): 

""" 

Used for supporting pickling of finite field elements. 

  

EXAMPLES:: 

  

sage: k = GF(2**8, 'a') 

sage: e = k.random_element() 

sage: TestSuite(e).run() # indirect doctest 

""" 

return unpickle_FiniteField_givaroElement,(self.parent(),self.element) 

  

def unpickle_FiniteField_givaroElement(parent, int x): 

""" 

TESTS:: 

  

sage: k = GF(3**4, 'a') 

sage: e = k.random_element() 

sage: TestSuite(e).run() # indirect doctest 

""" 

return make_FiniteField_givaroElement(parent._cache, x) 

  

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.rings.finite_field_givaro', 'unpickle_FiniteField_givaroElement', unpickle_FiniteField_givaroElement) 

  

cdef inline FiniteField_givaroElement make_FiniteField_givaroElement(Cache_givaro cache, int x): 

cdef FiniteField_givaroElement y 

  

if cache._has_array: 

return <FiniteField_givaroElement>cache._array[x] 

else: 

y = FiniteField_givaroElement.__new__(FiniteField_givaroElement) 

y._parent = <Parent> cache.parent 

y._cache = cache 

y.element = x 

return y